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Abstract

Understanding the dynamic behavior of a workflow is crucial for being able to modify, maintain, and improve it. A

particularly difficult aspect of some behavior is concurrency. Automated techniques which seek to mine workflow data logs to

discover information about the workflows must be able to handle the concurrency that manifests itself in the workflow

executions. This paper presents techniques to discover patterns of concurrent behavior from traces of workflow events. The

techniques are based on a probabilistic analysis of the event traces. Using metrics for the number, frequency, and regularity of

event occurrences, a determination is made of the likely concurrent behavior being manifested by the system. Discovering this

behavior can help a workflow designer better understand and improve the work processes they are managing.
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1. Introduction

Most workflow management systems can and do

log the activities that occur in the executed workflows,

and even non-workflow-specific computer-based sys-

tems generally can log activities that users perform.

Thus within and without workflow systems, there is

often a rich source of data that can be mined to learn

something about the work processes that are occur-

ring. Our research is centered around discovering

behavioral models of the processes that capture the

structured orderings of activities.

Even within a model-driven workflow system, the

actual activities that occur might contain many excep-

tions to the model, or might occupy a subset of the

model. Thus discovering a model can still offer a

method for learning new aspects of how the work is

actually being performed.

Our methods view the activity logs as a trace of

events being produced by a black-box system. In

previous work [1], we developed methods that use

event traces to automatically discover a sequential

model of behavior. For that purpose, an event trace

is viewed as a sentence in some unknown language,

and the discovery methods produce a grammar, in the

form of a finite state machine, as a model of the

language. Using the domain of finite state machines

allows us to capture the basic structure of sequential

processes: sequence, selection, and iteration.

Many workflows, however, exhibit concurrent

behavior, where more than one thread of control is

producing the events that comprise a single event

trace. In such cases, the sequential state machine

model cannot capture the true behavior of a system

and a sequential discovery algorithm will discover

overly complex models, as it tries to impose some
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sequencing on events that can be interleaved in many

different ways. Thus, we are motivated to discover

concurrent behavior.

In this paper, we develop and demonstrate methods

that can detect concurrent behavior in an event trace

and infer a model that describes that concurrent

behavior. The technique uses statistical and probabil-

istic analyses to determine when concurrent behavior

is occurring, and what dependence relationships may

exist among events. With this approach, we rely on an

assumption of randomness in the event orderings

resulting from the concurrent behavior. Our goal is

not necessarily to reconstruct a model similar to what

an engineer who understood the system would write

down, but rather to identify gross patterns of behavior

that can be useful in understanding the system. Indeed,

our technique may be most valuable when revealing

that the actual behavior does not match a preconceived

notion of how the workflow should perform.

One might consider that the goal for discovery of a

concurrent process should be to identify the individual

threads and their individual behaviors. The first step of

our work does just that. In a concurrent process,

however, it is important to also locate those points

where the threads interact. A workflow might be

constructed having two threads, for example, but those

threads may execute in lock step and actually not

exhibit any concurrency at all. Thus, while an engineer

might fairly quickly see from a specification the

intended concurrency in a workflow, identifying the

points of thread interaction and how much actual

concurrent behavior is exhibited is not as straightfor-

ward.

The contributions of this paper are techniques for

probabilistically identifying concurrent patterns of

behavior in event traces. This paper extends and

formalizes a preliminary presentation found in [2],

and contributes a small extension to previous sequen-

tial (or individual thread) discovery techniques [1].

The next section provides definitions and back-

ground discussion to place the technique in context.

Section 3 discusses techniques to discover individual

thread behaviors where thread-specific events can

already be identified. Section 4 discusses techniques

to discover threads where no thread information is

available to pre-associate events to threads. Section 5

details an example use of the technique and discusses

the success of the methods on these examples. Finally,

Section 7 concludes with some observations and some

related work.

2. Background

In this section, we detail our view of events, con-

currency, and dependencies among events that con-

strain concurrency. We also discuss several

assumptions that underlie our work. Throughout, we

use the term system to mean the whole workflow

system, and the term thread to mean a sequential

execution control path within the workflow, running

concurrently with other threads.

2.1. Events

Following our previous work [1,3], we use an event-

based model of system actions, where events are used

to characterize the dynamic behavior of a system in

terms of identifiable, instantaneous actions, such as

sending a message, beginning an activity, or invoking

a development tool. The use of events to characterize

behavior is already widely accepted in diverse areas of

software engineering, such as program visualization

[4], concurrent-system analysis [5], and distributed

debugging [6,7].

The ‘‘instant’’ of an event is relative to the time

granularity that is needed or desired. Thus, certain

activities that are of short duration relative to the time

granularity are represented as a single event. An

activity spanning some significant period of time is

represented by the interval between two or more

events. For example, a document review might have

a ‘‘begin-review’’ and ‘‘end-review’’ event pair. Simi-

larly, a work order submitted to a queue could be

represented by the three events ‘‘enter-queue’’,

‘‘begin-job’’, and ‘‘end-job’’. In this work, we take

an event-level view of behavior, and do not attempt to

reason about higher level activities.

For purposes of maintaining information about an

action, events are typed and can have attributes; one

attribute is the time the event occurred. Generally, the

other event attributes would be items such as the

agents, resources, and data associated with an event,

the tangible results of the action (e.g., the decision on a

loan application), and any other information that gives

character to the specific occurrence of that type of
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event. In the work described here, we do not make use

of attributes other than logical time, i.e., the ordering

of events.

The overlapping and hierarchical activities of a

system, then, are represented by a sequence of events,

which we refer to as an event trace. For simplicity, we

assume that a single event trace represents one execu-

tion of one system, although depending on the data

collection method, this assumption may be relaxed.

In general, we interested in discovering the patterns

of behavior involving the event types. That is, for

example, we would like to discover what pattern(s) all

events of the type A are involved in. Thus, we will use

‘‘event A’’ as a shorthand to refer to ‘‘events of the

type A’’, but sometimes the use of ‘‘event’’ will refer to

a specific occurrence of the event type. The context

will make the usage clear.

For a more detailed presentation of event data,

systems that can collect event data, and using event

data for analysis purposes, please see [8]. In addition,

[9] demonstrates that event data can be available in

an industrial workflow setting (software mainte-

nance), even when they are not specifically collected

as such.

2.2. A view of concurrency

A concurrent workflow has simultaneously execut-

ing threads of control, each producing events that end

up in the resulting event trace. Thus, the event trace

represents interleaved event sequences from all of the

concurrent threads (assuming the threads cannot easily

be captured as separate traces). These threads, since

they are presumably cooperating to achieve a goal, are

not totally independent. In addition to being created

and destroyed, they will synchronize at certain points,

and this will be reflected in the sequences of events

produced.

In this paper, example models of concurrent sys-

tems are given in the familiar Petri net formalism [10].

