
Using Visual Challenges to Verify the Integrity of
Security Cameras

Junia Valente, Alvaro A. Cárdenas
Erik Jonsson School of Engineering & Computer Science

The University of Texas at Dallas
Richardson, TX

{juniavalente, alvaro.cardenas}@utdallas.edu

ABSTRACT
We propose a new way to verify the integrity and freshness of
footage from security cameras by sending visual challenges
to the area being monitored by the camera. We study the ef-
fectiveness of periodically updating plain text and QR code
visual challenges, propose attack detection statistics for each
of them, and study their performance under normal condi-
tions (without attack) and against a variety of adversaries.

Our implementation results show that visual challenges
are an effective method to add defense-in-depth mechanisms
to improve the trustworthiness of security cameras.

1. INTRODUCTION
Security cameras are used in a variety of sensitive settings,

including the monitoring of uranium enrichment facilities to
verify that countries abide by the Nuclear Non-Proliferation
Treaty [41], monitoring access to certificate vaults protecting
secret keys [11], monitoring access to the computers gener-
ating random numbers for the lottery [12], and monitoring
electricity substations [33]. As the sensitivity of usage sce-
narios and pervasiveness of security cameras increase, we
need to ensure they are protected by defense-in-depth mech-
anisms to ensure captured images are fresh and authentic.

In a typical Hollywood bank heist film, attackers hack
the security cameras and replay old footage so that security
guards are not able to see the attack taking place. Unfortu-
nately, this scenario is becoming more realistic as the interest
for hacking cameras and the expertise of attackers continue
to increase. In a recent example, the cameras that monitored
access to computers generating random numbers for a lot-
tery system recorded only one second per minute rather than
running continuously like normal and prosecutors argue that
the defendant tampered with the camera equipment to have
an opportunity to insert a thumb-drive into the computers
without detection [12]. During a Black Hat conference pre-
sentation, security expert Craig Heffner demonstrated how
simple it is to exploit network surveillance cameras like a
‘Hollywood-style’ hacker [15] by freezing the current frame
on the administrator panel.

These examples show the need for defense-in-depth mech-
anisms for security cameras. We argue that once an attacker

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACSAC ’15, December 07-11, 2015, Los Angeles, CA, USA
c© 2015 ACM. ISBN 978-1-4503-3682-6/15/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2818000.2818045

has compromised the secret keys or the root-of-trust of an
embedded device, the attacker can bypass most of the tradi-
tional integrity mechanisms that the receiver of the message
can use to verify its authenticity. In addition, security mech-
anisms are not equipped to detect attacks like moving the
cameras to point to a different place [26].

To mitigate these problems we propose an independent
channel for verification that will detect an integrity viola-
tion of the video received even if the camera and its secret
information has been compromised, or if it is physically at-
tacked. Our idea is motivated by attestation and freshness
protocols where a verifier sends a random challenge to the
device and the device replies with a message to prove its
freshness and authenticity; however, the novel aspect of our
approach is that we do not send the attestation challenge to
the device itself, instead we send a visual challenge to the
physical area that the camera is monitoring, and verify that
the desired changes are reflected in the video feed.

An intuitive idea for a visual challenge is to have a light
turning on and off at the discretion of the verifier, and then
use the video footage received to observe if the light is on
or off. However, this approach is vulnerable to replay at-
tacks. We propose and evaluate two types of visual chal-
lenges with enough randomness to prevent replay attacks:
plain text—which can be recognized via optical character
recognition (OCR) engines such as tesseract [42])—and
QR codes—which can be decoded via popular barcode read-
ers such as zbar [47]. In both cases, the verifier generates
a random string of different sizes and either displays it in
the display as-is (e.g., plain text image) or encodes the ran-
dom string into a QR code and displays the QR code in the
monitor. The verifier then receives the video feed from the
camera, uses either the OCR engine or the QR code reader
(depending on the type of visual challenge used) to extract
the random string from the image, and then verifies whether
the string found in the captured image is the same (or close
enough in the case of OCR) as the one it sent as a challenge.

1.1 Contributions
We propose a new defense that leverages unique prop-

erties of cameras; in particular, we exploit their ability to
capture visual challenges that we can then use to verify
the integrity of the image captured. Our system will not
replace traditional message integrity or attestation mech-
anisms, but rather, complement them with an additional
defense-in-depth system whose trust is independent from the
other components in the camera surveillance deployment, so
that even when the camera feed is compromised (e.g., when
the attacker obtains the secret keys of the camera) we are
still able to detect problems with the camera footage.

Note that because we are not sending the challenge to
the device but to the physical world, our approach works

141

for legacy systems. The challenge is sent implicitly as an
input to the prover (i.e., the camera) but the prover does
not need to know about it, even though the response will
show up in the output of the camera (i.e., even without the
prover’s knowledge). Therefore our proposal is not only well
suited for legacy systems but also for systems where you do
not want to (or cannot) change the software or hardware of
the camera or the receiving server. Our proposal requires
only two devices to be added, a display and a verifier, and
it can work without the need to change any parameter in an
already deployed system.

We propose a general system architecture with clearly de-
fined trust assumptions and adversary models. We also pro-
pose two visual challenges and evaluate their performance
with and without attacks. We believe our analysis of send-
ing physical challenges is general enough to be applicable
to other embedded sensors, and we will study extensions to
other domains in future work.

2. SYSTEM DESIGN
Consider a security camera monitoring a given location

(e.g., entrance to a bank safe or certificate vault, restricted
areas of a nuclear power plant or the PRNG generator from a
lottery company). Our goal is to detect a compromised cam-
era in the presence of an attacker, i.e., a camera that is re-
porting incorrect information or old data. In order to do this
we add two new devices to the currently deployed system: a
display (for indoor environments we can use a digital signage
and for outdoor environments an LED display) and a verifier
which sends a continuous stream of random challenges to be
captured by the security camera, as illustrated in Fig. 1.

pzVnU6GVJoJ7YVXQtt8QXYNvmSvIUEqs

Veri er

visual
challenge

1
4

video feed3

2

Figure 1: (1) A visual challenge is sent to a display,
(2) the camera captures an image which includes
the display, (3) the video feed is sent to the control
center (where the verifier is located), (4) if the veri-
fier confirms the challenge was captured in the video
just received, it gains confidence that the camera is
transmitting fresh and authentic footage.

The general design considerations are to (1) reliably detect
the visual challenge with high accuracy (no false alarms),
and (2) prevent attackers from bypassing our system. We
now explain in more detail our design considerations.

