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ABSTRACT

Demand response systems assume an electricity retail-market
with strategic electricity consuming agents. The goal in
these systems is to design load shaping mechanisms to achieve
efficiency of resources and customer satisfaction. Recent re-
search efforts have studied the impact of integrity attacks in
simplified versions of the demand response problem, where
neither the load consuming agents nor the adversary are
strategic.

In this paper, we study the impact of integrity attacks con-
sidering strategic players (a social planner or a consumer)
and a strategic attacker. We identify two types of attackers:
(1) a malicious attacker who wants to damage the equip-
ment in the power grid by producing sudden overloads, and
(2) a selfish attacker that wants to defraud the system by
compromising and then manipulating control (load shaping)
signals. We then explore the resiliency of two different de-
mand response systems to these fraudsters and malicious
attackers. Our results provide guidelines for system oper-
ators deciding which type of demand-response system they
want to implement, how to secure them, and directions for
detecting these attacks.

1. INTRODUCTION

The smart grid refers to the modernization of current elec-
tric power networks to achieve better reliability, efficiency of
resources, and to provide consumers more information and
choices in the way they use electricity.

Research efforts have been mainly focused on the techno-
logical side of the smart grid; however, particular attention
should be placed on individual consumer incentives, since in-
dividual agents (firms or people) within the smart grid are
one of the enabling factors that will make the grid smart [13].
One of the particular smart grid programs that will rely on
individual interactions between consumers and producers of
electricity is Demand Response (DR) [11], a program that
tries to address the retail electricity market inefficiencies.

Currently, the electricity price in the wholesale market
(the bulk power grid) is updated periodically to match gen-
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eration with dynamic demand between bulk power gener-
ators and bulk power consumers. When the transmission
system is congested (which is the default state), Locational
Marginal Prices (LMPs) are computed at each load and
at each generation point to determine how much distribu-
tion utilities will pay the system operator (per Megawatt),
and how much will the system operator pay the generation
points. LMPs are traditionally computed every 5 to 10 min-
utes, but there is recent work (e.g., New York power system)
for computing LMPs in real-time. In contrast, retail mar-
kets (which consist of an electric utility interacting with fac-
tories, buildings, homes, etc.) adopt static pricing schemes
such as fixed and time-of-use tariffs. Under these contracts,
consumers have limited incentives to adapt their electricity
consumption to market conditions.

The goal of a DR program is to control consumer loads
that are responsive to conditions in the electric power sys-
tem, in order to achieve better efficiency of the retail mar-
ket. Currently, the majority of DR programs are used by
large commercial consumers, and companies such as Ener-
NOC manage DR services for large corporations and sev-
eral government agencies in the U.S. Most active DR pro-
grams are designed for grid stability; however the focus of
DR programs in the future is expected to be on energy ef-
ficiency. One of the primary goals of the smart grid is to
make DR programs available to a much broader range of
consumers [10].

1.1 Previous Work on Integrity Attacks in the
Power Grid Markets

Integrity attacks (or false-data injection attacks) have been
recently proposed as a way to analyze the vulnerability of
cyber-physical systems in general, and electric networks in
particular [18].

The area that we are interested in, is how false data in-
jection attacks can affect the markets used in the smart grid
and how false data injection can use the markets to drive
the power grid to unsafe states (e.g., malicious attackers).
Negrete-Pincetic et al. [21] were one of the first to study
how false control signals can affect the social welfare of the
electricity market. Related work by Xie et al. [30] studied
how false data injection attacks can be used to defraud bulk
electricity markets by modifying LMPs, and work by Liyan
et al.[19] studied how false meter data in the bulk of the
power grid can be used to cause the largest errors in LMP
estimation.

All this work of false data analysis focuses on the bulk
electricity market; however, the retail DR market has dif-
ferent models. In addition, it is more likely that attacks
will happen in the retail market as there are many more



participants in retail with highly varying levels of trustwor-
thiness. Finally, attributing attacks will be more difficult
given a large number of participants (and thus attackers
will have higher incentives for attacking retail markets than
bulk-electricity markets).

Work on the impact of integrity attacks on the retail DR
market were recently analyzed by Tan et al. [28], where they
showed that an attacker who can modify the pricing signal
sent to electricity consumers will affect the system and could
cause severe oscillations of electricity load. They presented
a new DR model and then experimented with two different
attack models, scaling attacks and delay attacks.

While their model is an important step towards under-
standing the resiliency of DR programs against attacks, it
has two limitations. First, Tan et al. [28] introduce a new
model which has not been validated by the smart grid com-
munity. The current consensus for modeling DR, problems is
to incorporate market interactions of a multi-agent system
where each agent has a nonlinear valuation of electricity [25,
24, 14, 26, 7, 15, 12,9, 17]. In this paper we use more repre-
sentative DR models and study their security. Furthermore,
in addition to dynamic pricing DR which is the focus of
study by Tan et al., we study direct-load control DR models
as well.