The separate ‘‘threads’’ of execution in Petri net

models are visible from the connectedness of the

places and transitions. Events are produced at transi-

tion firings; the sequence of events produced by the

system is exactly the sequence of transition firings.

Fig. 1 shows a small concurrent system in the Petri net

formalism where the ‘‘threads’’ are the single events A

and B. Note that this and all other figures in this paper

were automatically drawn from textual model speci-

fications using the graph layout tool dot [13].

2.3. Event classifications

The types of events that make up a trace of work-

flow execution can be quite varied, and will depend on

the trace collection instrumentation that is available.

We do not assume a certain class of events, but rather

work with whatever is available. Most workflow sys-

tems can log events and activity, and even non-work-

flow computer applications can often generate a

history of actions.

Clearly, we can only reverse engineer that part of

the system behavior from which we can collect

information, and thus the discovered abstractions will

only reflect a view of the system as provided from the

collected event trace. Nevertheless, being able to

uncover interesting aspects of concurrent behavior

from those views may be helpful to the engineers

needing to understand the system.

2.4. Event dependencies

Discovering a workflow model from event data

basically involves determining the logical dependen-

cies among events. Direct dependence is defined as the

occurrence of one event type directly depending (with

some probability) on another event type. We define

three types of direct dependence. Sequential depen-

dence captures the sequencing of events, where one

event directly follows another. Conditional dependence

captures selection, or a choice of one event from a set of

P1

C

P2

P3

B

P4

A

Fig. 1. An example Petri net.
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events potentially following a given event. Concurrent

dependence captures concurrency in terms of ‘‘fork’’

and ‘‘join’’; in a fork, all of a set of events follow a given

event (not necessarily simultaneously, however), and in

a join, a specific event follows a given set of events. A

synchronization point, where two or more threads meet

to coordinate, can be thought of as a join and a fork

combined into the same instant.

While we use the terms fork and join, we do not

mean to imply a particular concurrency construct.

Regardless of the model of concurrency, the event

trace will contain points where parallel threads syn-

chronize—assuming the events in fact represent coop-

erating threads. Upon entering the synchronization

point, the threads execute in lock-step, and are thus

joined. Upon exit, they again freely execute in parallel,

and are thus forked. If the synchronization point

involves several sequential events, then the fork and

join points bound those sequential events.

It is these direct dependencies that must be inferred

in order to discover a model. For example, the iteration

construct in the sequential case is built up of direct and

conditional dependencies connected together in a

cycle. Indirect dependencies arise from a transitive

closure over direct dependencies, and so do not need to

be discovered as separate dependencies. However,

systems may have a higher order complexity than

immediate event-to-event dependence. The occur-

rence of some event might depend on the previous

two events rather than just the previous one. For

example, a D may occur only when preceded by

AB, and not by CB. Thus, we need to be able to infer

these higher order (but still direct) dependencies.

If a time-spanning activity is represented by two or

more instantaneous events, such as a begin-event/end-

event pair, we know that those events represent activ-

ity boundaries. What this gives us is a dependency

between the two events that is predefined and, there-

fore, does not require discovery. Nevertheless, the

relationship between the events is not necessarily that

of a direct dependence. An activity might be com-

posed of several subactivities in sequence, each of

which must complete before the activity is completed.

At the event level, the end event of the activity is

directly dependent on the end event of the last sub-

activity, since that ordering is always maintained. It is

not directly dependent on the begin event of the whole

activity, but rather it is indirectly dependent. In addi-

tion, an activity might fork several other threads, or

simply have a synchronization point within it. In such

cases, the end event will still not be directly dependent

on the begin event. What this points out is that the

dynamic relationships among events can be more

complicated than the static relationships among events

might imply.

With this in mind, we do not assume the presence of

information denoting to which thread an event

belongs. Such information may in fact be readily

available, since many collection mechanisms tag each

event with the thread to which it belongs. In deciding

direct dependence, as explained above, this knowledge

is not always useful, and may even be misleading at

times. In this paper, we will demonstrate a technique to

use this information, but we move beyond that and

develop techniques that work without thread-identify-

ing information.

2.5. Tabulation of event sequence characteristics

Given an event trace, some numerical representa-

tion of its characteristic sequencing behavior is needed

upon which analysis can be performed. One of our

successful sequential techniques, Markov, is based on

a notion of frequency tables [1]. These tables record

the frequencies at which each event and event

sequence occur in the event trace. Along with fre-

quencies, we also record the number of occurrences of

each event type and sequence, up to a maximum

sequence length. In this work, we begin with a similar

representation, but add different analysis techniques.

As a working example, consider the system shown

in Fig. 1. This system simply produces an event C,

followed concurrently by events A and B, and repeats.

A sample event trace from this system is

CABCBACABCABCBAC

We use S to represent a sequence that is a subsequence

of the event trace and for which data is being tabulated.

We define the sequence constructors

PrefixðSÞ ¼ sequence S with the last event removed

(1)

S : e ¼ sequence S concatenated with event e (2)

which construct a sequence one shorter and one

longer than S, respectively. These are related such
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that PrefixðS : eÞ ¼ S. If the length of S is 1 (i.e., a

single event), then PrefixðSÞ ¼ null. As the basis for

data tabulation, we start with a simple counting of

sequences, and define

OccurðSÞ ¼ number of occurrences of sequence S

(3)

For example, OccurðACÞ ¼ 2 in the above example.

We define Occur(null) to be the total number of events

in the event trace.

From this, we define the conditional probability of

occurrence of a sequence as

CondProbðSÞ ¼ OccurðSÞ
OccurðPrefixðSÞÞ (4)

This is essentially the frequency of occurrence of the

last event of S following the PrefixðSÞ. For example, if

we look at the frequency of two-event sequences in the

above example, we have the table

A B C

A 0.0 0.6 0.4

B 0.4 0.0 0.6

C 0.5 0.33 0.0

where an entry is the frequency of the row event

followed by the column event.

For example, OccurðBAÞ ¼ 2 and OccurðBÞ ¼ 5,

and thus CondProbðBAÞ ¼ 0:4. In other words, if a B

occurs in the event trace, 40% of the time the next

event is an A (60% of the time it is a C, and 0% of

the time it is another B). These frequencies, then,

are interpreted as the conditional probability that

the second event will occur after the first event.

This event trace is shown by its frequency table to

be highly structured, since the values differ greatly

in each table entry, and there are many 0 entries.

Note that the frequencies given for the C event do

not add up to 1 because the last C is followed by an

‘‘end-of-trace’’ event, which is not shown in the

table.

For sake of conciseness, in the text we will just use

PðSÞ to indicate CondProbðSÞ; however, we will use

CondProbðSÞ in all formulas.

The non-zero frequencies directly represent prob-

abilistic dependence relations—that is, the second

event type depends on the first occurring, with some

probability. Entries of 0 in the frequency table are

interpreted as immediately signifying independence,

though one can imagine scenarios where this might

not be true. For instance, an event type might, for some

reason, depend on the event preceding it by two rather

than on the immediate predecessor, but the locality of

the frequency table would mask such an effect. We can

also partially account for noise in the data by setting

some threshold below which low-valued entries in the

frequency table are treated as 0.