2.1 Visual Challenges: QR Code and Plain Text
An intuitive and simple idea of how to verify if a camera

is capturing what is really happening in its field of vision is
to have an LED, laser or light bulb in a place the camera
can see, and then turn the light on or off according to a

desired pattern. If the camera captures the light when the
light is supposed to be on, and does not capture when it is
supposed to be off, then we can improve the trustworthiness
of the video feed we are receiving. However, this intuitive
visual challenge is very easy to defeat: the attacker needs to
simply save one frame with the equivalent of an “on” state
and another frame with the “off” state, and replay the frame
whenever a challenge is repeated. Therefore, we need to
use random challenges with enough entropy to prevent an
attacker from recording all frames and then replaying when-
ever a challenge is repeated.

We propose that the verifier generates a random string
and either displays it in the monitor as-is (plain text chal-
lenge) or encodes the random string into a QR code (QR
code challenge). QR codes and plain text images have ro-
bust decoding algorithms in the form of QR code readers
and OCR engines which can be used to efficiently detect the
visual challenge. In addition, we need to send a continuous
stream of visual challenges in order to guarantee freshness.

QR codes [6, 14] are ISO standards [1] to encode infor-
mation in an image. Their main features are [6]: 1) high
data capacity, 2) small printout size, 3) error correction ca-
pability, 4) omni-directional and high speed reading, and 5)
structured appending feature.

There are three major considerations that differentiate the
use of QR codes and plain text as visual challenges: (1) the
amount of information (and hence randomness) that can be
conveyed per pixel, (2) the ability to produce an error-free
decoding, or a soft decoding with some errors, and (3) the
type of display used.

The first consideration is the amount of information that
can be displayed per pixel, and QR codes are an efficient
way to display that information. Fig. 2 shows the advan-
tages of QR codes in comparison to using plain text: we can
encode up to 4,296 alphabetic characters (and 7k+ numeric
characters) in the code. The accuracy of decoding the code
is not affected as the number of characters encoded increase.

Key length
50 100 150 200 250 300

S
iz

e
(p

ix
el

2
)

×105

0

1

2

3

4

5

6

7
Character per Pixel

QR
OCR

1920 x 1200 pixels

195 x 195 pixels

1772 x 113 pixels

tHpy1aCkZPS7um5dXZfgBHPtmTh50f0H8mLSHrm3l0XzaCwA9V
yWl04QwFQhTtVUamgTRmy7YpoiikRwJbxnNtfVTKbbhBi3qDGc

Figure 2: One of the advantages of using QR codes
over plain text as a visual challenge is that QR codes
occupy a smaller size when compared to plain text,
therefore QR codes can communicate a larger capac-
ity of information per pixel square than plain text.

The second consideration is the fact that QR codes use
error correcting codes and as such, they produce a binary
detection score: that is, they can either correctly detect the
code, or produce a decoding error. OCR algorithms on the
other hand can produce “soft” detection scores ranging be-
tween 0 to 100% detection accuracy. As we will see in our
performance evaluation, the ability to work with partially
correct decoded visual challenges might be an advantage
from a security perspective.

142

The final consideration is the type of display used to show
the challenge. For indoor environments, a digital signage
can display both visual challenges, while for outdoor envi-
ronments, only top of the line LED displays have enough
resolution and are large enough to display QR codes; for
relatively inexpensive LED displays plain text visual chal-
lenges might be the only option available.

2.2 Trust Assumptions
The architecture of our system is shown in Fig. 3. We

assume that any device in our system is potentially compro-
mised, and our goal is to detect when the camera is providing
false information, or when the footage stored in the control
center database has been modified.

Camera

Veri er

visual challenge

sense
Physical

Environment

Digital Signage

Control
Station

DB

video
feed

DB

Trusted

Figure 3: The only trusted entities in our system are
the verifier, which sends the visual challenge to the
display, and the database (if necessary) that stores
the history of challenges and the time they were sent
for forensics purposes.

Our system can provide security to online (attacking the
camera) and offline (attacking the control center storage)
attacks as long as the verifier is trusted. To detect offline
attacks modifying the footage stored in the control center we
also require a place to securely store the history of challenges
(and the time) sent to the display. For offline attacks we
also need to assume that the verifier obtains the time from
a trusted source. It is not necessary for the database of
the verifier to be secure (e.g., if we store digitally signed
messages by the verifier).

2.3 Adversary Model
We want to minimize the chances the attacker can use pre-

viously recorded footage and present it as new. Therefore
our system needs two requirements: (1) the random chal-
lenge needs to have enough entropy to prevent an attacker
from recording all messages and then replaying whenever a
challenge is repeated (we use alpha-numeric random strings
of length l in our experiments), and (2) the verifier needs to
refresh the random challenge periodically (in a matter of sec-
onds) to prevent the attacker from recording the first time
the challenge appears in the display and then replaying the
first frame for the expected duration of that challenge. We
discuss the importance of these two parameters in the sec-
tion focusing on the security analysis of our implementation.

In our implementation section we also consider the per-
formance of our system against three types of attackers who
have compromised the camera. We first consider a naive
attacker that does not know our system is in place and will
launch a false data injection attack without taking into con-
sideration the visual challenge, then we consider an attacker
that knows our system is in place and will launch an at-
tack as long as it is not detected, and finally, we consider
an attacker who tries to impose the legitimate version of the
visual challenge on top of a forged video feed.

2.4 Attack Detection
The ability to send a challenge continuously means that

even if our detection mechanism does not recognize one par-
ticular correct response to the challenge (a false alarm), the
accumulation of errors over a period of time will still be low
if we are not under attack; while a consistently high mis-
match over a period of time between the computer vision
algorithm and the challenge should be an indication of an
attack.

There are two possible errors in QR codes: either the de-
coding of a message is different from the one we sent or there
is an error decoding the QR code. Because under normal
(non-attack) circumstances we never decode a challenge dif-
ferent from the one we sent, then we can claim we are under
attack whenever we do decode something other than what
we sent. Similarly if we have too many decoding errors over
a period of time, we can raise an alarm. A representation of
this attack detection state machine is shown in Fig. 4.

normal 1 E

alarm

2 consecutive E

3 consecutive E
incorrect
decoding

E

C

E

C

A

A or E

AA

C

EC

Figure 4: Anomaly detection for QR code visual
challenges. Legend: C = correct decoding, A =
decoding of a value different to the challenge (i.e., a
high indicator of an attack), and E = cannot decode
QR code in the current image frame.

In contrast to the all or nothing decoding from QR codes,
OCR gives us the ability to work with decoded results that
are partially correct. For our system we do not need to ex-
tract the correct message sent, as long as it is close enough
to our challenge we can gain confidence that it is the cor-
rect footage from the camera. The extension of the anomaly
detection state machine from Fig. 4 to the continuous case
would be to keep a count of the anomaly score across suc-
cessive challenges. This problem can be modeled with the
non-parametric cumulative sum (CUSUM) algorithm to de-
tect changes in our system. The non-parametric CUSUM
statistic is updated using the following rules: start with an
anomaly score of zero: S0 = 0. For every consecutive visual
challenge, compute the anomaly score εk (the error difference
between the reconstructed challenge and the real challenge
at step k) and then keep a cumulative count of the errors:
Sk = max(0, Sk−1 + εk − δ) (δ is a parameter chosen such
that the expected value of εk − δ is just smaller than zero
when no attack is present).