The second limitation is that the attacks considered by
Tan et al. are limited to be parametric models of the pric-
ing signal u(t); these are delay attacks u(t — 7) and scaling
attacks au(t). One contribution in this paper is to model a
more powerful attacker that is not constrained to only two
possible attack strategies, but that can select an arbitrary
attack signal 4(t). In addition, the previous model of the
attacker is not strategic; in this paper we model a strategic
attacker that will select an attack strategy in a principled
way, and in order to achieve a specific attack goal. For exam-
ple, 1) a malicious attacker will have a goal of damaging the
power grid by generating sudden overload spikes, whereas 2)
a selfish attacker will try to defraud DR programs.

1.2 Contributions

In this paper we address the limitations of previous work
and propose new contributions.

e We introduce two attacker models against DR pro-
grams: (1) A fraudster who tries to steal electricity
without trying to damage the power grid, and (2) a
malicious attacker that tries to damage the power grid.
Our models assume non-parametric adversary models
and are therefore more powerful that adversaries con-
sidered in previous work.

e We provide a formal security analysis for the two types
of adversary models for two DR programs: dynamic
pricing and direct-load control, using models previ-
ously proposed by DR communities.

e We show that dynamic pricing is more resilient to fraud
and malicious attacks than direct load control mecha-
nisms.

e Previous work analyzing DR [7, 15, 12, 9, 17] consider
only equilibrium points (i.e., optimal steady states);
they do not consider the transient dynamics of the
agents adjusting to different market conditions and
learning optimal outcomes. In this paper we design
an evolutionary game-theory implementation of the
transient dynamics of the DR problem. This is nec-
essary for studying malicious attacks that need to cre-
ate sudden electricity peaks, and therefore require the
study of transient dynamics to their attacks (instead of
finding the steady-state equilibrium). Using this tran-
sient analysis we show how a sophisticated attacker
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can manipulate the market to achieve better results
than naive attacks. In an effort to facilitate future
research, we are making the dynamic implementation
for these simulations available online as an open source
BSD project [6].

2. DEMAND RESPONSE MODELS

There are two main forms of DR programs: direct load
control and dynamic pricing.

2.1 Direct Load Control

Direct Load Control (DLC) [11] is a demand control sys-
tem in which the utility (or a DR broker) negotiates with
consumers the ability to directly control flexible loads in
their homes, buildings or industries. The utility company or
companies like Trilliant [29] can use remote appliance con-
trollers to turn specific appliances on and off during peak de-
mand periods and critical events. These remote controllers
can manage water heaters, pool pumps, and air condition-
ers (among others) and can be programmed to respond to
time-of-use tiers, critical peak pricing events, and direct load
control events.

DLC has been a promising future direction for the smart
grid for a variety of reasons. By controlling loads which can
be modified without much impact on consumer satisfaction,
we can allay many costs by shifting loads from peak de-
mand and compensating for real-time load imbalances. For
example, Pacific Gas & Electric deployed the SmartAC pro-
gram in Spring 2007 [1]. Another provider of DR services
has recruited over 1.25 million residential customers in DLC
programs, and has deployed over 5 million DLC devices in
the United States. In California, they have successfully cur-
tailed over 25 MW of power consumption since 2007 [5]. In
Hungary, for example, DLC accounts for 1600MW (25% of
peak consumption).

2.2 Dynamic Pricing

Dynamic pricing programs [11] use incentives (e.g., via
real-time pricing, rebates, etc.) to motivate consumers to
reduce electricity consumption during peak hours. In con-
trast to direct-load control, consumers will be responsible
for taking actions based on the incentive (control) signals;
giving consumers a choice between cost and convenience.
Therefore, while direct-load control is a centralized system,
in dynamic pricing, agents make decisions in a decentralized
way. By using dynamic pricing, utilities can create incen-
tives for consumers to distribute their load more evenly—
e.g., consume more energy when there is high wind or solar
energy in the grid, and reduce consumption during peak de-
mand times. This price-sensitive peak shaving will defer the
need for grid expansion and will reduce the investments on
generators that are only used for short peak demands.