If we assume that this event trace is exactly

correct (i.e., contains no noise) and derives from a

sequential system, then every non-zero entry in the

table would signify a correct event sequence, and

thus a transition sequence in a discovered state

machine. But when the system that produces the

event trace is concurrent, some of the table entries

indicate spurious or false dependencies. In the exam-

ple, the AB and BA entries are not significant, since

we can see from the system in Fig. 1 that A and B are

produced independently. A large part of the con-

currency discovery problem involves deciding which

entries in the frequency tables are significant and

which are not.

The example above shows a table for two-event

sequences, but we extend this representation to longer

sequences, e.g., for the three-event sequences begin-

ning with A, we have the following table:

A B C

AA 0.0 0.0 0.0

AB 0.0 0.0 1.0

AC 0.0 1.0 0.0

We again interpret these numbers as a conditional

probability, this time defining it as the conditional

probability of the last event following the preceding

two events. In general, we view the frequency tables of

N-length sequences as providing the (observed) con-

ditional probability that the last event follows the

preceding N � 1 events. This table shows that increas-

ing the sequence length to 3, at least for those

sequences beginning with A, gives frequency values

that offer exact predictability. Thus, using these

higher-order tables can be important.
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2.6. Assumptions

The work described in this paper represents an

initial investigation of the problem that makes use

of several simplifying assumptions.

First, underlying our approach is the assumption

that related events will appear next to each other with a

high enough frequency that inference can be made on

this relation. This is similar to the Markov principle,

which states that the current state (or, for a higher

order Markov model, the last N states) is what deter-

mines the next step in behavior, along with the input.

Essentially, we assume that behavior is, for the most

part, locally determined.

It could certainly happen that a system might

produce events that are directly dependent but that

never appear contiguous in the event trace. This would

occur, for instance, if a slow thread were mixed in with

fast threads. Our current technique does not handle

this situation, but this issue points up an area of future

work.

With this locality assumption, we focus on creating

descriptive models that are simpler than more power-

ful notations such as Petri Nets, but are concise

visualizations of the concurrent relationships found

in the event trace. Specifically, our tools output Moore

(state-labeled) or Mealy (transition-labeled) state

machines, but allowing a vector of active states rather

than just a single state so that the state machine model

is viewed as having multiple, concurrent threads. To

create and destroy threads, some states are specified as

special fork and join states. For a fork state, all

transitions leaving the state are taken together. For

a join state, all transitions entering the state are taken

together.

For example, the system represented by the Petri net

in Fig. 1 would have a discovered model as that shown

in Fig. 2. Marking the C node with a box and the

‘‘ðf ; jÞ’’ annotation signifies that its input transitions

join the threads into one (for the instant that it exe-

cutes), and that its output transitions execute concur-

rently. Thus, it represents a synchronization point.

Although this representation may not be powerful

enough to prescribe the system, it is useful for describ-

ing the system. The advantage of this visually simple

representation is that it cleanly separates the behavior

in terms of event sequencing, and clearly depicts

where concurrency exists. This is very important when

offering to the engineer a model that in fact may be

wrong or incomplete in places—which any probabil-

istic automated method might do. We intend to give an

engineer a descriptive model so that they can under-

stand more deeply the actual behavior. The advantage

of this simple representation becomes clear in the

presentation of examples. This descriptive model

can easily be transitioned into the foundation of a

prescriptive model in a more powerful notation, such

as Petri nets, UML activity charts, or statecharts [11].

A second assumption is that the observed sequences

of events will display randomness because of the fact

that they are happening concurrently. This is the

essential outcome of true, independent concurrency.

Some concurrent systems, however, may not display

much randomness, at least at the level of collectible

events. Our technique is not targeted towards those

kinds of systems.

A third assumption is that we have repeated pre-

sentations of system behavior, either in the form of a

multiply executed loop or of multiple traces. Because

we are looking at event sequence frequency, we need

multiple occurrences of those events and event

sequences to reliably interpret the frequency. For

example, if both sequences AB and AC occur once,

but the presence of AC in the trace is due to noise, the

sequences will have the same frequency, but not the

same validity. Thus, we need enough data to make the

analysis meaningful.

How much data does our technique require? The

statistical rule of thumb for using probabilities is that

the number of observations of an occurrence should be

at least five if the probability is to be used in some

inference [12], although this minimal level is quite

weak. That is, AB in the example above should occur

at least five times if we are going to use its frequency

in our analysis. If one assumed that only half of all

C
(f,j)

A B

Fig. 2. An equivalent model to Fig. 1 using a fork/join node.
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possible two-event sequences occurred in a space of N

event types, and that those all occurred equally, then

ð5=2ÞN2 events should be collected before analysis is

done. Of course, some event sequences will occur

many times more than others, so this minimal lower

bound is not realistic. It does, however, show that even

the lower bound grows with the square of the number

of event types when considering two-event sequences,

and will grow in higher powers with longer sequences

(although the occurring sequences tend to become

sparser).

3. Techniques to discover individual threads

If our event data does contain information about the

threads to which individual events belong, then we can

extract out each individual thread’s event trace (e.g.,

using grep or awk), and use that in a stand-alone

fashion to infer that thread’s behavior. This is certainly

a useful start when such information exists, although it

does not offer a complete picture of the concurrent

system, because there may be intentional and also

unintentional sequencing dependencies between the

threads. In this section, we briefly present a method for

inferring sequential behavior, most of which is

detailed in [1].

The method starts with the frequency tables as

discussed in Section 2.5. If we only process a single

thread’s event trace, then the nonzero frequencies

directly represent actual correct event sequencing

(assuming there was no noise in the data collection).

We first create a Moore type state machine with one

state per event type, and then instantiate a transition

between each two event states that have a direct

dependence. At this point we have a model that

captures the lowest possible behavior, and has only

one state per event type. We need to refine the model to

account for higher-order dependencies.

To do this we use the higher order frequency tables

to infer which event states to split—that is, if the

contexts of an event do not share similar subsequent

behavior, then we need to split that event state into

multiple states that each are consistent with those

contexts. For example, if ABC and DBE occur in

the event trace but ABE and DBC never occur, then the

state for B needs split in two, one for an ABC path, and

one for a DBE path.

Our previous work already did this refinement for

three-event sequences. At this level, the model is

refined (i.e., split) on the middle event, as the exam-

ple above shows. We have since extended it to work

with longer event sequences. We do this by first

assuming that all shorter sequences have already

been processed and model refinement on those has

already taken place. If this is the case, then the next

longer sequence only needs to refine the model on the

next-to-last event in the longer sequences. In this

way, the processing of the middle event in the three-

event sequences is just a special case of always

processing the next-to-last event in higher order

event sequences. This generalized algorithm is

shown in Fig. 3.

