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Abstract—Recent work has studied the impact caused by
attackers that compromise pricing signals used in the emerg-
ing retail electricity market and send false prices to a subset of
consumers. In this paper, we extend previous work by consider-
ing a more realistic adversary model that is not arbitrarily tied
to scaling and delay attacks, but that can generate any arbitrary
pricing signal and show how to keep the problem tractable with a
new analysis based on sensitivity functions. In addition, we extend
previous work by proposing countermeasures to mitigate the neg-
ative impact of these attacks. Countermeasures include selecting
parameters of the controller, designing robust control algorithms,
and by detecting anomalies in the behavior of the system.

Index Terms—Real-time pricing, power systems security, con-
trol systems, attack detection, state estimation.

I. INTRODUCTION

TO MAINTAIN a balance between optimizing the use
of resources and the real-time control requirements for

keeping the frequency and voltage of the power grid at their
design levels, the power grid uses a daily and hourly schedul-
ing of generation units to match the forecast electricity load
via wholesale market transactions. A scheduling coordinator
solicits generation through some form of auction where low-
est bidders generate electricity and this in turn creates an
economically optimal schedule of generators. In contrast to
these traditional wholesale markets (e.g., between generation
utilities and distribution utilities), many retail markets (e.g.,
between a distribution utility and an industry consumer of
electricity) have traditionally adopted static pricing schemes
such as fixed and time-of-use tariffs, under which consumers
have limited incentives to adapt their electricity consump-
tion to market conditions. This lack of incentives results in
high peak demands that strain infrastructure capacities and
unnecessarily increase operational costs [1]. This approach is
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inefficient, since the system infrastructure used to guarantee
supply under peak hours is not completely used most of the
time. According to the U.S. Department of Energy, 10% of the
whole generating capacity and 25% of distribution capacity is
used less than the 5% of the time.

In an effort to increase the efficiency of the power grid,
many retail-markets are expanding the use of demand-response
programs. In their basic form, demand-response programs are
a control problem where the control signal are the incentives
(e.g., real-time pricing), or direct-load control (e.g., the utility
directly controlling the set-points of air conditioning systems
in specific cases) for consumers to reduce electricity con-
sumption during peak hours and to shift this load to off-peak
hours. Currently most of the electricity consumers leveraging
demand-response programs are large commercial consumers,
but the market is expanding more and more to smaller indus-
tries and even residential consumers. As the number of smart
devices necessary to manage this market expands, the poten-
tial attack surface of the market also increases, and therefore
we need to begin considering the potential impact of attackers
that compromise devices and communication channels used
in this market. Clearly, any ISO understands that the pricing
information is a core asset on its system and multiple layers
of defense may be applied (e.g., cryptography methods); how-
ever, it is important to assume the worst case scenario where
an attacker possesses the resources to go through the informa-
tion technology (I.T) defense mechanisms and modify some
of the transmitted information.

The security of demand response algorithms with real-time
electricity pricing was recently explored by Tan et al. [1]. In
their work, they consider an attacker that has compromised
a portion of the communication channels used to send price
information to consumers, and then study the effects to the
power system from scaling and delay attacks, where the prices
advertised to smart meters are compromised by a scaling fac-
tor (so consumers use the wrong prices) and by corrupted
timing information (so consumers use old prices). While this
previous work is an important step for initiating the discussion
on how to analyze the impact of attacks on real-time pricing,
this research has limitations on the way it modeled the adver-
sary by limiting attacks to scaling and delays. In addition this
previous work did not discuss any security countermeasures
against attacks.

In this paper we extend the work of Tan et al. [1] in several
directions:

• We model a more realistic attacker that can inject an arbi-
trary modification to the price received by the consumer,
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and is not constrained to scaling or delay attacks. The
attacker aims to increase the difference between the
generated and the consumed power by injecting small
changes in the price signal.

• We use sensitivity analysis to quantify the impact of an
attack. By using sensitivity analysis we can identify the
attack signals that will be amplified and the ones that
will be attenuated by the control loop, enabling us to
determine how successful a given attack signal is.