To calculate εk we need a metric to tell us how far apart
the extracted string is from the correct one. We can measure
the distance between the two strings based on the number
of edits necessary to convert one string to another, i.e., the
minimum number of changes in the extracted string to con-
vert to the correct one. The three possible types of edits
are namely insertion, deletion, and substitution, where each
of these string transform operations have a cost of 1 [39].
This metric, known as the edit distance (sometimes referred
to as Levenshtein distance [29]), is widely used for approxi-
mate string matching in various applications, including the
evaluation of the accuracy of an OCR system [39].

143

3. IMPLEMENTATION
This section describes an implementation of our proposal

to evaluate both its performance and design considerations.
Fig. 5 shows the setup of one of our laboratory experiments.

Figure 5: Laboratory setup for experiments. QR
code can be seen in the lower left corner of display.

For our prototype we used a popular wireless IP surveil-
lance camera purchased in 2015. The camera uses the Real-
Time Streaming Protocol (RTSP) to send its feed to a Net-
work Video Recorder (NVR). After repeated customer sup-
port calls we concluded that the vendor only provides appli-
cations to see the feed from Windows computers but does
not offer support for accessing the raw feed programmati-
cally in Linux systems. In order to access the raw feed we
used binwalk to analyze the image of the NVR firmware.
We found that the NVR device uses the cramfs file system,
a Linux compressed read-only memory file system often used
in embedded devices due to its simplicity and compression
techniques to save disk space. As the firmware is not en-
crypted, we were able to extract the entire cramfs file sys-
tem and unpacked it. We examined the /etc/passwd file
and recovered the root password from its hash using popu-
lar password cracking tools. This password can then be used
to access the system remotely and further retrieve the video
feed directly from the camera (we submitted a vulnerability
report, and we are expecting a public release from CERT by
the end of November 2015). Unfortunately, this vulnerabil-
ity is one of the ways attackers can gain full control of the
camera feed.

3.1 QR Code Detection and OCR Accuracy
We experimented with different tools for decoding the vi-

sual challenges. Since our plain text visual challenge is rep-
resented as an image, we use an OCR engine to extract
the text from the image for verification. There is a large
body of research in OCR [3, 25] and it is used in various
domains such as text retrieval from natural scenes [46], li-
cense plate recognition [2], and real-time translation of text
in streets [43, 45]. We select two open-source tools for com-
parison: tesseract [42, 40] and gocr [36].

When using OCR engines we cannot rely on a dictionary
to correct words because our visual challenges are random
strings. But because we know what the correct string should
be, then we can compare the recognized text against the ex-
pected string. For plain text we use a metric to tell us how
far apart the extracted string is from the correct one. This
metric, known as the edit distance, is widely used for approx-
imate string matching: to check the difference between two
programs, to search text with spelling errors, and to evalu-
ate the accuracy of OCR systems [39]. We use the python-
Levenshtein [13] library in our implementations.

For QR code challenges, we decode the visual challenge
with a barcode reader tool. There are several open-source
barcode readers available such as zbar [47] and zxing [49].
In our experiments, zbar outperformed zxing and thus zbar
is used in our results. To check the correctness of zbar, we
generated and decoded over 86,000 QR codes, and verified
that the retrieved text was indeed the correct one. We found
the decoding time for QR code challenges to range from an
average of 92.39 to 171.36 milliseconds for random strings of
length l = 50 and l = 300, respectively. To verify the text
decoded from a QR code with the correct one, we formulate
this verification as an exact string matching problem because
partial errors are not tolerated in decoding QR codes.

Decoding rate of visual challenges: we use different
metrics to calculate the decoding rate of our visual chal-
lenges. For plain text, we use:

accuracyOCR =
l − dist

l
∈ [0, 1],

where l is the length of the correct string and dist is the edit
distance, i.e., the number of errors, between the decoded and
correct string. This was the metric used in the Fifth Annual
Test of OCR Accuracy [30].

For QR codes, we use:

accuracyQR =

{
1, if decodable

0, otherwise

where decodable means the barcode reader is able to decode
the QR code and return a decoded string in plain text.

We calculate the average decoding rate as the average ac-
curacy of plain text challenges or as the number of success-
fully decoded QR codes from the camera feed (as shown
in Table 1). In addition, we calculate the error rate as
error rate = 1− accuracy.

3.1.1 Image Pre-processing
Instead of applying our decoding algorithms directly to

the raw video feed received, we add an image processing
step to help us achieve better decoding results. This is par-
ticularly true for QR code detection where decoding rates
were poor with the raw image.

For both visual challenges, we convert the raw image into
a binary one. We use the well-known binary thresholding
operation to convert the raw image into black and white.
This operation reassigns all pixels to either black or white
values depending on the pixel intensity value I(i, j):

O(i, j) =

{
maxV alue, if I(i, j) > thresh

minV alue, otherwise

We use maxV alue = 1 (white) and minV alue = 0 (black).
There are several methods for automatic threshold selection
[38] including the popular Otsu’s method [27], Kapur, Sa-
hoo, and Wong’s Maximum Entropy method [18], and Li’s
Minimum Cross Entropy method [21]. While these methods
can help select an optimal threshold, we found that using
one method over the other was not enough for improving the
recognition of visual challenges in our scenarios. Sometimes
a method selects a threshold that will result in a decodable
image whereas the same method might select a threshold for
a different image that results in an image we cannot decode
or accurately recognize its containing visual challenge.

Notice however that we are not restricted to trying only
one method, in principle we can produce multiple images
and feed them in parallel to the QR code decoder or OCR

144

engine. Therefore we select multiple thresholds (for exam-
ple, via Otsu’s method or Kapur et al’s method, and from a
set of pre-calculated thresholds known to work well for our
purposes) and create at least two binary versions of the raw
image. At this step we attempt to decode the raw image and
the binary versions in parallel. As we show in our results, it
turns out that most of the time at least one of the images
will become decodable in the case of QR codes, or will have
higher accuracy rate in the case of plain texts. Thus, we are
guaranteed with high probability to decode/recognize the
visual challenge of the current frame. Once the visual chal-
lenge is decoded/recognized, the verifier can further verify
it against the known expected challenge.

Fig. 6 illustrates our use of multiple threshold values. The
original raw image, shown in Fig. 6(a), was captured during
our experimental runs using a visual challenge that encodes a
random alpha-numeric string of length l = 200. The string is
encoded in the QR code shown in the lower right hand-corner
of the image. For this particular frame the raw image cannot
be directly decoded but becomes decodable after creating a
binary representation using a threshold of thresh = 70, as
shown in Fig. 6(b). It is worth noting that for this particular
frame, the same way a threshold of thresh = 75 did not
produce a decodable binary image (as shown in Fig. 6(c)),
neither did the threshold auto selected by Otsu’s method or
Kapur et al’s method help produce a decodable image.