Our current tools allow the user to select the highest

order of processing. In practice, the three-event order

had already worked well, and it is rare that systems are

complex enough to require orders higher than 5.

In summary, we have advanced techniques that can

take sequential, single-thread event traces and infer a

model of the behavior represented in the event trace. If

thread identification is available on a collected event

trace from a parallel system, this is a valuable first step

towards understanding the behavior of the whole

system.

4. Discovery of concurrent behavior

It will not always be possible to separate events

from different threads, and even if it is possible, it may

still be useful to try to find relationships between

events from different threads.

Thus we now introduce a technique for discovering

concurrent behavior. This section proceeds in a bot-

tom-up fashion. That is, we first present four specific

metrics that contribute key information to the task of

discovering concurrency, and then present the frame-

work in which these metrics are combined to discover

complete models of the concurrent behavior shown in

event streams. The metrics include: entropy, a measure

of the amount of information a specific event type

contains; event type counts, which are important in

distinguishing sequential and concurrent behavior;

periodicity, a measure of the regularity of occurrence

of each event type; and a causality metric that distin-

guishes sequential dependence from concurrent inde-
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pendence. An early formulation of these ideas was

presented in [2].

In this section, we do not do higher-order proces-

sing similar to what was detailed in the previous

section. Rather we assume a first-order view of the

system, with each unique event type being a unique

aspect of system behavior that is modeled in a single

place in a discovered model. Thus, we do not attempt

to ‘‘split’’ event types based on higher-order contexts.

This is necessary because of the metrics we use to

discover concurrency, which the previous section did

not deal with.

As a working example, we use the process shown in

Fig. 4. This process simply produces an event C,

followed by concurrent events A, B, and F (after

A), then a D. The process then repeats until, at the

end, an event E is produced. A sample event stream

from this process is the following.

CAFBDCBAFDCAFBDCAFBDCAFBDCAFB
DCBAFDCBAFDE

For analysis purposes in this section, we used a longer

event stream from an execution of this process, in

particular one that is 1666 events long, generated from

a stochastic simulation of the model.

4.1. Entropy

A key calculation that can be derived from the

frequency tables is that of entropy, which gives a

Fig. 3. The event-state splitting algorithm. This algorithm is executed for each node in the FSM, and for each processing length above 2.
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measure of the randomness of, or conversely the

amount of information contained in, each event

sequence and its occurrences. In essence, the entropy

calculation tells us how the frequencies are distrib-

uted. If an event B always follows an event A, then

the frequency PðABÞ ¼ 1:0, and for all other events

e, PðAeÞ ¼ 0:0. This means the behavior after A is

perfectly deterministic, and thus the entropy is 0.0.

As more event types occur after an A and the

frequencies become more distributed, entropy

increases until, if all event types are equally likely,

the entropy is 1.0. An entropy of 0.0 means that we

have complete information: when an A is seen, we

know that the next event must be a B. On the other

hand, an entropy of 1.0 means that we have no

information: seeing an A gives no insight into the

next event type.

The entropy of a sequence S is defined by the

following standard formula:

EntropyðSÞ
¼ �

X
e2E

CondProbðS : eÞ � logNðCondProbðS : eÞÞ

(5)

where E is the set of all event types, and N ¼ jEj (used

in the log base).

One would think that concurrency could not be

discovered, because it is represented by apparent

randomness, or noise, in the event stream. But it is

precisely this randomness that we can look for. We can

measure the entropy for each event sequence.

If we assume a fork-style concurrent behavior, there

are specific values of entropy that might signal a fork

point. Take as an example the two-way fork shown in

Fig. 4. If we had a perfectly balanced production order

of the events beginning each branch of the fork (A and

B), the frequency values for each will be about 0.5, and

for the other four events will be 0.0. Thus, the row in

the two-event frequency table will be

since C is produced just before the fork, and A and B

are produced first on each branch of the fork. The

entropy, then, for C is 0.39. This value represents the

asymptotic bound on a two-way fork for a process

producing six event types. If a fork in this process is

balanced, then with enough data the entropy for the

fork should approach 0.39, and will never be greater

than that in the absence of noise.

For a T-way fork given N event types, this entropy

limit is given by the following simple formula (from a

straightforward algebraic reduction using Eq. (5)).

EntLimðTÞ ¼ logNðTÞ (6)

The closer an entropy value is to one of these limits,

the more likely it is to be signifying a T-way behavior.

Note that this same formula and metric can apply to

joins as well, by simply viewing the event stream

backwards. Although the reverse frequencies can

easily be computed from the forward frequencies

using Bayes’ rule [12], so that extra tables are not

needed, for efficiency reasons our implementation

C

P1 P2

A B

P3

D

P4P6

F

P5

E

Fig. 4. A simple concurrent process modeled as a Petri net.

A B C D E F

C 0.5 0.5 0.0 0.0 0.0 0.0
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does indeed explicitly record the reverse metrics as

well as the forward metrics.

Unfortunately, this metric alone is insufficient,

because the reasoning above applies to sequential

branching behavior as well. A two-way branch that

is balanced in its production of events will have the

same frequency values (and entropy) as a two-way

fork. The following metric, however, can help distin-

guish between the two cases.

4.2. Event type counts

Given an event type that has several event types

following it with various frequencies, a decision has to

be made as to whether the behavior at this point is a

sequential selection or a concurrent fork. An indica-

tion of which of these might be happening is a count of

the events for the event types involved.

It will always be true that

OccurðSÞ ¼
X
e2E

OccurðS : eÞ (7)

but in this case we will look at the individual counts of

e as well. Recall that we are assuming that for the most

part, each event type is produced at a single point in

the process. Thus, the individual event counts can be

used to characterize that point.

If selection is occurring at some point in the pro-

cess, then the counts of the event types following the

selection point should sum to the count of the

sequence at the selection point itself. For example,

if A is followed by either a B or a C through a selection

behavior, then the event counts might be, say, eight

A’s, five B’s, and three C’s. That is,

OccurðSÞ ¼
X

e2E;OccurðS:eÞ>0

OccurðeÞ (8)

If, on the other hand, concurrency is occurring at that

point, then the counts of the event types following the

fork point should each be equal to the count of the

event sequence at the fork point,

8ðe 2 E;OccurðS : eÞ > 0Þ;
OccurðeÞ ¼ OccurðSÞ (9)

and their sum should be a multiple of the count of the

event at the fork point.

T � OccurðSÞ ¼
X

e2E;OccurðS:eÞ>0

OccurðeÞ (10)

for a T-way fork. Thus, in the example above, there

would be eight A’s, eight B’s, and eight C’s.

This reasoning assumes that forks are symmetric and

synchronous, in the sense of all participating threads

starting at a single point (though the overall model could

have multiple and even nested fork points). In a system

where, for example, worker threads are created asyn-

chronously, this count differentiation would probably

not help, and we would have to rely on some other

mechanism to distinguish threads.