2.3 Notation

We consider a population of N consumers of electricity.
We divide a period of 24 hours in a set of 1" time inter-
vals denoted 7 = {71,...,7r}; formally, we define the set
T as a partition of [0,24), where Uieqi,... 7 = 7 and
Nie{1,...,.737t = . Furthermore, we denote with qf the
electricity consumption of the ‘" user in the t** time in-
terval. The daily electricity consumption of the " user is
represented by the vector q; = [q;,...,q ] € RL,. The
population consumption at a given time ¢ is defined by the
vector ¢° = [¢t,,q5...,q]" € Rgo, and the joint elec-
tricity consumption of the whole population is denoted by
q= [qf, ey qL]T. The aggregated consumption at a given
time ¢ is defined as ||q'||1 = Z;\;l q;, where || - ||1 is the



1-norm.
A waluation function v!(g!) models the valuation that the
it user gives to an electricity consumption of ¢! units in the

tt" time interval. Finally, let p(-) : R — R be the price of
electricity charged to consumers.

2.4 Direct Load Control Model

DLC assumes a perfect competition market where a so-
cial planner wants to maximize the social welfare of a pop-
ulation. This problem can be represented by the following
optimization problem [16, 8, 17]:

N N T
maszmize Z Ui(q) = Z Z (Ui(Qf) - qu(Hthl))
i=1 i=1 t=1

(1)

subject to ¢} >0,i={1,...,N},t={1,...,7},

where U;(q) represents the profit (valuation of electricity
consumption minus the electricity bill) of the i*" customer
in function of the population demand profile q. Note that
in this model users send their valuation for electricity to
a central planner, and the central planner then decides the
amount of electricity and price to charge to each agent. Here
we make some assumptions on the problem characteristics in
order to guarantee that the problem has a unique solution.

ASSUMPTION 1.

1. The valuation function vi(-) is differentiable, concave,
and non-decreasing.

2. The price p(+) is differentiable, convez, and non-decreasing.

ASSUMPTION 2. The solution of the optimization problem
in Eq. (1) is inside the feasible region, that is

0

Therefore, the First-Order Conditions (FOC) of this prob-
lem at the maximum, denoted by u, are:

0 )
@ZUi(Q) Zanvf(qZ)

i=1 a=p

0
---—p(llqtl\l)—|Iqt|\18fql¢p(\|qt|\1) =0. (2)

a=p

The consumption profile p is efficient in the sense of Pareto.

2.5 Dynamic Pricing Model

In a decentralized version of the model proposed in the
previous section, each agent would need to maximize indi-
vidually their utility [16]:

T

maxg]_rnize Ui(g;,q_;) = Z (vf(qf) - qu(”qtﬂl)) 3)
‘ t=1

subject to ¢ >0,i={1,...,N},t={1,...,T}.

The selfish actions of each individual might lead to the out-
come &, the Nash equilibrium of the game. Under Assump-
tions 1 and 2, we can show that the first order conditions for
this selfish optimization problem guarantee a unique max-
imum, i.e., a unique Nash equilibrium. In addition, it is
easy to show that these first order conditions (Nash equilib-
rium) do not match those from Eq. (2) (Pareto equilibrium).
Hence, the Nash equilibrium & of the game is not efficient in
the sense of Pareto. In general, in a strategic environment
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Figure 1: Aggregated utility and consumption of the
population at the inefficient outcome (Nash equi-
librium) and the optimal outcome (Pareto equilib-
rium).

that satisfies Assumptions 1 and 2, the outcome is inefficient
and requires an external intervention, such as economic in-
centives [3, 4].

We now show a numerical example of how the Nash equi-
librium is different than the Pareto equilibrium. We select
some typical numerical values and functions previously used
in the literature [23, 20]:

vi(gi) = ailog(1+qi), aj >0,

(4)
p(lallv) = Bllgllr, 8> 0. (%)

These functions satisfy Assumptions 1 and 2. In this case,
we consider T" = 24 time periods and define the valuations of
each individual using consumption measurements provided
by the Colombian electricity system administrator [?] (a de-
tailed implementation of the simulations can be found in [4]).
We can see how the Nash equilibrium produces less total
utility for all parties (Fig. la) and produces more power
consumption (Fig. 1b) than the Pareto equilibrium.

While the Nash equilibrium £ is suboptimal, we can show,
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Figure 2: Dynamic pricing DR model.

however, that if we consider an added incentive to the indi-
vidual cost function of each player, the Nash equilibrium of
the game with incentives can be made efficient in the sense
of Pareto. In order to incentivize agents to modify their
behavior for the good of the population, the social planner
sends them an incentive (e.g., a dynamic price signal or re-
ward) to indirectly control their load; therefore the new cost
function for the i*" agent is

T
Z Uz qz _q'fp(Hqt”l) +

where incentives are of the form:
Cl) =) @

Li(q") = ||a".|, (p (NA—[

The form of this incentive is related to the price used in
the Vickrey-Clarke-Groves mechanism [22] and some utility
functions used in potential games [2]. Note that with these
incentives it can be shown that the first-order conditions of
Eq. (6) are the same to the first-order conditions of Eq. (2);
and therefore, the Nash equilibrium of the system with in-
centives is equal to the optimal outcome of the DLC model.
This dynamic pricing model is depicted in Fig. 2, where
the incentive I can represent the dynamic pricing signal.
In this DR approach we consider that the utility sends a
two dimensional signal to each customer, namely the total
consumption and the incentive (g, I;)—in a practical imple-
mentation the utility would send the consumer the price of
electricity at the current time interval: p(q) instead of the
consumption g but this does not affect our analysis—and
each customer responds with some consumption q;. Note
that the incentives modify the price paid by each user ac-
cording to their relative consumption. Hence, two different
users receive different incentives as long as their consump-
tion is different. Specifically, users who introduce less exter-
nalities in the system receive larger incentives or rewards.