• We propose countermeasures based on changing the
parameter of the original controller by Tan et al. [1].
In addition, we propose an estimator and a new robust-
control design that estimates the perturbation and com-
putes a new price to attenuate the error between supply
and demand caused by the attacker.

• We propose an attack-detection algorithm based on the
CUSUM technique and evaluate its effectiveness to iden-
tify attacks for different controller parameters, and dif-
ferent attack frequencies. We are able to identify the
trade-off between time of detection, frequency of the
attack, and number of false alarms. Moreover, it is possi-
ble to define an attack that cannot be detected, but whose
effect in the network is low due to the proposed detection
method.

• All our results can be extended to linear (or linearized)
feedback control systems.

II. RELATED WORK: IMPACT OF INTEGRITY

ATTACKS IN THE POWER GRID

Our work falls within the scope of integrity attacks (or false-
data injection attacks) to the sensor or control signals of a
cyber-physical system. Integrity attacks have been proposed as
a way to analyze the vulnerability of cyber-physical systems
in general and the power grid in particular. Injecting false
data to state estimation algorithms used in bulk of the power
grid was first proposed by Liu et al. [2], and similar integrity
attacks were proposed for compromised smart meters trying
to defraud the electric utility [3].

The work on integrity attacks against bad data detectors for
state estimation in the power grid has generated a significant
body of follow up work; for example Dán and Sandberg [4],
consider a defender that can secure individual sensor mea-
surements by, for example, replacing an existing meter with
another meter with better security mechanisms such as tamper
resistance or hardware security support. Mo and Sinopoli [5]
also extend the basic false data injection attack to consider
attackers trying to maximize the error introduced in the esti-
mate, and defenders with a new detection algorithm that
attempts to detect false data injection attacks. Similar false-
data injection attacks have been considered for specific devices
in the power grid, such as integrity attacks against the Flexible
Alternate Current Transmission System (FACTS) [6], [7], and
Automatic Generator Control (AGC) [8]–[10]. All this related
work has targeted operational data of the power grid, and is
not related to electricity markets.

Negrete-Pincetic et al. [11] were one of the first to study
how false control signals can affect the social welfare of the

electricity market. Related work by Xie et al. [12] studied how
false data injection attacks can be used to defraud bulk electric-
ity markets by modifying Locational Marginal Prices (LMPs),
and work by Jia et al. [13] studied how false meter data in the
bulk of the power grid can be used to cause the largest errors
in LMP estimation.

These integrity attacks have been studied in the bulk elec-
tricity market and specifically, the estimation problem alone;
most previous work does not consider how the control algo-
rithm can be designed to minimize the impact of integrity
attacks, or studied the feedback control loop behavior of the
system under attack [14].

III. PRELIMINARIES

A. Demand Response Model

We follow the real-time pricing model from Tan et al. [1].
This model considers a market with consumers of elec-
tricity, suppliers of electricity, and a third party entity—an
Independent System Operator (ISO)—with the goal of match-
ing supply and demand by setting the market price for
electricity. The general assumption is that the ISO determines,
at each time instant k ∈ N+, a clearing price λk valid for the
period of time [k · T, (k + 1) · T] (this is called an ex-ante
market) every T hours (e.g., T=0.5h) and announces it to the
suppliers and consumers.

The electricity demand is characterized by two components:
a baseline electricity consumption bk that captures the electric-
ity consumption that is independent of the pricing mechanism,
and a price-responsive demand w(λk), which captures the
amount of electricity consumption that can be controlled by
the pricing signal λk.

The aggregated demand of all consumers is dk(λk) =
bk + w(λk). bk can be considered as the necessary power to
satisfy the main consumer needs at each instant k (e.g., refrig-
erator, cooking devices, light bulbs). wk ≥ 0 is then the amount
of power that can be consumed depending on the price. For
instance, doing laundry when the price is low, or turning off
the lights of rooms that are not being used. If there is no
real-time pricing, dk = bk.