VjDwsX8Oh5hUPQuoeTi1ocVTC6bGVcq7CL70rMBLTG1XQbVqulfYRaO88KgAiBtWNwV
3oaQSWf54YFBH2HBVN1ntBNNlHZxomSTNdASva5m4uP9jFBuizqmjURtz9Y7BholhOl
4tcCCrNjtbScgrnPXq8AAZeWVZ7Rm8zDibobLiQ53SUGxhoz8eXiGxyrWHbKcqePhu

not decodable not decodabledecodable

(a) (b) (c)
Raw image thresh = 70 thresh = 75

Figure 6: A frame captured in our experimental re-
sults. Fig. (a) is the raw image and cannot be de-
coded as is. We convert the raw image to a bi-
nary one using different thresholds (Fig. (b) uses
thresh = 70, Fig. (c) uses thresh = 75). We can
then successfully decode at least one image, namely
Fig. (b).

In Table 1, we show the results of using the raw im-
age frame (either RGB or grayscale image) versus multiple
versions of the image (raw image plus binary images with
thresh = 70 and thresh = 75). Our results show two things:
(1) It is possible for QR codes to be decoded with a high rate
even in the case of no additional pre-processing. For exam-
ple, the average decoding rate for QR codes is 99% and 94%
for challenges of length l = 100 and l = 150, respectively.
This is higher than the accuracy of plain text challenges
which have at most 89.23% (for strings with l = 300). How-
ever, the lowest recognition rate for plain text challenges
(83.14%) is higher than the lowest decoding rates for QR
codes challenges (70%) without pre-processing. A possi-
ble explanation is that the percentage for the plain text re-
flects grayscaled images. (2) By using multiple thresholds
in parallel, we are able to significantly increase the decod-
ing/recognition rate of visual challenges. For instance, QR

code challenges had an average increase of 20% for length
l = 50 and plain text challenges had an average increase of
9.72% for length l = 100.

Table 1: The average decoding and accuracy rate of
visual challenges are increased by parallel decoding
of multiple pre-processed images.

l = 50 l = 100 l = 150 l = 200 l = 250 l = 300

QR code
RGB 79% 99% 94% 90% 70% 76%
B/W* 99% 99% 97% 100% 90%** 94%

Plain text
Gray 86.00% 83.14% 86.13% 84.10% 87.79% 89.23%
B/W* 89.44% 92.86% 88.95% 88.96% 90.93% 93.09%

*parallel image processing (raw image, thresh = 70, thresh = 75)
**uses different thresholds from the rest (thresh = 80, thresh = 85)

0 50 100
0

5

10

15

Decoding errors under normal operation for QR codes

original

0 50 100

C
um

ul
at

iv
e

er
ro

r

0

5

10

15

thresh=70

Time steps

0 50 100
0

5

10

15

thresh=75

Time steps
0 20 40 60 80 100

C
u

m
u

la
ti

ve
 e

rr
o

r

0

0.5

1
Decoding errors under normal operation

combined results(d)

(a) (b) (c)
(l = 200)

Figure 7: The cumulative error increases by one
each time a QR code is not decodable. We decode
different versions of the current frame as explained
in Fig. 6. The frame is decodable if at least one ver-
sion is decodable, which is the case shown in Fig. (d)
for QR codes of l = 200.

Fig. 7 shows a successful case where pre-processing helped
minimize the number of errors under normal operation for
QR codes (i.e., high decoding rate) of l = 200. Fig. 7 (a)
shows the cumulative number of decoding errors for raw im-
ages captured consecutively, and Figs. 7 (b)-(c) show the
cumulative number of decoding errors for binary versions of
raw images with thresh = 70 and thresh = 75. Finally,
Fig. 7 (d) shows the cumulative number of detection errors
when we are able to decode at least one of the different
versions. In this case, the number of decoding errors is min-
imized to zero. We will use this parallel processing for se-
lecting at least one decodable image in all our future results.
Note that in other cases (e.g., l = 250) we still have a few de-
coding errors even after pre-processing QR code challenges.

3.1.2 Overall Decoding Results
Tesseract vs. GOCR accuracy: We experimented with
both tesseract and gocr for OCR decoding. At the end
we decided to focus on tesseract because it gave us bet-
ter accuracy rates. For example, for visual challenges of
length l = 50, the average accuracy rate for gocr is 64.10%
whereas for tesseract it is 89.44%, and for length l = 300,
the rate is 59.39% for gocr whereas it is 93.09% for tesser-
act. In addition, the performance of tesseract was better

145

for recognizing larger strings. To recognize plain text chal-
lenges of lengths l = 50 and l = 300, tesseract takes an
average of 0.46 to 0.68 milliseconds while gocr takes an av-
erage of 0.47 to 0.76 milliseconds.

QR vs. OCR accuracy: We evaluate the decoding rate for
100 sample visual challenges of 6 different lengths (l = 50,
100, 150, . . . , l = 300). We test two scenarios, (a) de-
coding rates under ideal conditions (see Fig. 8(a)) where
the challenge image is generated synthetically in the com-
puter (to show the maximum performance that could be
achieved under ideal image capture settings), and (b) the
decoding rates using images captured by the video camera
(see Fig. 8(b)). Under ideal settings QR codes achieve de-
coding rates of 100% for all challenge lengths (that is, all
600 QR codes are successfully decoded) while for plain text,
the decoding rate is always above 98% but never 100% with
a slight increase at l ≥ 200. As expected, the rate drops
for both visual challenges when using images from a real de-
ployment due to the image errors introduced by the camera
and the display. For the QR code, the rate remained high
(between 97%-100%) for l ≤ 200 but dropped for l ≥ 200.
For OCR, we see a drop from approximately 98% to 88%
but a clear correlation to Fig. 8 (a). These results suggest
that QR codes have better accuracy.

Key length
50 100 150 200 250 300

A
cc

u
ra

cy
 (

%
)

93

94

95

96

97

98

99

100

OCR vs. QR Accuracy (Sample)

QR decoding rate
OCR accuracy

Key length
50 100 150 200 250 300

A
cc

u
ra

cy
 (

%
)

80

85

90

95

100

OCR vs. QR Accuracy (Captured Images

QR decoding rate
OCR accuracy

QR Code Decoding Rate vs. OCR Accuracy
Original Visual Challenges Captured Visual Challenges

(a) (b)

Figure 8: Accuracy of QR code readers and OCR
algorithms as the visual challenge length increases.
Fig. (a) shows the baseline achieved by analyzing
the digital version of challenges sent to the display
(i.e., ideal conditions for the image capture), and
Fig. (b) shows the performance of visual challenge
decoding algorithms after the image is displayed in a
monitor and then captured by the camera (i.e., our
deployment conditions in Fig. 5). As expected, the
accuracy drops on the right image due to imperfect
conditions in a real deployment.