Wi(d;,q Li(q")). (6)

2.6 Transient (Evolutionary) Analysis

In the previous two sections we introduced solutions used
in game theory to find equilibrium points (Pareto, Nash).
These solutions provide information about the system in
steady state, but overlook the trajectory followed to reach
such solutions. Furthermore, while finding the steady state
equilibrium is good for modeling the final outcome of an at-
tack, we also need to consider the transient dynamics that
show how consumers will behave to changes in the market
and to maliciously injected signals. Thus, we can model
malicious attackers that will try to create sudden electric-
ity overloads in the system and damage power distribution
equipment or produce cascading failures.

Population dynamics [4] can be used to model negotia-
tion approaches between players of a game and are used to
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model the transient dynamics of the system evolution before
it reaches a steady state. From the perspective of popula-
tion games [27], we have a multi-population game, with the
following characteristics:

e There are N populations. Each population is associ-
ated with an agent.

e The resource to be allocated in each population is the
daily power consumption ||q;|1.

e The strategy of each user is the consumption at 7" time
intervals plus the consumption qTJrl that represents a
slack variable, i.e., the power not consumed in any
time interval is represented as a consumption in the
(T + 1) time interval. Hence, in each population
there are T+ 1 possible strategies.

e The fitness functions are defined as the derivative of
the utility function U;(q), e.g., the fitness (under nor-
mal operation) is the marginal utility, that is defined
as:

_ 9U{(q")
=

7

fi(d") (®)

and f T =0.

We use replicator dynamics to solve the resource alloca-
tion problem in Eq. (3). These dynamics might be seen as
a set of deterministic rules that guide the resource alloca-
tion process to find an outcome that maximizes the utility
of each agent. In particular, the allocation is carried out
by evaluating the convenience of consuming some resources
at a given hour. An equilibrium is achieved when an agent
cannot increase its profit by redistributing its resources (i.e.,
a Nash equilibrium).

Replicator dynamics are described by the differential equa-
tion

fia"), 9)

@i =ai (fi(a") —
where f}(q') = ) is the average payoff the pop-

Sidifiq
ulation 7.

While any actor (including attackers) can change their
actions arbitrarily, we consider that changes in power con-
sumption are bounded; hence, we model smooth demand
changes. A continuity notion that satisfies this requirement
is Lipschitz continuity, which is also a requirement for the
existence of a solution to a differential equation.

3. ADVERSARY MODEL

We assume an adversary model that compromises the cen-
tral system where the control signals are computed. For 1)
DLC, this means the attacker can arbitrarily send commands
to curtail loads to consumers, and for 2) dynamic pricing,
this means that the attacker can send arbitrary incentive
price signals to consumers.

In addition, we assume two types of attackers: 1) a fraud-
ster, whose objective is to defraud the system and pay less
for electricity (a version of electricity theft, only that in-
stead of falsifying their electricity consumption, it falsifies
information sent to consumers), and 2) a malicious attacker,
whose objective is to damage the electricity distribution sys-
tem.

A fraudster does not necessarily want to attack the elec-
tric grid and the consumers of electricity (if the grid is down
the fraudster would get no utility), but wants to exploit
the system into behaving in unanticipated ways for personal
gain, such as paying less electricity than others. We as-
sume the attacker will still be charged at the correct price



for the electricity she consumes (that is the attacker has not
compromised the metering system). Defrauding the util-
ity company by compromising the control signals from DR
algorithms might be even more beneficial for the attacker
than compromising the meter readings, because if an at-
tacker compromises the meter installed in its neighborhood
and is detected, then the utility has evidence to attribute
the attack; however, if the attack to the control signals is
detected, the fraudster can still claim deniability of this at-
tack as it is not immediately obvious who the culprit of the
attack is (in particular, the attacker can mask itself in a
large group of beneficiaries with a parameter v that we will
introduce later).

We define a malicious attacker as an adversary whose goal
is to cause damage to the system and all their players. One
practical way to achieve this is to cause the maximum sud-
den overload in the power distribution network, which can
potentially cause blackouts because of equipment failures
(e.g. burnt transformers) and circuit breakers opening.