As bk is unknown, for simulation purposes it can be
obtained from historical demand curves such as those from the
New York ISO [15]. These demand curves have historical con-
sumption traces from a specific population taken at 5 minute
intervals and they can be used to predict future demand pro-
files. The Constant Elasticity of Own-price (CEO) has been
commonly adopted to characterize the total price-responsive
demand [16], [17]. The CEO model is defined by

w(λk) = Dλϵ
k (1)

where D > 0 is a constant that properly scales wk and ϵ ∈
(−1, 0) is the price elasticity demand that captures how the
demand is affected by a specific price λk [17].

Similarly, for the supply of electricity, Tan et al. [1], propose
a linear regression between supply and cost, a model they
validated from the Australian Energy Market Operator and the
electricity market in California. Under these assumptions the
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supply of electricity can be modeled by the following equation:

s(λk) = pλk + q, (2)

where p and q are parameters estimated by the historical
market data from the area of study.

B. Control Objective

The control objective of the ISO is to send price signals λk
to keep the error between supply and demand of electric power
Ek = s(λk) − d(k, λk) close to zero for every time instant k.
This can be seen as a control problem in which the system to
be controlled is the outcome of a market, the control variable
is the price signal λk and the variable that can be measured is
the error Ek.

The price signal λk must be carefully designed because a
direct feedback of the wholesale prices to the users might
cause oscillations or even instability [1], [18].

C. Transfer Function Representation

Transfer functions are a mathematical representation of
linear difference (or differential) equations that allow us to
represent the system in a compact way and to evaluate the per-
formance of the system in terms of the frequency components
of the control signals—recall that every time series have an
equivalent representation (a one to one mapping) to a function
in the frequency domain given by the Fourier transform.

For our discrete-time system (where sensor and control
actions are taken at given time steps k separated by the sam-
pling period T (e.g., 30 minutes), the transfer function for
the equations modeling the dynamics of the system can be
obtained by using the z-transform (a transform similar to the
Fourier transform).

In particular, we can define the transfer function of the
price stabilization algorithm, the system, and the observation
mechanism as Gc(z), Gp(z), and H(z), respectively.

To express these transfer functions it is necessary to approx-
imate the dynamics system at the operation point λ0 to a linear
system. Hence, following Tan et al. [1] we make the following
approximations with the Taylor polynomials of the supply s()
and demand w():

s(λ) ≃ ṡ(λ0)(λ − λ0) + s(λ0) = ṡ(λ0)λ + s0

w(λ) ≃ ẇ(λ0)(λ − λ0) + w(λ0) = ẇ(λ0)λ + w0

where ḟ = df
dλ , and where we define the constant (or endoge-

nous) terms with s0 = s(λ0) − λ0ṡ(λ0) and w0 = w(λ0) −
λ0ẇ(λ0). Therefore, the transfer functions can be defined as
Gs(z) = ṡ(λ0) = p, with initial condition s0 and Gw(z) =
ẇ(λ0) = Dϵ(λ0)

ϵ−1, with initial condition w0. The outcome
of the market can be expressed as Gp(z) = Gs(z) − Gw(z) =
ṡ(λ0) − ẇ(λ0) and the z-transform of the price signal is #(z).
Clearly, s(z) = Gs(z)#(z) + s0 and w(z) = Gw(z)#(z) + w0.

D. Control Algorithm for Setting Prices

The price setting control algorithm depends on the previous
price λk−1 and the previous observed error at Ek−1, using a
one step delay transfer H(z) = z−1. If Ek is negative, it means

that there was more power demanded than supplied, and thus
the price will increase (to motivate consumers to decrease con-
sumption), while if Ek is positive, then the price will decrease.
The precise amount of increase and decrease of the prices at
each time step should be selected carefully as inadequate price
updates can make the system unstable. Tan et al. [1] found that
when we design a proportional gain η ∈ (0, 1) in the following
price-setting algorithm:

λk = λk−1 − 2η

ṡ(λ0) − ẇ(λ0)
Ek−1,

the system will remain stable. The transfer function represen-
tation of the controller is represented as

Gc(z) = 2η

ṡ(λ0) − ẇ(λ0)

1
1 − z−1 .