Cumulative Errors: Having a QR code decoding error
once in a while is not a problem (it is most likely a problem
with the image captured), but when the QR code decod-
ing errors are persistent (i.e., when we cannot decode a QR
code for two or three consecutive image frames), we need
to raise an alarm because this is an indicator of an attack.
Therefore, we now study how our alarm state machine (as il-
lustrated in Fig. 4) performs for QR code detection, and how
the equivalent CUSUM statistic Sk performs for OCR code
detection under normal conditions (i.e., under no attack).

Fig. 9 (a) shows the worst case example (for all other cases
the QR code statistic had fewer errors) of the anomaly de-
tection statistic (as introduced in Fig. 4) for QR codes when
there is no attack. In all the cases we tested, there was never
more than two consecutive QR decoding errors. Therefore
we can select the threshold for raising an alarm as having

three or four total errors (this ensures that in all our tests
there will be no false alarms). Similarly, Fig. 9 (b) shows the
worst case example of the non-parametric CUSUM anomaly
detection statistic for OCR decoding when there is no at-
tack. By selecting δ = 8 and a threshold of 15 we guarantee
that there are no false alarms in all our tests. In the next
section we will test how well these thresholds, which do not
raise any false alarm, perform under attack.

Time steps
0 10 20 30 40 50 60 70 80 90 100

C
o

n
se

cu
ti

ve
 e

rr
o

r

0

1

2

3

Normal behavior - QR code

of consecutive errors
normal operation

Time steps
0 10 20 30 40 50 60 70 80 90 100

C
u

m
u

la
ti

ve
 e

rr
o

r
0

5

10

15

20

25

Normal behavior - OCR

threshold τ=15
normal operation δ=8

(b)

(a)

Consecutive Errors for QR Code Decoding

Anomaly Detection Statistic: Worst Case

Cumulative Error Rate for OCR

Example under Normal Behavior

Figure 9: Anomaly detection statistic under normal
behavior (no attacks). Fig. (a) shows consecutive
QR decoding errors (as introduced in Fig. 4) and
Fig. (b) shows CUSUM detection statistic Sk for rec-
ognizing plain text challenges.

4. SECURITY ANALYSIS
We study possible attacks and the robustness of our detec-
tion mechanism against them. In particular, we consider
three different attacks: naive attacks, timing attacks, and
forgery attacks. A naive attacker is completely oblivi-
ous to our detection mechanism and launches replay attacks
(Hollywood style). A timing attacker knows our anomaly
detection algorithms might not raise an alarm with one or
two incorrectly decoded frames (because of the thresholds
described in the previous paragraph) so it will try to send
a false image frame and estimate how long it has before we
raise an alarm. A forgery attack is the strongest attack
against our system. Here, the attacker is both aware of the
detection mechanism and has access to the visual challenge.
The attacker then attempts to forge a fake image displaying
the expected challenge (QR or text). We study each type of
attack for both plain text and QR code visual challenges, as
we show next.

4.1 Naive Attacks
Attack description: Since the attacker is unaware of the
detection mechanism, it might attempt to use old data (i.e.,
video feed from a previous day) in a replay attack. In this
case, our mechanism will immediately detect the attack as
the old data will not contain the correct visual challenge.
Consider a naive attacker that has access to old data (e.g.,
image frames from time t = 1 until t = 30). At a particular
time ti, the verifier sends vi as a challenge to the monitor

146

and expects to see something significantly similar to vi in
the next frame. During the attack, the attacker launches a
replay attack at t = 70 and uses old image frames (frames
starting at t = 1). The verifier processes and decodes the re-
trieved image frame. Then, it verifies whether the extracted
text from the retrieved visual challenge is correct.

Attack against OCR: when the attacker launches an at-
tack against OCR, the compromised frame at t = 70 will
contain the visual challenge of v1. Under normal operation
the accuracy rate of decoding the visual challenge might
have been approximately 89% and with an error rate of ap-
proximately 11%. When the attack is launched the accuracy
rate drastically drops to 3.67% (and the error increases to
96.03%). Fig. 10 (a) shows the error rate when the attacker
replays old frames starting at t = 70. As shown, the error
rate immediately goes up at t = 70 and stays high for the
duration of the attack. Fig. 10 (b) shows that as soon as the
attack begins, the anomaly detection score grows quickly,
exceeding the normal behavior of the system. An alarm will
immediately be triggered.

Time step
0 10 20 30 40 50 60 70 80 90 100

C
u

m
u

la
ti

ve
 E

rr
o

r

0

200

400

600

800

1000
Naive attack cumulative errors - OCR

normal operation
replay attack

50 60 70 80
0

50

Time step
10 20 30 40 50 60 70 80 90 100

E
rr

o
r

0

20

40

60

80

100

Naive attack errors - OCR

normal operation
replay attack

(a) (b)

Naive Attack against OCR
Error Rate per Challenge Cumulative Error Rate

Figure 10: Naive Attack on OCR decoding of plain
text challenges. Left: anomaly score per image.
Right: cumulative anomaly score over time (i.e., the
non-parametric CUSUM statistic).

Attack against QR code: QR codes are very robust for
detecting replay attacks. In our experiments as soon as a
replay attack is launched, a QR code with an incorrect chal-
lenge is decoded and as illustrated in Fig. 4, it will immedi-
ately raise an alarm. There is no need to show the anomaly
statistic as in the previous case.

As we show, our proposed detection mechanism is secure
to detecting this type of attack. Even when the footage
might not look suspicious to security guards or automated
analysis tools, our mechanism will detect whether the cam-
era is not showing the correct footage.

4.2 Timing Attacks
Attack description: In this attack we try to see if an at-
tacker can send a couple of incorrect frames back to the veri-
fier without raising an alarm and then study how long the at-
tacker can remain undetected. In particular the goal of this
attacker is to launch attacks that block the QR code (e.g.,
blurring or blocking the place where the QR code would
appear) while trying to stay undetectable by our detection
mechanism (i.e., we assume the attacker knows the anomaly
detection tests used by our proposal). We show this attack
for both plain text (Fig. 11) and QR codes (Fig. 12).