We note that in contrast to previous work, our attack
can be arbitrary, and thus can model realistic attackers not
tied to pre-specified attacks (such as delays). In addition,
we model two different strategic attackers that will try to
achieve an objective, and will select the attack signal to
achieve this objective. For example, in the dynamic pricing
model the attacker will use mechanism design to generate
the incentives that will achieve its own goals.

4. FRAUDSTER (SELFISH) ATTACKER

4.1 Direct Load Control

The goal of the fraudster is to achieve the best possible
selfish utility by manipulating all direct-load control signals
q. We consider a scenario with full information. The best
possible outcome for a fraudster with control of all con-
trol signals can be represented by the following optimization
problem:

maximize  Uj(q,;,q_;)
did—i (10)
subject to ¢f >0,i={1,...,N},t={1,...,T}.

If Assumptions 1 and 2 are satisfied, then there is a unique
solution to Eq. (10), denoted by ¢*, that satisfies the fol-
lowing first order conditions:

a=q*
Specifically, the gradient of the utility for an attacker (the
it" agent) is

O iy O ey eyt O
aquz(q)—aqu(ql) p(llgl1) qlaqu(llqlh), (11)

and the gradient for a victim j is

9
8q§-

for all 4,5 € P, such that j #¢ and t € {1,...,T}.

To implement these results, we consider a random state
q, from which the population evolves with the dynamics of
a uncompromised system (see Eq. (2)). At simulation time
2, an attacker compromises the system, causing a switch in
the system dynamics. The fitness functions implemented in
the replicator dynamics are then changed from Eq. (2) to
those defined by Eq. (11) and (12). Fig. 3a shows the evolu-
tion of both utility and consumption of the population. Fig.
3b show the final state of the attacker in a compromised
and uncompromised system. From these figures we can see

)=t O gt
Ui(q) = —q; 8q§p(”q 1), (12)
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that the attack is successful in obtaining more electricity
consumption while maximizing its utility; however, we can
see that the average utility function of the population de-
creases while the aggregated consumption is decreased and
the population is no longer in a social optimum.

Average Profit of the Population

350F T T T =|
|

0 1 2 3 4 5 6 7 8 9 10
(a) The utility function of the population decreases when
the Fraudster launches its attack.

Attacker Profit in both Compromised/Uncompromised Systems

35

0.5

—+— Attacker profit in a compromised system
—6— Attacker profitin a uncompromised system
T T

0 5 10 15 20
Time of day
(b) The Fraudster can create an attack that maximizes
its utility and allows it to consume more power than with
no attack.

Figure 3: Fraudster attack for DLC model.

By maximizing Eq. (10), the fraudster would be the only
one benefiting from the system, and the identity of the at-
tacker might be uncovered by the central authority if it
monitors the term g} in the FOC of some victims-Eq. (12).
Therefore, the attacker might want to mask its actions by
increasing the utility of a subset S of the population (includ-
ing the attacker); in this way, the attacker can gain plausible
deniability (i.e., lack of evidence proving an allegation) as it
is only one among a set of beneficiaries. In addition to make
the attack more subtle (and thus harder to detect), the at-
tacker can use a parameter A to quantify how much of the
utility function it wants to maximize compared to the utility
that others will receive:



maxi{mize A Z Un(q) + Z Un(q)

hes hevy
quO,Z:{l,,N},t:{:l,,T},

(13)
subject to

where A > 1 represents the severity of the attack and V
and S are two disjoint nonempty sets of consumers. The
cardinality of each set is denoted as N, = |V| and Ng = [S]|.
Therefore, the FOC of the problem in Eq. (13) are:

9 8
A (va(qf) —p(llg'll) = > qZMp(IthI1)>

hes

19}
Ny qiafqu(llqt\ll) =0. (14)

hevy

for an agent ¢ € S, and

8 t t t t 8 t
8q§vg(qj) p(lla’|l) };}qhaqﬁp(llqlh)

0
=AY dhgorp(llall) = 0. (15)
4

hes

for an agent (victim) j € V.

For illustration purposes, let us assume an homogeneous
population in which agents have the same consumption pref-
erences. Since the population is homogeneous, we know that
the consumption of all the members of a set (either S or V)
is the same. That is, users that are in the same conditions
must have the same consumption at the solution of Eq. (13),
denoted by @. In this case, we denote by zs and z, the con-
sumption of users from either S or V, respectively. We can
take into account this property, as well as the form of the
price function p(z) = Bz + b, to obtain the following expres-
sions from Eq (14) and (15):

Ts 1
T ~ BNV, (16)
Lo A (17)

folzs) ~ BNL(1+ )

where fs(xs) = 0i(zs) — 28Nszs — b and fo(xy) = vj(x0) —
2BNyx, —b. Now, if we divide Eq. (16) and (17) we obtain

xsfs(xs) Ny
xva(xv) n )\Ns (18)
Note that f.,(z.) is equivalent to the derivative of
U(a) =) (vh(qh) — anp <Z qh>> (19)
hew hew

with respect to some ¢y, and evaluated at the equilibrium «,
for w = {S,V}. We can interpret U., as the welfare of agents
belonging to the subset w. Hence, the term z., fo, (z.,)/2 can
be seen as an approximation of the utility of an isolated
population in Eq. (19).