Note that the z-transform representation of the price is then
#(z) = −Gc(z)E(z), and the supply-demand mismatch is
E(z) = Gp#(z). Combining both expressions yields to the
characteristic transfer function when there is no attack, which
is given by Tc(z) = 2η

z−1+2η with a pole at z = 1 − 2η

(Fig. 1 depicts the block diagram of the suppliers, consumers
Gw(z) = G1

w(z) + G2
w, and the price control strategy). Note

that η is in fact an important design parameter for the control
algorithm that affects the convergence rate of the price. For
instance, for η = 0.5, the pole is at the origin of the z-plane
and the system converges faster. As we will show, η can also
determine the resiliency of the system under attacks. When
properly selected, it can also attenuate the impact of attacks.

IV. ATTACKER MODEL

In contrast to one-shot attacks, where the attacker provides
false information only once [2], [19], in this work we consider
that an attacker compromises a device or a communication
channel, and has the capability to add false information at
any moment and—more importantly—repeatedly over a long
period of time.

For example, most of the work on false data injection in
state estimation finds a value da to insert at an arbitrary point
in time [2], however, this previous work does not consider the
evolution of the system dynamics over time. In this context,
the question we would like to pose from an adversarial point
of view is the following:

• What is the worst attack time series da
k that can affect

the system while keeping some bounds (prices will be
bound by some maximum and minimum values: ∀k da

k ∈
[da

min, da
max].

Tan et al. [1] proposed an adversary model where one
attacker compromised the pricing communication channel
between the ISO and a percentage ρ of consumers. They
considered delay attacks and scaling attacks.

In a delay attack, the compromised price is an old ver-
sion of the price, i.e., λ̂k = λk−τ , and in a scaling attack, the
compromised price is a scaled version of the true price, i.e.,
λ̂k = γ λk.

While the attacks defined above can be easily analyzed from
a theoretical point of view, it is not clear why an attacker
who has compromised a communications channel will select



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON SMART GRID

Fig. 1. Block diagram of the real-time pricing model under attack.

to launch these attacks when she has the flexibility of sending
any arbitrary time series λ̂k she wants, even one that bears no
resemblance to the original time series λk.

Furthermore, scaling attacks and delay attacks are not strate-
gic, and do not seek to maximize any objective function
from the adversary. In this work we follow the generic and
more powerful adversary model introduced by the false data
injection paper [2], and we expand it to consider a time
series. In particular, we model a compromised communication
channel as λ̂k = λk + da

k , where λ̂k is the price infor-
mation received by the victim, and da

k is an arbitrary time
signal that can take any value. It is clear now that scaling
attacks and delay attacks are simple subsets of this new attack
because for every scaling or delay attack possible producing
a false price information λ̂k, there exists an arbitrary time sig-
nal da

k that will produce the same price λ̂k received by the
victim.

The question we now face is how to determine a strategic
attack time series da

k that will try to cause as much damage as
possible. In our case, the main objective of the attacker is to
try to maximize the mismatch between power generated and
power consumed. This mismatch can lead to over-generation,
economical losses, and unstable behavior of the system, by
intelligently inducing small changes in the price signal. One
of our key insights into tackling this problem is the fact that
for every time series, there is a one-to-one correspondence of
the time series and its frequency (Fourier transform) represen-
tation. Therefore, instead of attempting to analyze the worst
time series da

k in time, we identify the worst-possible attacks
in frequency space.

In order to provide a mathematical tool that enables us to
quantify the impact of the attack, we use sensitivity analy-
sis. Sensitivity functions have been widely used to analyze
the impact of external disturbances or parameter changes on
the output of a feedback system. In systems and control the-
ory, it is well known that feedback can attenuate or amplify
disturbances; therefore, using the frequency representation of
the system (the transfer function), it is possible to obtain the
sensitivity function and observe the response of the system to
a perturbation of a specific frequency ω [20].