Attack against OCR: although the goal of the attacker
is to send bad frames while staying undetectable, we show
that this attack is not possible for bypassing plain text chal-
lenges; that is, the attacker cannot send a single incorrect

Time step
10 20 30 40 50 60

C
u

m
u

la
ti

ve
 e

rr
o

r

0

20

40

60

80

100
Undetectable attack cumulative errors

normal errors
attack
threshold τ=15

Time step
10 20 30 40 50 60

E
rr

o
r

0

20

40

60

80

100

Undetectable attack errors - OCR

normal errors
attack error

Error Rate per Challenge Cumulative Error Rate

(a) (b)

Timing Attack against OCR

Figure 11: Timing Attack on OCR decoding of
plain text challenges. The attacker cannot send
a single incorrect frame without being detected.
Left: anomaly score per image. Right: cumulative
anomaly score over time.

frame without being detected! If the attacker launches its
attack at t = 70 such that the visual challenge v70 in the
compromised frame at t = 70 is an old visual challenge v1,
then just like in the naive attack case, the error rate will
immediately raise above 85% (as shown in Fig. 11 (a)) and
the anomaly detection score will go beyond the threshold
(as shown in Fig. 11 (b)). The reason for this is that the
error rate under normal operations is very low (e.g., about
10%) when compared to the error rate of approximating a
bad visual challenge with the correct one (e.g., about 85%).
It is worth noting that the threshold we selected (τ = 15)
does not raise any false alarm under normal operations and
in addition, the replay attack is not able to stay undetected.
So here the attacker cannot send any bad frame because
it will be detected immediately. Even if the attacker tries
to obfuscate or cover the place where the challenge would
be, the OCR accuracy would be close to 0% and this would
immediately raise an alarm.

Time steps
0 10 20 30 40 50 60 70 80 90 100

In
co

rr
ec

t

0

1

Undetectable attack errors - QR code

normal operation
attack
errors

Decoding Error per Challenge
Timing Attack on QR Code Decoding

Time steps
0 10 20 30 40 50 60 70 80 90 100

C
o

n
se

cu
ti

ve
 e

rr
o

r

0

1

2

3

Undetectable attack cumulative errors - QR code

normal operation
attack
of consecutiver errors

Consecutive Errors

(b)

In
co

rr
ec

t

(a)

C
o

n
se

cu
ti

ve
 e

rr
o

r

r errors

Figure 12: Timing Attack on QR codes. The at-
tacker introduces errors at t = 70 for short periods
of time to remain undetected. Top: decoding errors
per image. Bottom: consecutive errors.

147

Attack against QR code: In contrast to OCR, here the
attacker might try to leverage the fact that QR codes are
sometimes not decodable, thus, it might purposefully replay
old frames containing undecodable QR codes. The attack
is again launched at t = 70 and replays frames that the at-
tacker knows were not decodable (or simply obfuscates the
QR code). Because the attacker would like to remain un-
detected, it will limit the attack duration to the maximum
number of old frames (with undecodable QR codes) that
do not raise the anomaly detection score beyond the alarm
threshold. Fig. 12 (a) shows the errors introduced when the
attacker replays old frames with an undecodable QR code
starting at t = 70 for short periods of time. To maximize
the attack time, the attacker stops the attack before hitting
the threshold and waits until the cumulative error has come
down to zero as shown in Fig. 12 (b). For example, the at-
tacker launches a replay attack (with only undecodable QR
codes) at t = 70, t = 71, and t = 72. It knows that a 4th
consecutive error will raise an alarm, so it waits until the
cumulative error goes down to zero. This happens after 3
consecutive correct challenges. Then the attacker launches
another sequence of replay attacks. Since the goal of the
attacker is to stay undetectable and maximize the attack
duration, it waits until the anomaly detection becomes zero
before launching another sequence of attacks.

Timing analysis: we showed that for QR codes, the at-
tacker might be able to stay undetectable when its attack
duration is no larger than 3-time steps. What this means
is that for a total of 3-time steps the camera feed will re-
port incorrect frames and not raise an alarm. The ability of
the attacker to remain undetected in real-time will depend
on how frequently we send new challenges to the display.
In our particular implementation we send new visual chal-
lenges every 3 seconds. Because the time of decoding is
small compared to that (approximately 171.36 milliseconds
and could be as low as 92.39 milliseconds for QR codes en-
coding shorter strings) the attacker would get approximately
9 seconds (3 incorrect frames plus 3 seconds of challenge re-
fresh rate) to perform a malicious act in the field of vision
of the camera while sending undecodable frames back to the
verifier. We can certainly improve on that by e.g., sending
new challenges more frequently (1 per second) or selecting
an alarm threshold of 3 (which will leave the attacker with
the option of sending only two incorrect frames) that will
give the attacker only 2 seconds of malicious activity. Our
analysis is primarily a framework to evaluate the refresh rate
of the QR code and the alarm threshold. In practice, the
amount of time that an attacker might need to do something
nefarious in the field of vision of the camera without being
detected is highly context sensitive and will depend on the
specific deployment.

4.3 Forgery Attacks
Attack description: In this case the attacker we consider
will superpose the valid visual challenge on top of an old
image. In particular, we assume that the attacker is both
aware of the detection mechanism and has access to the vi-
sual challenge. The goal of this attacker is to fool our de-
tection mechanism to give operators the confidence that the
feed is legitimate (because it contains the correct visual chal-
lenge). Whereas, in reality the attacker has modified the
feed (before it leaves the camera) to show old frames but
superposing the correct visual challenge (a copy and paste
attack). The attacker might use two different methods to
do this: either the attacker has access to the communica-
tion channel between the verifier and the display and can
recreate the valid visual challenge, or the attacker can ‘cut’

the visual challenge from the current frame (before it leaves
the camera) and paste it to an old frame.

To deal with this attacker we can leverage image and video
forensics tools [8, 17, 23, 48]. For example, video forensics
can help us detect non-sequential frames, e.g., inconsistency
in the lighting of sequential frames, discrepancy between
objects’ locations, or non-uniformity between resolution of
the images. We used the Error Level Analysis algorithm
(ELA) [20] to detect forgeries in frames against the attack
that pastes the original visual challenge on top of a bad
frame. This algorithm looks at the amount of error intro-
duced when the image is re-saved at different quality levels
and reveals the areas that contain different levels (manipu-
lated areas on the image).

Fig. 13 shows a proof-of-concept for detecting this type of
attack. We used the fotoforensics tool [19] which is based
on error level analysis to detect a forged image. The image
in Fig. 13 (a) is legitimate whereas the image in Fig. 13 (b)
is forged; we pasted the real visual challenge image on top
of an old frame. The images at the bottom show the error
levels of the legitimate and forged images, respectively. It
is clear that the only area with a different color tone in the
image shown in Fig. 13 (d) is the area where the QR code
was pasted. In the future, we plan to look more in depth
at media forensics tools to deploy an automatic test that
detects attempted forgeries.

Legitimate Forged

(a)

(c)

(b)

(d)

Figure 13: Forgery Attack on a QR code challenge.
Top left: legitimate image. Top right: forged image
where the original image of a QR code is superposed
on an old image frame. Bottom images: error levels
for legitimate and forged images.