Summarizing, Eq. (18) gives information about the utility
ratio between an attacker and a victim in function of A and
the number of agents in each subpopulaiton. If we consider
Ny =+N and N, = N — N, then Eq. (18) can be rewritten
as

s fs(xs) _ 11_’7
Tofo(ze) A vy

Eq. (20) shows the attacker’s utility as a function of the
proportion of agents that benefit from the attack (7). This

(20)
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Average Utility of the Attacker with Direct Load Control
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Figure 4: Utility of fraudster as a function of the
parameter A\ for different values of v in the DLC
model.

relation holds as long as the consumption of the victims is
different from zero.

Fig. 4 shows the utility of the attacker for different val-
ues of A (severity of attack) and v (percentage of benefited
consumers). Now, observe how the maximum benefit of the
attacker decreases significantly with the proportion of agents
benefiting from the attack (v): in other words, the price that
the attacker pays in order to maintain plausible deniabiliy
if the attack is detected increases significantly. Fig. 4 also
shows that the utility of the attacker does not increase in-
definitely with A but reaches a saturation point where the
electricity consumption by the affected population is so low,
that the attacker cannot gain any more by sending them
control signals requesting lower consumption. It is interest-
ing to note also that for small values of A\, the attacker does
not gain much by being the single user benefiting from the
attacks; in fact, for twice the importance of the selfish utility
(A = 2) and a population of 5% consumers benefiting form
the attack (y = 0.05), the attacker is better off than when it
is the only recipient of the benefits (v = 0.01 in a population
of 100).

4.2 Dynamic Pricing

Recall that in the dynamic pricing model the central au-
thority sends incentives I to drive the agents towards a
Pareto optimal point.

max Wi(q;,q;) = Ui(q) + Li(q).

with respect to g; (where I; is the incentive signal sent by
the utility to drive the system to a Pareto equilibrium). We
formulate the goal of the fraudster in the DR with incentives
case as the following optimization problem:

mai(rimize Ui(q) + Ii(q), (21)
.45

Because in contrast to the DLC model, in the dynamic
pricing model the central authority does not know the valu-
ation functions v;, the objective function in Eq. (21) cannot
be optimized by an attacker, even if it compromises the cen-
tral system. Therefore, we first use an approximation to this

objective function that can be solved and then we compare
how close it achieves the real objective in Eq. (21).



We now define the goal of the attacker in the dynamic
pricing model to find an incentive signal I to drive the sys-
tem towards the solution of Eq. (13). X and v are again
parameters that the attacker can select.

Let ¢° be the solution to Eq. (13). Recall that in this
case the attacker cannot control g but instead controls I.
Leveraging the theory of mechanism design we can show
that an attacker can incentivize all agents to adopt g° by
sending the following false incentives:

( Z qn+A Z Qh> <
hev—j hes
for all j € V and
1 N
Ii(q) = (/\ St Y qh> (N_lp(llq_ill)—p(lqll))

hev heS—i
for all i € S.

For A large enough, this attack will (for practical pur-
poses) maximize U;(q). Note that this attack does not re-
quire the valuation function of each user, but it needs to
know the total consumption of either the users that benefit
the attack or those who do not.

N
N -1

Ii(q) p(lqjll)—p(||q||1)>,
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Figure 5: Impact of the attack in the fraudster’s

utility as a function of .

Now, let us study how well our approximate problem
solves the ideal (but infeasible) objective function of the at-
tacker. First, we note that Eq. (21) has multiple solutions,
and only one local maximum corresponds to the Pareto opti-
mal outcome. On the other hand, the optimization problem
in Eq. (13) is feasible and has a unique solution, but might
lead to a suboptimal attack.

Fig. 5 shows the utility of an attacker as a function of A.
With A = 1 the attacker does not have any impact on the
system, and the system is in the Pareto optimal outcome.
As X increases slightly, the utility of the attacker decreases
as a consequence of incentives, that can be seen as taxes;
however, the attack is profitable for larger values of A, con-
verging to the value of the infeasible problem in Eq. (10).

The attack has negative impact on the population, which
is forced to reduce its consumption and consequently its util-
ity (see Fig. 6).