Even within a well-behaved system, these relation-

ships do not have to always or exactly hold, since the

event types involved might be producible through

other paths in the model or there may be some noise

in the event trace. Thus, their numbers will not always

conform neatly to this scenario. However, the counts

can indicate if the selection or fork is more likely to

hold, since there would be a large difference in the

expected event counts.

4.3. Deciding causality

The previous metrics were directed at discovering

the synchronization points in a concurrent process.

But with multiple threads, any two events produced

concurrently may have spurious frequencies because

by chance they happen to be produced near each other.

Thus, given two events A and B, how can we decide

when they are sequentially causally related and when

they are not? Remember that in the non-concurrent

case, two events might be sequentially dependent or

conditionally dependent. This section deals with both

identically, as sequential dependence is a special case

of conditional dependence, where there is only one

choice. In this discussion, we are assuming A and B

have already been eliminated as events signaling

forks, joins, or synchronization points.

If we do not see the sequences AB or BA (i.e., the

probabilities are 0, or perhaps within some threshold

of 0), then we can say that they are not directly

dependent. But if we do have significant frequencies

of these sequences occurring, then a decision needs to

be made if they are related or not.

If we only see one of AB and BA occurring, then we

can decide that there is a causal order from the first event

to the second. However, if we see both sequences, then

there are two possibilities: that the two events iterate in a

simple two-event loop, or that they are independent and
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not causally related to each other, but are occurring in

either order by chance. Recall that we are assuming only

one event site per event type in the model, so these are

the only two possibilities. There is a distinguishing

relation in the frequencies PðAÞ and PðBÞ that separate

these last two cases. If the sum PðABÞ þ PðBAÞ is

greater than or equal to 1:5, then these two events are

likely causally related in a two-event loop. If the sum

PðABÞ þ PðBAÞ is less than 1:5, then they are likely

independent.

The reasoning behind this is as follows. If A and B

are part of a two-event loop, then the minimal

sequences to see for recognizing the loop is XABAY

or XABABY, where X and Y are other events, and

assuming that the loop might exit from either end

(seeing just AB is not enough to determine that a loop

is present). For the first, the frequencies are

PðABÞ ¼ 0:5 and PðBAÞ ¼ 1:0, and for the second,

PðABÞ ¼ 1:0 and PðBAÞ ¼ 0:5. For any longer length

sequences, the sum of these two frequencies will only

increase, asymptotically approaching 2.0 as the end-

points play less and less of a role.

Of course, the possibility of concurrent production of

other events from other threads during an AB loop and

the possibility of other ‘‘noise’’ would act to reduce the

sum PðABÞ þ PðBAÞ, so that the sum could be less than

1:5 even if there truly is a loop. However, the 1:5
threshold is already minimal—we expect to have much

more data than just a three or four event example of the

loop—so a user-definable threshold parameter near 1:5
still serves to help deal with this situation, and we have

seen good results with this threshold set between 1:3
and 1:5 in test cases.

If A and B are independent, then other event types

will have non-zero frequencies from A and B, and

even AA and BB may have non-zero frequencies, so

that the likelihood of PðABÞ þ PðBAÞ 
 1:5 occur-

ring will be small. It is possible that A and B are

independent, but that by chance the sequences occur

such that the frequencies are at least 1.5, but if this is

the case, then more data should eventually show them

to be independent, or there might be some hidden

constraint in the the system that is truly causing them

to exhibit such behavior.

As an example, assume a model such as that in

Fig. 1, where C is followed by concurrent (indepen-

dent) A and B. In this model it is always true that

PðABÞ þ PðBAÞ ¼ 1, since they each occur once

between every C. Thus, they cannot be mistaken for

being dependent.

If we assume two concurrent single-event loops,

one of A’s and one of B’s, this is the only mechanism

that could accidently produce a mistaken dependence

result. For this to occur, the timing of the two loops

would have to be in a high degree of synchronization,

and perhaps discovering a causal relation between

them may actually reflect some implementation factor

that is important to understand, such as an unforeseen

resource constraint or timing effect.

4.4. Periodicity

With the periodicity metric we consider the repe-

titive behavior of a process and its event stream. Our

probabilistic analysis, as mentioned above, depends

on repeated presentations of the behavior of a system.

In this repetition, an event sequence will have some

period of occurring. Because of the other threads

around it, this period may be very irregular or very

regular. By looking at which event sequences have

regular periods, we can identify the points in the

process that are potential synchronization points,

because these will be the most regular. Periodicity

is a measurement, then, of the regularity of the period

of occurrence for each event sequence.

Consider the example in Fig. 4. The events A, B,

and F produced inside each of the threads will be a bit

jumbled; their periods will not be regular. But the

event C marking the fork and D marking the join will

always have a period of 5, because all of the events in

the threads will always occur.

If the threads have selection branches that produce

differing numbers of events, or internal loops, then the

synchronization points will not have an exactly regular

period. But even so, their period should be the most

regular—that is, the other events internal to the con-

current processes will also suffer from these differ-

ences, on top of the irregularity they already exhibit.

We first define the position of the ith occurrence of a

sequence as

PositionðS; iÞ
¼ position of the last event; of the ith occurrence of S

(11)

where each event in the event trace is numbered

sequentially, beginning at 1. With this, then, the
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average period of a sequence is

PeriodMeanðSÞ

¼
POccurðSÞ

i¼2 PositionðS; iÞ � PositionðS; i � 1Þ
OccurðSÞ � 1

(12)

and

DsqðS; iÞ ¼ ðPositionðS; iÞ � PositionðS; i � 1ÞÞ2

PeriodStdDevðSÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPOccurðSÞ
i¼2 ½DsqðS; iÞ
� PeriodMeanðSÞ2�

OccurðSÞ � 2

vuuut (13)

The standard deviations capture the regularity of the

periods of the event types, and thus are the periodicity

measurements. The means capture how long (in events

produced) is the process within that period, and can be

used as supplemental measurements. Those event

types with the lowest standard deviations should be

the event types that mark the synchronization points in

the process.

4.5. Putting the metrics together

The separate metrics described in Sections 4.1–4.4

are combined into a single technique for discovering

concurrency. The framework we use for combining the

techniques to discover the true dependencies is one of

explaining why occurrences of event types appear in

the event stream. The goal is to find dependencies that

explain as much of the event stream as possible, even

all of it if we know that there is no noise present in the

event stream.

Specifically, we keep track of two numbers: the

number of occurrences that have already been

explained by some inferred dependency, and the

number of occurrences that have been used to explain

some dependency. By keeping track of the number

already explained, we know when to stop trying to

explain some event type occurrence, and by keeping

track of the number used to explain others, we know

when to stop using an event type to explain others.