Video and image forensics is still an early discipline. It
is developing a cat-and-mouse game where a forensic tool
used to detect image manipulation (such as cut and paste
attacks) can be bypassed by anti-forensic tools. One advan-
tage we have in our case to detect online attacks is that all
anti-forensic tools are computationally intensive, and it is
not clear if these tools will be able to finish a forged image
that can bypass our forgery-detection algorithms in time to
reply to our challenges (at the moment we wait one second
before sending a challenge and checking the display, but we
can certainly reduce that timing, which in turn will make
undetected forgery attacks harder to launch).

5. RELATED WORK
Security of camera networks: A discussion on security
issues for smart camera systems can be found in [37]. Over-
all, the main requirements for securing camera systems in-
clude the confidentiality, integrity, and freshness of data, as
well as tamper-resistance and resilience against physical at-
tacks. There has been attention on ensuring such systems

148

secure camera streams in the cloud [16], to securing streams
in transmission (by signing images before storage [9] or by
encrypting the stream before sending off to a remote stor-
age [16]). Watermark techniques have been proposed to en-
sure the integrity and freshness of digital video content [24].
However, these approaches assume that secret keys have not
been compromised.

Research on the security of sensors includes those that
look at the development of trusted sensors [34, 10, 7], and
camera networks in particular [44], to ensure trustworthy
sensor readings. The proposed approaches make it difficult
for a sensor to lie about its readings or to maliciously fab-
ricate the readings (e.g., modifying captured photos, falsi-
fying photo location) because they assume the presence of
trusted computing technology [4, 28]. The recent work on
virtual-proofs [32] looks at the problem of proving physi-
cal claims (i.e., the temperature of a sensor) without using
classical secret keys or tamper-resistant hardware, however,
they require the active involvement of the prover during the
verification process whereas our approach does not.

Our goal is not to replace such technologies but to com-
plement them by providing another defense mechanism com-
pletely independent from the specific hardware or software
available in the camera.

Using Cameras to Improve Security: Our work is also
related to the literature that uses visual side channels in-
volving camera phones and barcode scanning to exchange
device information such as public keys [22, 35]. The visual
channel used to exchange information needs to be trusted,
and this trustworthiness rests on the premise that humans
are present (i.e., they can see with their eyes the same image
the camera is capturing) and will be able to spot any spoofs
on the “visual channel.” Our premise focuses precisely on
the opposite assumption: we assume no human is present
to verify the integrity of a video feed, and furthermore, our
threat model assumes the attacker is able to compromise the
visual channel to send false image frames and launch replay
attacks so that the footage might not look suspicious even to
security guards. Also, because we do not send the challenge
to the camera, the camera does not need to know about
the attestation protocol nor stop its normal operations to
perform any attestation code (as in the case of McCune et
al. [22]). Our proposal can be used to improve security pro-
tocols that rely on a trusted visual channel to be secure, but
our proposal is also more general and applicable to other
cases, as stated in the introduction.

Roesner et al. [31] also study the interaction of the physi-
cal world with cameras. In particular, they study displaying
privacy policies in QR codes that can be automatically de-
tected by continuous sensing devices (e.g., Google Glass).
Our proposal can again improve this previous work by send-
ing continuous changing visual challenges to guarantee the
video being captured by these sensing devices is accurate.

6. CONCLUSIONS AND FUTURE WORK
We have proposed a new way to verify the integrity and

freshness of footage from security cameras by sending visual
challenges to the area being monitored by the camera. Our
approach can provide an additional layer of security to tra-
ditional crypto authentication and message integrity codes.

There are many open research challenges and directions
in which to extend our ideas. The most immediate direction
is to study in-depth the forensics and anti-forensics tools
to prevent forgery attacks. The field of video forensics and
video anti-forensics is still in its early stages and we have the
opportunity to contribute a new use-case for future research.

Another extension depends on whether or not the camera
is deployed in a private or public space. If it is a private
space, like the control room of a nuclear reactor, then per-
haps we can have a dedicated display showing QR codes or
random plain text strings. But, the same deployment might
not be well suited for public spaces where QR codes or ran-
dom strings would be seen with suspicion by the public.

There is some work on high quality visual QR codes which
superimpose images and can be aesthetically more pleas-
ing [5]. We can also have QR codes that decode to a saying, a
word definition, or a phrase (instead of a random string) so if
a person scans the code, they receive something intelligible.

Another extension is to consider implementing our ap-
proach to other sensors. Our research introduces a new kind
of attestation tailored specifically for sensing devices. Here,
the verifier does not send the challenge to the device itself.
Instead, the challenge is implicitly sent to the entity that the
device is sensing which can be sound sensors, or temperature
sensors, among others.

Acknowledgments
We thank Sandy Clark and Jonathan McCune for their feed-
back and helpful suggestions on related work. This work was
supported in part by NIST under award 70NANB14H236
from the U.S. Department of Commerce, and The Air Force
Office of Scientific Research under award FA-9550-12-1-0077.

7. REFERENCES
[1] ISO/IEC 18004:2015, Information technology—

Automatic identification and data capture techniques
—QR Code bar code symbology specification.

[2] J. Barroso, E. Dagless, A. Rafael, and J. Bulas-Cruz.
Number plate reading using computer vision. In IEEE
International Symposium on Industrial Electronics
(ISIE), volume 3, pages 761–766, 1997.

[3] T. M. Breuel. The OCRopus Open Source OCR
System. In Proceedings of SPIE, the International
Society for Optical Engineering, pages 68150F–1, 2008.

[4] D. Challener, K. Yoder, R. Catherman, D. Safford,
and L. Van Doorn. A practical guide to trusted
computing. IBM Press, 2008.

[5] H. K. Chu, C. S. Chang, R. R. Lee, and N. J. Mitra.
Halftone QR codes. ACM Transactions on Graphics,
32(6):217:1–217:8, 2013.

[6] Denso Wave. QR codes. http://www.qrcode.com/en/.
[7] A. Dua, N. Bulusu, W. Feng, and W. Hu. Towards

trustworthy participatory sensing. In Proceedings of
the 4th USENIX conference on Hot topics in security
(HotSec), 2009.

[8] J. Fridrich. Digital image forensics. IEEE Signal
Processing Magazine, 26(2):26–37, 2009.

[9] G. Friedman. The trustworthy digital camera:
restoring credibility to the photographic image.
IEEE Trans. Consum. Electron, 39(4):905–910, 1993.

[10] P. Gilbert, L. P. Cox, J. Jung, and D. Wetherall.
Toward trustworthy mobile sensing. In Proceedings of
the Eleventh Workshop on Mobile Computing Systems
& Applications (HotMobile), pages 31–36, 2010.

[11] D. Goodin. A Fort Knox for Web crypto keys: Inside
Symantec’s SSL certificate vault.
http://arstechnica.com/security/2012/11/inside-
symantecs-ssl-certificate-vault, Nov. 2012.