In this work we focus our attention on additive attacks in
the price information; however, our approach can be easily
extended to analyze attacks over sensors.

In the next section we give the formal incorporation of the
attacks against pricing signal, and in the section after that we
use sensitivity analysis to identify the impact of the attacks.

A. Incorporating the Attack Into the Real-Time
Pricing Model

One of the main assumptions in this work is that the attacker
does not need to have complete knowledge of the system; how-
ever, if she does know how consumers and suppliers react with
price changes, she can try to apply the worst attack. Our goal
is to identify how modifying the prices with different frequen-
cies, causes different effects in the system performance, and
it does not require that the adversary possesses very specific
knowledge of the system.

We assume that an amount ρ of communication channels
are compromised, and each of these consumers receives the
price value λ̂k = λk + da

k , where da ∈ R corresponds to the
additional false information.

It is necessary to identify how the inclusion of this attack
affects the system representation of the real-time problem. In
particular, we need to identify how the attack changes the
transfer functions of the model (i.e., we need to characterize
the new transfer functions G1

w(z) for the consumers who are
unaffected, and G2

w(z) for the consumers who receive false
information, as shown in Fig. 1.).

Let us consider the price response demand based on the
CEO model for the set of compromised nodes ρwk(λk, da

k ) =
ρD(λk + da

k )
ϵ . In order to linearize this model it is necessary

to assume that |dk| << λk and λk > 0. As we will discuss
towards the end of the paper (the attack-detection formula-
tion), this is a perfect assumption for an attacker that wants
to minimize its chances of being detected (by causing small
changes to the price |dk| << λk) but at the same time wants
to find the best way to find a small signal deviation that will
maximize the potential damage to the system.

The linearized model is described by:

w(λ̂k) = ρw(λo + da
o) + ρẇ(λo + da

o)
(
λk + da

k − λo − da
o
)

+(1 − ρ)(w(λo) + ẇ(λo)(λk − λo))

We can group the price-independent terms with bk (the
baseline consumption of electricity that is independent of the
price), and then also group the price-dependent components
for the transfer functions.

G1
w(z) = (1 − ρ)ẇ(λo) corresponds to the transfer func-

tion of consumers who receive unmodified price information,
and G2

w(z) = ρẇ(λo + do), corresponds to the transfer func-
tion of the victims. Under the assumption that |dk| << λk,
we can neglect the term do in the linearization, such that
G2

w(z) = ρẇ(λo).

V. SENSITIVITY ANALYSIS

The sensitivity function models how one input to the system
(in our case the attack) affects another signal in the system (we
are mostly interested to see how the attack affects the error in
power generated minus the demand, and to also see the impact
on the prices).

We start by looking at the impact that a disturbance da(z)
(in the frequency space) can have on the error E(z). In
particular, the sensitivity function for these two time series
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Fig. 2. Left: Sensitivity of the error E(z). Right: Sensitivity of the Price
λ(z). This sensitivity analysis uses parameters: ρ = 0.5, p = 31, q = 917,
and T = 0.5h. The baseline consumption is b = 400 MW, which is pro-
portional to 1 million households, and the base demand of each consumer is
bi ∈ [2.8, 4.6]KW.

(denoted as SE,d) is the ratio E(z)/da(z):

SE,d = − G2
w(z)

1 + Gc(z)H(z)Gp(z)
= −ρẇ(λ0)(z − 1)

(z − 1 + 2η)
. (3)

As stated before, our interest is to analyze the effects of an
additive attack in the frequency domain. We denote the angu-
lar frequency as ω. We then replace z = ejωT for T being the
sampling period (the time interval between updating the sen-
sor measurements and the prices). It is important to notice
that the maximum frequency that an attacker can generate
is limited by the sampling period, such that ωmax = π/T .
For instance, if the sampling period is T = 0.5 hours, then
ωmax = 2π .