When a fork (or join in reverse) is inferred, the event

f denoting the fork is marked as fully used, as

Usedðf Þ ¼ Occurðf Þ, and each event e with a depen-

dency from f is explained by the same amount,

ExplainedðeÞþ ¼ Occurðf Þ. As noted before, we

assume that an event marking a fork is not used

anywhere else in the system. If one of the events e

has many more occurrences from some other path in

the system, those occurrences can still potentially be

explained later in the discovery process.

When a sequential dependency from event d to event

e is inferred, we only mark the used and explai-

ned based on the observed occurrence of that sequ-

ence: Usedðd Þþ ¼ Occurðd : eÞ, ExplainedðeÞþ ¼
Occurðd : eÞ. In this way, if there are several conditional

dependencies from an event, each one will be explained

according to its proportion of occurrence.

In an event trace from a concurrent system, how-

ever, there will be many spurious event sequences due

to the interleaving of the threads. In order to account

for this, when an occurring sequence d : e is not used

to infer a dependency (i.e., it does not satisfy the

metrics that have been detailed), we still perform the

update UsedðdÞþ ¼ Occurðd : eÞ. In this manner, we

are acknowledging that those occurrences of d that are

followed by e are being ignored.

The key in this approach is the order in which

dependencies are inferred and explanations are cre-

ated. A haphazard processing order would not infer the

correct dependencies, but if we first infer the depen-

dencies that are most likely to be correct, the rest will

then hopefully ‘‘fall into place’’. In a probabilistic

framework, this means that we first process those

event types that have the most and best information

in their values. In other words, we need to infer a

ranking of the quality of information before we infer

dependencies over that information.

Entropy is a direct measure of the ‘‘information’’ in

a particular event type’s sequences. But just looking at

entropy and using it directly to rank the event types

ignores the entropy limits for ideal branching factors,

as discussed in Section 4.1. For example, an event A

followed equally by events C and B would have a

higher entropy than if C occurred 3/4 of the time and B

only 1/4. But the first actually gives us better informa-

tion because it exactly shows a balanced branch (or

fork) of two, whereas in the second we cannot be sure

if the branch is two but slightly unbalanced, or if the B

occurrences are just spurious—due, for example, to

another thread.

Thus, we find the branch entropy limit (Eq. (6)) that

is closest to the actual entropy of a given event

sequence (Eq. (5)), and use the difference between
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these two for ranking. This is defined as

EntDiffðS; iÞ ¼ jEntLimðiÞ � EntropyðSÞj (14)

BrFactorðSÞ ¼ k s:t: 8i; i 6¼ k;

EntDiffðS; kÞ � EntDiffðS; iÞ (15)

EntropyRankðSÞ ¼ NEntDiffðS;BrFactorðSÞÞ (16)

where EntDiffð�Þ is the entropy difference and

BrFactorð�Þ is the branch entropy limit that is gives

the minimal entropy difference. Sequences can then be

ranked based on this value, as shown in the

EntropyRankð�Þ definition; however, we calculate

the rank as N (the number of unique event types)

raised to its power, since the entropy calculation is a

logN calculation. This linearizes the ranking value.

This difference alone, however, is still not sufficient

to rank the event types for processing. An entropy

value might be very close to some branching factor

entropy limit, but in actuality is derived from more

sequences than the branching factor allows. For exam-

ple, three event types might follow event A in such a

way that the entropy measured is very close to the limit

for a branching factor of two.

To distinguish these cases, we also calculate the

total frequency of the k highest probability sequences,

where k is the branching factor indicated by the chosen

entropy limit. This is defined over a sorted list of the

sequences:

SortedSeqðS; iÞ ¼ S : e s:t: e 2 E and 8j; j < i;

CondProbðSortedSeqðS; jÞÞ 
 CondProbðS : eÞ
and 8j; j > i; CondProbðSortedSeqðS; jÞÞ
� CondProbðS : eÞ (17)

Subtracting the k highest sequences from 1.0 then

gives us the amount of event sequence frequency not

accounted for by the branches allowed with the

entropy limit:

ProbRankðSÞ

¼ 1 �
XBrFactorðSÞ

i¼1

CondProbðSortedSeqðS; iÞÞ (18)

We also include the periodicity in the sequence rank-

ing, by the following formula:

PeriodRankðSÞ ¼ PeriodStdDevðSÞ
MaxPeriodStdDevðlengthðSÞÞ

(19)

which is simply the standard deviation of the period of

S normalized by the maximum period standard devia-

tion over all sequences of the same length.

The final ranking, then, is given as a combination of

the entropy, unaccounted-for frequency, and periodi-

city rankings:

RankðSÞ ¼ WE � EntropyRankðSÞ þ WF

� ProbRankðSÞ þ WP

� PeriodRankðSÞ (20)

In this ranking, sequences are processed from lowest

rank value (best information) to highest rank value

(worst information). The sum is weighted because

the three components vary differently. The entropy

differences are generally large compared to the fre-

quency differences, and our experience is to put less

preference on the periodicity. Also, since periodicity is

largely unrelated to the other metrics and is useful by

itself, we also print out the periodicity values separately

for the user to inspect. Our experience to date has led us

to use WE ¼ 1, WF ¼ 1:5, and WP ¼ 0:25 as coefficient

weights, but more experimentation is needed to deter-

mine whether this should be a user-definable parameter,

or if some other relationship would perform better over

a different variety of data.

For an example of this ranking, assume events A

through J occur in a trace of just these 10 event types,

and that PðABÞ ¼ 0:38, PðACÞ¼0:62, PðBDÞ ¼ 0:75,

PðBEÞ ¼ 0:17, and PðBFÞ ¼ 0:08, and all other two-

event sequences beginning with A or B do not occur.

Furthermore, assume that PeriodStdDevðAÞ ¼ 1:2,

PeriodStdDevðBÞ ¼ 1:2, and MaxPeriodStdDevð1Þ ¼
4:5.

The entropy difference for the ideal two-branch

limit would be log10ð2Þ ¼ 0:693. Event A’s entropy

is 0:664, for a difference from the ideal two-branch

limit of 0:029, and an EntropyRank of 1:07. The

unaccounted-for frequency (i.e., ProbRank) would

be 1 � ð0:38 þ 0:62Þ ¼ 0, and the PeriodRank would

be 1:2=4:5 ¼ 0:267. Thus, after applying the weights

given above, the overall Rank(A) is 1.14.

Given the example frequencies for B, the entropy

for B (0:719) is still closest to the two-branch entropy,

with a difference of 0:026. Thus, B is even closer to the

two-branch limit than the event type A. But its unac-

counted-for frequency with a branch of two is 1�
ð0:75 þ 0:17Þ ¼ 0:08, and with the same periodicity
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as A, its overall Rank(B) is 1.25, so B would be ranked

lower than A in terms of the quality of the information it

gives. The ranking is done simultaneously for both the

forward entropies and frequencies (the direct sequence

occurrences in the stream) and for the reverse entropies

and frequencies (the reverse sequences in the event

stream). This ranking thus intermixes processing both

the forward and reverse indications of dependence; in

this manner we can use the best indications of depen-

dence in either direction before we process the weaker

indications of dependence.