A drawback of the dynamic pricing scheme is that it does
not satisfy the budget balance property [22]. In other words,
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Figure 6: Impact of the attack in the social welfare
utility in function of the parameter .

the scheme can be implemented if there is a source of ex-
ternal subsidies to fund part of the incentives. Note that
an homogeneous population at the Pareto optimal outcome
does not require external subsidies; however, if an attacker
disrupts the equilibrium, the agents with low and large con-
sumption receive positive and negative rewards, respectively.
As the attack increases (), the demand imbalance is higher
and consequently, the social planer has to increase the mag-
nitude of the incentives. However, the taxes imposed to the
attacker (due to its large consumption) are not enough to
sustain the rewards to the victims and the amount of exter-
nal subsidies tend to increase.

Average Daily Utility of the Attacker

4
3.5
3t .
Direct load control
| — — — Dynamic prices
25r

Utility
n

30 70
Size of the secure population (y)

Figure 7: Fraudsters obtain more benefits from at-
tacking DLC systems when compared to dynamic
pricing.

We now compare in more detail the impact of fraudster
attacks to DLC and dynamic pricing schemes. Fig. 7 and
8 show the impact of the proportion of agents that benefit
from the attack 7 (the ones that mask the identity of the
attacker) in the utility of the attacker and the population,
respectively. Note that the attacker earns less benefits as
the size of the benefited population grows; however, it is
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Figure 8: Consumers are better off by using dy-
namic pricing instead of DLC systems in the case of
fraudster attacks.

important to note that an attacker obtains less utility in
a system with dynamic prices when compared to a DLC
model.

In contrast, the attack causes lower losses to all consumers
with dynamic pricing because the victims receive rewards for
their low consumption, as seen in Fig. 8. Furthermore, as
~ tends to 1, the population welfare increases because more
agents obtain benefits of the attack. Thus, with v = 1 the
population has no victims and the outcome is optimal in the
sense of Pareto.

Similar behavior can be seen when we evaluate the severity
of the attack A in terms of the utility gained by the attacker
in Fig. 9 and the average utility of the population in Fig. 10.

Fig. 9 shows that the attack is not optimal for a system
with dynamic prices, and consequently, the attacker might
do worse that the Pareto optimal outcome for A < 2.3. This
happens because the attacker is penalized due to its large
consumption; however, this penalization is reduced as the
other consumers are at their minimum consumption when A
is large enough.

Fig. 10 shows the social welfare under an attack in both
DLC and dynamic pricing systems. The attack is less detri-
mental with a dynamic pricing mechanism because the social
planner provides incentives to consumers that reduce their
consumption. Fig. 10 also shows the total amount of incen-
tives granted to the population; in particular, the rewards
and taxes are not in balance, and consequently, the sys-
tem requires external subsidies to sustain the DR program.
Therefore, these subsidies can be seen as losses to the social
planner caused by the attack.

We can conclude that dynamic pricing schemes are more
resilient than DLC models because consumers do not have
to bear all the looses; the majority of the losses are taken by
the social planner (electric utility of DR company). There-
fore, in terms of securing the systems, we can say that dy-
namic pricing schemes are incentive-compatible by placing
the burden of the losses to the entity that knows better how
to secure these systems, rather than placing the burden of
the attack on consumers.

S. MALICIOUS ATTACKER

We now consider an attacker whose goal is to cause dam-
age to the power system, and in order to do that it tries
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Figure 9: Fraudsters obtain more benefits from at-
tacking DLC systems when compared to dynamic
pricing.
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Figure 10: Impact of the attack in the social wel-
fare utility and global incentives as a function of the
attack severity A for both the DLC and dynamic
pricing schemes with v = 0.01.

to create a sudden (unanticipated) spike in electricity con-
sumption. Even if the distribution system has protection
mechanisms, a sudden spike that has not been forecasted
will be very difficult to protect against, and it might cause
local blackouts (by tripping a distribution fuse or circuit
breaker) or kickstarting blackstart generators.

Creating this consequence with a DLC model is straight-
forward, since in a DLC model the central entity controls
electricity consumption signals, the attacker can directly
send all electricity consumption signals to their maximum
value at the same time instant. Unless consumers somehow
override the control commands to increase electricity con-
sumption, this will have a sudden and clear impact.

For the dynamic pricing model the attack strategy is not
that easy, as agents make their optimization in an individual,
distributed, and rational way.

Following the basic idea behind the attack to DL.C models,
the most intuitive (but naive) attack against dynamic pric-
ing is to select a very low price for electricity (give rewards



via the incentive price signals) for electricity consumption at
the time where the highest forecast of demand is set to hap-
pen (typically in the evening). Let us called the identified
time for the sudden electricity consumption spike tattack-
We assume that the attacker is able to compromise the
incentive signal and send the following malicious incentives:

m oy J1i(@") +oillglls
= {"

where o1 > 0 is a design parameter. This attack creates a
sudden increase in the incentives. As a consequence, the con-
sumption of the population will increase at tqttack. Again,
because this attack takes place in the distributed optimiza-
tion setting, note that the attack can be implemented with-
out information of the valuation functions by each consumer.