From this equation we can see that the percentage of com-
promised channels ρ has a scaling effect on the sensitivity of
the system. Moreover, the selection of the control parameter
η proposed by Tan et al. [1] is fundamental for attenuat-
ing the effects of the attack. The left side of Fig. 2 shows
how the attack can be amplified (or attenuated) as a func-
tion of the frequency of the attack signal. Clearly, the impact
the supply-demand mismatch E is severe for most frequen-
cies; however, we can also see how the control parameter
η can be selected to attenuate the impact of high-frequency
signals: smaller values of η will minimize the impact of high-
frequency components of the attack time-series—this comes
at the cost of a slower control action which might not be
a bad idea, as changes in prices will remain small, giving
consumers more predictability in their electricity consumption
habits.

Recall that if the output E is different from zero, then there
is over demand or over production of electricity, which can
affect considerably the system (resulting in large frequency
changes). Even if the price variations are small, the output
amplifies the disturbance. There is a trade off between the
η, ρ, and the frequency of the disturbance. An attacker can
easily take advantage of this fact, and introduce intelligently
false data to a portion of the users. This information can be
of small amplitude, and hardly detected; however, the effects
on the output can be catastrophic.

We can also obtain the sensitivity function with respect to
the price. This function reveals how the attack modifies the

Fig. 3. Effects in the supply-demand mismatch (middle) and the price (right)
for two attacks i) da

k = sin((3/2)πTk) and ii)da
k = sin(πTk/5) for η = 0.8.

real price calculated by the ISO. The function is described by

Sλ,d(z) = − Gc(z)G2
w(z)H(z)

1 + Gc(z)H(z)Gp(z)

= − 2ηρẇ(λ0)

(ṡ(λ0) − ẇ(λ0))(z − 1 + 2η)
, (4)

The left side of Fig. 2 shows the sensitivity function with
respect to the price for different values of η, and ρ = 0.5.
With this selection of ρ, the real price changes produced by
the attack are attenuated for mostly of all η.

Now that we have gained some insight into how the “fre-
quency components” of a time series can affect the system, we
look at the “time domain” to apply these lessons in the analy-
sis of attacks. In the foregoing of this work, we will consider
sinusoidal attacks in order to illustrate the effects of attacks
with an specific frequency. However, the analysis applies for
any signal, from constant (i.e., ω = 0) to random attacks.

As an example, Fig. 3 shows a high-frequency attack (black)
and a low-frequency attack (red) on the left. The control
algorithm is using η = 0.8. We can see a large error mag-
nification caused by this control parameter (as predicted by
Fig. 2). Similarly, the price signal is also amplified for the high
frequency attack (as can be seen by the figure on the right).

VI. DESIGNING AN ATTACK-RESILIENT CONTROLLER

Previous work only studied the effects of the attack, but
did not propose new control mechanisms to mitigate possible
attacks. We know discuss how we can start designing attack-
resilient controllers.

In order to design an attack-resilient controller, we can
leverage the fact that the ISO has historical data showing the
behavior of the system which can be used for learning the
dynamics (parameters) of the system. Whenever the controller
commands do not have the expected effect, or when the sensor
signals do not reflect the normal evolution of the system we
can try to identify these problems and design a controller that
minimizes the impact of price or sensor attacks.

As the attack are unknown inputs into the system, we can
use a type of disturbance estimators. Disturbance observers
have been studied in literature but we focus our attention in
the one introduced by Kim and Rew [21] for discrete-time
systems.

We assume that the ISO possesses the information about
the supply-demand error Ek−1 and we try to detect an attack
using the observer (an observer is another name for a “state
estimator”).
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We first present the attack-resilient controller for a general
discrete-time system, and in the next section we show how to
apply it to our real-time pricing model.

Let us consider a generic linear discrete-time system for a
sampling period T > 0 of the form

xk+1 = Axk + Buk + *dk, yk = Cxk (5)

where xk ∈ Rn, uk ∈ Rm, dk ∈ Rq, and yk ∈ Rl are the
state variable, the control input, the disturbance, and the mea-
surement output, respectively. The matrices A, B,*, C are of
adequate dimension.