The whole algorithm is shown in Fig. 5 in outline

form. Each phrase describing some processing

uses the detail of the metrics described above. The

algorithm has been instantiated in a discovery

tool that reads in files of events and produces a

textual graph representation of the discovered model,

which is visualized using the dot graph layout tool

[13].

The discovery tool was given as input the 1666-

event stream produced from a stochastic simulation of

the model in Fig. 4. Table 1 shows the forward

frequencies of the two-event sequences, along with

the periodicity metric and the forward and reverse

rankings for each event, which indicates the proces-

sing order of each event’s information.

Fig. 5. The discovery algorithm.
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Event E is processed first using its reverse informa-

tion. This is because all of its occurrences (just one)

are exactly preceded by D, giving no entropy and

perfect information. Note that E’s forward information

is processed last, because it essentially has no infor-

mation since nothing succeeds it in the event stream.

Event C is processed next, first in reverse and then in

forward. C is almost always preceded by D (except for

its first occurrence), and so the reverse ranking is very

high. C’s successors (A and B) are very closely

balanced in their occurrences (0.56 and 0.44), so this

results in an entropy ranking very close to the two-way

branch limit, and thus C’s forward ranking is also very

high, and the two-way fork from C is inferred nicely.

All other events begin to be a bit jumbled as we step

down the ranking; note, for example, that B and F are

both processed relatively late; this is because they are

the two events that display the most nondeterminism

in their orderings. The resulting discovered model is

shown in Fig. 6, with the thicker arrows being stronger

dependencies (they are inferred first). The event types

C and D are found by the entropy metric to be fork/join

events and by the periodicity metric to be synchroni-

zation points. The other event types are successfully

separated into their correct dependence relations

based on their rankings, and the causality metric.

The next section demonstrates the application of

our technique on a larger workflow example.

5. Example

Consider as an example the workflow process of

reviewing a conference paper, with a Petri net model

such as that shown in Fig. 7. In this process, an author

submits a paper along with their contact information, a

program chair then assigns the paper to three reviewers.

The reviewers then each obtain the paper and submit

their reviews. In our version, the reviewers can remotely

collaborate rather than attend a PC meeting, so they read

each others’ reviews and submit comments, until they

are satisfied and are done. The program chair then reads

all the reviews and makes a decision as to whether the

paper should be accepted or rejected.

With a Petri net simulator we generated event traces

of this workflow process, such that we had 77,831

events representing 2591 executions of this workflow.

We then applied our concurrency discovery tool to this

data, and produced the discovered model shown in

Fig. 8.

The discovered model closely matches the model

used to generate the trace, thus validating the discov-

ery method’s ability to find structure in an event trace.

It did mark as forks and joins the correct events, and

cleanly separated the three concurrent sub-processes.

It weakly inferred an erroneous dependency between

reviewer 3’s ‘‘review finished’’ and reviewer 2’s ‘‘read

reviews’’, and did not infer a dependency between

‘‘add comments’’ and ‘‘review finished’’ in reviewer

3’s sub-process, but the overall model that is discov-

ered is highly accurate, most noticable with the correct

fork and join points.

However, the original model is missing some

important control in the three reviewer sub-processes.

The three reveiwers should not be able to read other

reviews until the other reviewers submit them. Thus,

perhaps this example was ‘‘too easy’’ in the sense that

the three threads could display completely indepen-

dent behavior, and thus the concurrent interleavings

would be easy to detect.

Thus, we augmented the original workflow model

with synchronization controls between the threads,

with the new model shown in Fig. 9. In this Petri

net model, each reviewer’s submit action marks a

synchronization place with two tokens, so that the

other reviewers’ threads will wait until the synchro-

nization places are marked, and then proceed with

reading the other reviews.

Table 1

Forward frequencies, periodicity deviation, and processing order

(ranking) from a simulation of Fig. 4

A B C D E F Pd For Rev

A 0.00 0.25 0.00 0.00 0.00 0.75 0.69 10 4

B 0.44 0.00 0.00 0.31 0.00 0.25 1.17 7 6

C 0.56 0.44 0.00 0.00 0.00 0.00 0.00 3 2

D 0.00 0.00 0.99 0.00 0.01 0.00 0.00 11 5

E 0.00 0.00 0.00 0.00 0.00 0.00 0.00 12 1

F 0.00 0.31 0.00 0.69 0.00 0.00 0.63 8 9

C
(f)

A

B
D
(j)

E

F

Fig. 6. The discovered model of the process in Fig. 4.
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Enter info

P2

Upload paper

P3

Assign reviewers

P4

Accept Reject

P5

P10

1 Check assignment

P11

1 Download paper

P13

1 Submit review

P14

1 Read reviews

P15

1 Add comments 1 Review finished

P16

Read all reviews

P20

2 Check assignment

P21

2 Download paper

P23

2 Submit review

P24

2 Read reviews

P25

2 Add comments 2 Review finished

P26

P30

3 Check assignment

P31

3 Download paper

P33

3 Submit review

P34

3 Read reviews

P35

3 Add comments 3 Review finished

P36

Fig. 7. Petri net model of a review process workflow.
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Enter info

Upload paper

Assign reviewers
(f)

1 Check assignment 2 Check assignment 3 Check assignment

1 Download paper 2 Download paper 3 Download paper

2 Submit review1 Submit review

2 Read reviews

1 Read reviews

3 Submit review

2 Add comments

2 Review finished

3 Review finished

Read all reviews
(j)

3 Read reviews

1 Review finished

1 Add comments

3 Add comments

Accept Reject

End

Fig. 8. Discovered model from event traces of Fig. 7.

J.E. Cook et al. / Computers in Industry 53 (2004) 297–319 313



P1

Enter info

P2

Upload paper

P3

Assign reviewers

P4

Accept Reject

P5

P10

1 Check assignment

P11

1 Download paper

P13

1 Submit review

P14

1 Read reviews

P15

1 Add comments 1 Review finished

P16

Read all reviews

P17

2 Read reviews 3 Read reviews

P20

2 Check assignment

P21

2 Download paper

P23

2 Submit review

P24

P25

2 Add comments 2 Review finished

P26

P27

P30

3 Check assignment

P31

3 Download paper

P33

3 Submit review

P34

P35

3 Add comments3 Review finished

P36

P37

222

Fig. 9. Petri net model of augmented review process workflow.
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Enter info

Upload paper

Assign reviewers
(f)

3 Check assignment2 Check assignment1 Check assignment

3 Download paper2 Download paper1 Download paper

1 Submit review 2 Submit review

2 Read reviews 1 Read reviews 3 Read reviews

3 Submit review

2 Add comments

2 Review finished 1 Review finished

1 Add comments 3 Add comments

3 Review finished

Read all reviews
(j)

Accept Reject
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Fig. 10. Discovered model from event traces of Fig. 9.
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We again simulated this workflow model, resulting

in 76,957 events over 2560% executions of the

workflow. Note that the set of event types is exactly

the same. We applied our discovery tool to this

event trace, and discovered the model shown in

Fig. 10.