We now show how the previous intuitive (but naive) at-
tack, is not optimal for dynamic pricing schemes. In partic-
ular, dynamic pricing models consumers that can defer the
consumption of electricity when market conditions are un-
favorable but then return to consuming electricity en masse
when market conditions change abruptly (in this case this
sudden shift in market conditions is created by the malicious
attacker).

A strategic attack can be implemented by carefully in-
creasing the prices of electricity in hours previous to the at-
tack (so consumers start deferring electricity consumption to
a later time), and then, at the time where the attacker wants
to create the spike of consumption, immediately lowering the
prices of electricity to their lowest values. This attack causes
loads that can be deferred to shift their consumption to a
later time, accumulating the need to use electricity until the
price is favorable.

The attack is implemented with the following incentives:

lf t= tattack7
otherwise,

lf t= tattask,
if t € [ta,ts],
otherwise,

11(QZ)+01||QH1
Ii(Q)—?HQHI
Ii(q")

where o; are positive real numbers, [tq, t5] is the time period
in which the attack focuses on reducing the demand, and
tattack 1s the time at which the peak is caused, with t, <
ty < tattack-

In this case, the fitness function (marginal utility) used
for population dynamics (to model the transient evolution
of the behavior of market participants) of the i'" individual
is:

I"(q)

% Zthl Wi(q)) + o1, if t = tastack,
ot Sl Wi(q)) — 02, ift € [ta, to],
2 (S Wi(a),

Note that the parameters o1 and o either increase or de-
crease the marginal utility associated with a consumption
at different times of the day. Thus, the attacker can de-
ceive users by making them believe that it is not convenient
to allocate resources (consume electricity) during [ta,ts].
Also, the attacker can increase the consumption at tuttack
by spreading the belief that users can increase their utility
by using more resources at that time.

Simulations are made with o1 = 50, o2 = 100, ¢, = Ohrs,
ty = 17hrs, tattack = 20hrs. In particular, the attack time
coincides with the demand peak in the Pareto optimal out-
come.

Fig. 11 shows the impact of both the naive and the strate-
gic attack after the attack is launched, that is, during the
initial transition period. In particular, the naive attack suc-
ceeds in causing an increase of the demand at tqitacr. How-
ever, the main impact of the attack is produced only during

ST

1 (q)

P

otherwise,
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Figure 11: Impact of a malicious attack on the popu-
laiton demand for two different attacks 1) attack on
a single hour and 2) coordinated attack on various
hours of the day.

tattack- On the other hand, the strategic attack achieves a
greater peak by causing demand reduction prior to the at-
tack. Roughly speaking, the strategic attack sets conditions
so that the population has more resources to consume when
prices are low.

6. CONCLUSIONS AND FUTURE WORK

We have introduced two new attack models for DR pro-
grams. In contrast to previous work, our attackers are strate-
gic adversaries with clearly defined goals (objective func-
tions), furthermore we proved the optimality of the fraud
strategies for attacks against DR with DLC, and proved an
optimality property of the fraudster attack against DR with
dynamic pricing. We also showed how dynamic pricing is
more resilient to attacks than DLC mechanisms.

In addition we introduced population dynamics to model
the transient behavior of DR systems and in particular, cre-
ated a model with consumers that can defer the consumption
of electricity based on incentives. We showed how this be-
havior can be exploited by malicious attackers to cause a
sudden spike in electricity load. We introduced two threat
scenarios and showed that a strategic attack can perform
better than the initial intuitive attacks. In practice we be-
lieve that this is the worst possible attack to the power dis-
tribution system as utilities will not be able to forecast (and
therefore plan contingencies to) these changes orchestrated
by attackers.

The main goal of this work was to understand the vulner-
ability of DR systems to market manipulators with access
to the control signals sent by the central authority to con-
sumers. In future work we plan to study mechanisms to
improve the security of these systems and to minimize the
effects of attacks.

One interesting problem would be to design anomaly de-
tection schemes to detect fraudsters (depending on the pa-
rameters v and \), and then evaluate them against fraud-
sters that will try to maximize their gains while avoiding
detection.

While our DR models are an improvement over previous
work studying the security of DR systems; the accuracy of
our analysis for practical applications will still depend on
how well our DR models match real deployed systems. As



we continue to deploy trial DR systems around the world
we will obtain more data on several properties of the models
such as the average elasticity of electricity consumption and
how much can incentives control the overall electricity load.
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