For dk = (d1
k , . . . dq

k ), the disturbance is slowly time-
varying, such that di

k+1 − di
k < Tµi, ∀i = 1, . . . , q. Given

a K ∈ Rq×n and C = In, the observer is described as follows

zk+1 = zk + K
(
(A − In)xk + Buk + *d̂k

)

d̂k = Kxk − zk (6)

Under the assumption that * is invertible, we can choose K =
(Iq − +)*−1 for + = [φ1, . . . ,φq]⊤, and φi ∈ (−1, 1). The
estimation error ek = dk − d̂k is then bounded by e∞ = Tµi

1−|φi|
for φi ∈ (0, 1), and µi > 0.

A. Estimation of Price Attacks

Let Gp = ṡ(λ0) − ẇ(λ0) and dk = da
k to simplify notation.

We can write the feedback real-time pricing problem using a
discrete-time state space representation as follows

Ek = Gpuk − ρẇ(λ0)dk (7)

Note that comparing (7) with (5), we have A = 0, B = Gp,
* = −ρẇ(λ0), xk+1 = Ek and uk = λk.

Note that to compute the state estimation, it is necessary
to know *, which means that we would need prior knowl-
edge about the amount of compromised nodes. Obviously, this
requirement seems unrealistic as ρ will remain unknown to the
defender; however, we can exploit a very interesting property
of the estimator we found to perform state estimation without
knowing ρ, as stated in the following proposition.

Proposition 1: Let us consider the disturbance estimator
described in (6) for the real-time pricing model in (7). The
rate of change of the disturbance -dk = dk −dk−1 is bounded
such that |-dk| ≤ Tµ for some constant µ and T the sam-
pling period. We define *̂ as an approximate value of * and
êk = *dk − *̂d̂k as an error between the real effect of the dis-
turbance and its estimate. If K = *̂−1(1−φ) for φ ∈ (−1, 1),
the error converges and is bounded by

|ê∞| ≤ |*|Tµ

1 − |φ| . (8)

Proof: The error evolution is

êk+1 = *dk+1 − *̂d̂k+1

= *dk+1 − *̂K(Gpuk + *dk)

+ *̂(zk − Kxk + KGpuk + K*̂d̂k)

= *dk+1 − *̂K*dk − *̂dk + *̂K*̂d̂k

= *-dk+1 + (1 − *̂K)êk

As K = (1 − φ)/*̂, in the equilibrium when êk+1 = êk, ê∞ is
bounded by

|ê∞| = |*|-dk+1

1 − |φ| ≤ |*|Tµ

1 − |φ| . !

Remark 2: µ is directly related to the maximum change of
the attack signal, in other words, its frequency. Clearly, large
µ implies large estimation errors. We will explore the effect of
high frequency attacks on estimation and on a robust control
strategy proposed in the next section.

Remark 3: If the portion of compromised nodes is identi-
fied, then the estimation error ek = dk − d̂k converges and is
bounded by |e∞| ≤ Tµ

1−|φ| .

B. Robust Control Algorithm

It is possible to modify the disturbance rejection using an
add-on compensator in the controller of the form

uk = unom − B−1*̂d̂k = λk − Gp−1*̂d̂k

where unom is the controller under normal conditions.
The mismatch between the supply and the demand is then

described by Ek = Gpλk + *dk − *̂d̂k. Clearly, if êk = *dk −
*̂d̂k is small, disturbances are attenuated.

Including the robust controller in the system produces an
improvement in the estimation, leading to the following result.

Proposition 4: For the RTP system under additive attack,
and the proposed robust controller λ̂k = λk − G−1

p *̂d̂k,
where d̂k is estimated according to (6), the estimation error
is bounded by (8) and the new sensitivity function ŜE,d is
described by

ŜE,d = *(z − 1)2

(z − φ)(z − 1 + 2η)
. (9)

Proof: The first part of the proof is similar to Proposition 1,
but because λ̂k = λk − G−1

p *̂d̂k is the input, it leads to

êk+1 = *dk+1 − *̂Kêk − *̂d̂k

= *-dk+1 + φêk

As K = (1 − φ)/*̂, in the equilibrium when êk+1 = êk−1,
ê∞ is bounded by

|ê∞| = |*|-dk+1

1 − |φ| ≤ |*|Tµ

1 − |φ|

The z transform of the error êk+1 is

ê(z) = *(z − 1)

(z − φ)
d(z)

and of the power mismatch is E(z) = Gp#(z)+ê(z). Replacing
#(z) = −Gc(z)H(z)E(z) yields to

E(z) = − 2ηE(z)
(1 − z−1)z

+ ê(z)

Dividing by d(z) and factorizing we obtain (9). !