[12] D. Goodin. Prosecutors suspect man hacked lottery
computers to score winning ticket.
http://arstechnica.com/tech-policy/2015/04/

149

prosecutors-suspect-man-hacked-lottery-computers-
to-score-winning-ticket, Apr. 2015.

[13] A. Haapala. Levenshtein Python C.
https://github.com/ztane/python-Levenshtein/.

[14] M. Hara, M. Watabe, T. Nojiri, T. Nagaya, and
Y. Uchiyama. Optically readable two-dimensional
code and method and apparatus using the same, 1998.
US Patent 5,726,435.

[15] C. Heffner. Exploiting Network Surveillance Cameras
Like a Hollywood Hacker.
https://youtu.be/B8DjTcANBx0, Nov. 2013.

[16] R. Hummen, M. Henze, D. Catrein, and K. Wehrle. A
cloud design for user-controlled storage and processing
of sensor data. In CloudCom, pages 232–240, 2012.

[17] M. K. Johnson and H. Farid. Exposing digital
forgeries by detecting inconsistencies in lighting. In
Proceedings of the 7th Workshop on Multimedia and
security (MM&Sec), pages 1–10, 2005.

[18] J. N. Kapur, P. K. Sahoo, and A. K. Wong. A new
method for gray-level picture thresholding using the
entropy of the histogram. Computer vision, graphics,
and image processing, 29(3):273–285, 1985.

[19] N. Krawetz. FotoForensics. http://fotoforensics.com/.
[20] N. Krawetz. A pictures worth digital image analysis

and forensics. Black Hat Briefings, pages 1–31, 2007.
[21] C. Li and C. Lee. Minimum cross entropy

thresholding. Pattern Recognition, 26:617–625, 1993.
[22] J. McCune, A. Perrig, and M. Reiter.

Seeing-is-believing: using camera phones for
human-verifiable authentication. In IEEE Symposium
on Security and Privacy (S&P), pages 110–124, 2005.

[23] S. Milani, M. Fontani, P. Bestagini, M. Barni, A. Piva,
M. Tagliasacchi, and S. Tubaro. An overview on video
forensics. APSIPA Transactions on Signal and
Information Processing, Vol. 1, 2012.

[24] S. P. Mohanty. A secure digital camera architecture
for integrated real-time digital rights management.
Journal of Syst. Architecture, 55(10-12):468–480, 2009.

[25] S. Mori, H. Nishida, and H. Yamada. Optical character
recognition. John Wiley & Sons, Inc., New York, 1999.

[26] M. Murphy. Man arrested for tampering with traffic
cameras, posting ‘how-to’ videos on Facebook.
http://pix11.com/2015/08/25/man-arrested-after-
posting-videos-on-facebook-of-him-tampering-with-
traffic-cameras, Aug. 2015.

[27] N. Otsu. A threshold selection method from gray-level
histograms. Automatica, 11(285-296):23–27, 1975.

[28] S. Papa and W. Casper. Trusted computing. In
Encyclopedia of Cryptography and Security, pages
1328–1331. Springer US, 2011.

[29] V. Pieterse and P. E. Black. Levenshtein distance. In
Dictionary of Algorithms & Data Structures, 2015.

[30] S. V. Rice, F. R. Jenkins, and T. A. Nartker. The fifth
annual test of OCR accuracy. Information Science
Research Institute, 1996.

[31] F. Roesner, D. Molnar, A. Moshchuk, T. Kohno, and
H. Wang. World-driven access control for continuous
sensing. In Proceedings of ACM Conference on
Computer and Communications Security (CCS), pages
1169–1181, 2014.

[32] U. Ruhrmair, J. Martinez-Hurtado, X. Xu, C. Kraeh,
C. Hilgers, D. Kononchuk, J. Finley, and W. Burleson.
Virtual proofs of reality and their physical
implementation. In IEEE Symposium on Security and
Privacy (S&P), pages 70–85, 2015.

[33] Santa Clara County Sheriff. PG&E substation
surveillance video.
https://www.youtube.com/watch?v=RQzAbKdLfW8,
Jun. 2013.

[34] S. Saroiu and A. Wolman. I am a sensor, and I
approve this message. In Proceedings of the Eleventh
Workshop on Mobile Computing Systems &
Applications (HotMobile), pages 37–42, 2010.

[35] N. Saxena, J. Ekberg, K. Kostiainen, and N. Asokan.
Secure device pairing based on a visual channel. In
IEEE Symposium on Security and Privacy (S&P),
2006.

[36] J. Schulenburg. GOCR, an open-source character
recognition. http://jocr.sourceforge.net/.

[37] D. N. Serpanos and A. Papalambrou. Security and
privacy in distributed smart cameras. Proceedings of
the IEEE, 96(10):1678–1687, 2008.

[38] M. Sezgin and B. Sankur. Survey over image
thresholding techniques and quantitative performance
evaluation. Journal of Electronic imaging,
13(1):146–165, 2004.

[39] S. S. Skiena. The algorithm design manual, volume 1.
Springer Science & Business Media, 1998.

[40] R. Smith. An overview of the tesseract ocr engine.
International Conference on Document Analysis and
Recognition (ICDAR), 2:629–633, 2007.

[41] A. Tabatabai. How much monitoring of Iranian
nuclear facilities is enough?
http://thebulletin.org/how-much-monitoring-iranian-
nuclear-facilities-enough7923, Jan. 2015.

[42] Tesseract OCR. Tesseract Open Source OCR Engine.
https://github.com/tesseract-ocr/tesseract.

[43] B. Turovsky. Hallo, hola, olá to the new, more
powerful Google Translate app.
http://googleblog.blogspot.com/2015/01/hallo-hola-
ola-more-powerful-translate.html, Jan. 2015.

[44] T. Winkler and B. Rinner. Securing embedded smart
cameras with trusted computing. EURASIP Journal
on Wireless Communications & Netw., 2011:8, 2011.

[45] J. Yang, J. Gao, Y. Zhang, and A. Waibel. Towards
automatic sign translation. In Proceedings of the First
International Conference on Human Language
Technology Research (HLT), pages 1–6, 2001.

[46] C. Yi and Y. Tian. Text string detection from natural
scenes by structure-based partition and grouping.
IEEE Transactions on Image Processing,
20(9):2594–2605, 2011.

[47] ZBar. ZBar bar code reader.
http://zbar.sourceforge.net/.

[48] J. Zhang, Y. Su, and M. Zhang. Exposing digital
video forgery by ghost shadow artifact. In Proceedings
of the ACM Workshop on Multimedia in Forensics
(MiFor), pages 49–54, 2009.

[49] ZXing. ZXing barcode image processing library.
https://github.com/zxing/zxing/.

150