This discovered model is quite remarkable, in that

it still correctly identifies the fork/join points, the

three reviewer threads, and it also identifies the

synchronization dependencies between the threads.

Furthermore, these are the only dependencies that it

discovers between the threads. It also is void of the

mistake in Fig. 8 where reviewer threads 2 and 3

have an erroneous dependency between them. The

synchronization in the middle of the reviewer

threads acts as an anchor point and breaks up the

possible concurrency into the beginning of the

threads and the end of the threads, and this actually

makes it easier to separate the real concurrency, if

the synchronizations are discovered correctly. This

model does not, however, have the loops on the ‘‘add

comments’’ events, but rather only infers an optional

single event path. In both examples, there was on

average only 2:3 comment events per thread, so

these single-event loops were not heavily exempli-

fied in the event trace, and it is not unreasonable for

a discovery algorithm to miss them, especially in the

face of concurrency.

6. Related work

There is a long history of theoretical work con-

cerned with inferring grammars for languages given

example sentences in the language [14–19]. Other

efforts have also used statistical methods [20,21].

None of these early efforts looked at the problem of

concurrency in the trace.

Several other research efforts specifically in the

workflow area have been aimed at inferring both

sequential and concurrent models from event or activ-

ity logs.

� Herbst [22–24] investigates the discovery of both

sequential and concurrent workflow models from

logged executions. In this work, the data used

is a log of partially ordered, time-spanning activ-

ities, not totally ordered instantaneous events.

This allows the algorithms to view each activity

ordering as a correct and useful datum from which

to induce a model. Our techniques are geared

towards recovering a model in the face of the

‘‘noise’’ of randomly ordered instantaneous events.

� Weijters and van der Aalst [25,26] explore the area

of workflow process mining. Their view of the

data as instantaneous events, their use of fre-

quency counts, and their heuristic rules for when

to infer a dependency appear to be similar to our

work. However, their causality metric cleverly

takes into account the possibility of causal events

not appearing directly contiguous in an event trace

from a concurrent process, and could be useful in

our framework as well. They also translate the

dependency graphs into their own desired work-

flow modeling notation, which is based on Petri

nets.

� Agrawal et al. [27] investigate producing activity

dependency graphs from event-based workflow

logs. The logs already identify the partial ordering

of concurrent, time-spanning activities, and they are

concerned with producing correct and minimal

graphs. There is no notion of identifying synchro-

nization points within the activities.

Other related work can also be found in the area of

debugging and understanding distributed, concurrent

software systems.

� Due to the popularity of message sequence charts

(MSC) as a scenario-based requirement and design

specification method, several recent efforts have

centered around combining individual MSCs into

a single behavioral model [28–30]. These efforts are

quite different than ours in that the ‘‘traces’’ are

small, human-designed sequences that each repre-

sent a unique aspect of behavior for the system.

Thus, every sequence is sure to represent some

important aspect, and there is no need to probabil-

istically reason about which observed sequences are

useful and which are not. Some dynamic analysis

efforts do take large amounts of trace information

and condense them first into MSCs, and then

aggregate those into state diagrams [31]. This work

is based on purely sequential traces.

� Holtzblatt et al. [32] explore methods of design

recovery for distributed systems, where they look at

recovering the design architecture of the task flow
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from the source code. They do not look at dynamic

behavior, and indeed point to this as a limitation in

their approach.

� Venkatesan and Dathan [33] use an event-based

framework for testing and debugging distributed

programs. They provide distributed algorithms for

evaluating global predicates that specify the correct

behavior that the system should be exhibiting.

� Diaz et al. [34] use an event-based framework for

on-line validation of distributed systems. Their

mechanism employs an active observer that can

listen to events (or messages) and compare the

actual behavior to a formal specification of the

correct behavior.

7. Conclusion

In this paper, we developed and demonstrated prob-

abilistic techniques for inferring concurrent models of

system behavior from event traces. If the events have

some attribute that identifies the thread they belong to,

then sequential model techniques can be applied to

infer a single-thread model. This paper summarized

previous work in this area [35], and presented a minor

extension to this work.

If events do not have thread-identifying informa-

tion, new techniques are needed to find the correct

dependencies within the random orderings of events

produced from multiple, concurrent threads. This

paper mathematically formalized and extended tech-

niques first sketched in [2], and presented an example

workflow demonstrating the capabilities of these tech-

niques.

Providing these techniques to engineers who are

maintaining or creating workflow models will enhance

their effectiveness in understanding the actual work

processes, and can help in making changes for ben-

eficial improvement of the workflow.

Several further directions need to be explored in

this work. The assumption of a single place for

events is restrictive. Extending the technique to

allow for a model that produces an event type at

multiple points would be a significant improvement.

Our previous sequential discovery method, Markov,

did just that, but the concurrent case is more complex

because of the computations of entropy and periodic

behavior. These computations would need to be

separated for the set of production points of each

event type. The work in [24] can be built on for this

extension.

Incorporating domain or existing knowledge about

the system would enhance the validity of the metrics.

An engineer might, for example, know a priori that a

certain event type will signal a synchronization point

for the threads in the workflow, or they might know

how many total threads there are. As mentioned

previously, some collection methods may even be able

to associate events with specific threads, though this in

itself does not remove the difficult points of detecting

actual concurrency. Domain knowledge may allow

some of this information to be gleaned as well. For

example, knowledge of the number of persons

involved in a workflow might lead to statements about

the number of threads inherent in it. Investigating the

thresholding behavior of the technique, and providing

better threshold parameters and guidance in using

them, is also an important direction to make the

technique widely usable.

The technique presented here is essentially a greedy

algorithm that never retracts decisions about which

dependencies to instantiate. Extending this to allow

multiple possible dependencies to be explored might

significantly enhance the quality of the results

achieved. The problems with such techniques is that

they usually increase the running times of the algo-

rithms prohibitively.

Finally, the limitation mentioned previously about

slower threads never producing events near each other

and thus not being recognized would be worth study-

ing and pursuing. Other domains have looked at

lagged frequencies, where one calculates the fre-

quency not of the next immediate event, but of the

event following by a lag of N. We will investigate the

suitability of such a method to the problem of con-

currency discovery and modeling. The causality

metric in [26] demonstrates positive results along

these lines.

Our methods use purely relative time, but if we

have a timed event trace, using absolute time would

provide different, and alternatively interesting

results. A long period of inactivity would look short

in relative time, but the states that the system is in

may be purposely synchronized for that idle period.

Other researchers [36] are also heading in this

direction.
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