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GIRALDO et al.: INTEGRITY ATTACKS ON REAL-TIME PRICING IN SMART GRIDS: IMPACT AND COUNTERMEASURES 7

Fig. 4. Left: Performance metric of the robust controller for different η;
right: example of the supply-demand mismatch for an attack dk = sin(π/4kT).
Clearly the robust control mitigates the effects of the attack better than the
nominal control.

C. Robust Control Performance

Equation (9) describes the new sensitivity function includ-
ing the robust controller. In order to quantify the performance
of the proposed control strategy we define ξE,d(ωT,φ) =
|SE,d( jωT)| − |ŜE,d( jωT,φ)|, which is the attack mitigation
metric that compares the nominal (the case without the add-on
compensation) and the robust control strategies. ξE,d(ωT,φ) >

0 for the frequencies at which the attack is mitigated with the
robust control, i.e., when the attack amplification is smaller
than for the case with no compensation. When ξE,d(ωT,φ) <

0 the system performance without compensation is better
than the performance of system with compensation. We can
obtain the frequencies at which the robust controller stops
improving the system response under attacks. To do this, we
need to find /c = {ω : ξE,d(ωT,φ) < 0}, which corresponds
to the case when |Sϵ,d( jωT)| < |Ŝϵ,d( jωT,φ)|. Taking (3)
and (9), the condition reduces to the frequencies at which
|z − φ| < |z − 1|. Replacing z = ejωT and solving for ω,
we obtain

/c =
{
ω : ω >

1
T

arccos
(

φ + 1
2

)}
.

Let us define ωc as the lower bound of /c, which corresponds
to the frequency that makes |z − φ| = |z − 1|. ωc depends on
φ and is larger when φ approaches −1. However, the pole
corresponding to z − φ would approach to the unit circle,
compromising the exponential stability of the system.

Fig. 4 (left) illustrates attack mitigation using the robust
control when φ = 0. Note that ωc = 2.1 rad, such that for all
ω < ωc the attack attenuation is better than without the add-
on compensator; however, for high frequencies, the inclusion
of the compensator increases the impact of the attack. As an
example, Fig. 4 (right) depicts the supply-demand mismatch
for an attack dk = sin(π/4kT) and η = 0.5 using both con-
trollers. Clearly the robust controller attenuates the impact of
the attack better than the nominal control.

The impossibility of attenuating high frequency attacks is a
disadvantage of our proposed control algorithm. Therefore, in
order to deal with this issue we can use the estimated distur-
bance d̂k to calculate the frequency of the attack signal and:
i) choose when to connect or disconnect the add-on compen-
sator, and/or ii) change the parameter η in order to decrease

the impact of the attack. Clearly, estimating the frequency of
the attack and using the sensitivity analysis give us a powerful
tool to take decisions that minimize the impact of the attack.

VII. DETECTION MECHANISM

We have designed a new real time pricing algorithm that not
only assures stability, but also minimizes the impact of attacks.
However, in practice, while we have attenuated the attack, it
would still be desirable to know if we are under attack or not,
so we can remove compromised devices from our system.

The ISO calculates a clearing price each time period, but
even in the presence of an attack, the price changes are
small (see Fig. 3). However, the state estimator used in our
robust controller can give information about the presence of
an attacker, by analyzing the statistical behavior of the state
estimator over long periods of time.

The detection mechanism that we propose is based on the
accumulation of the rate of change of the estimated signal
d̂k, rk = |*̂d̂k − *̂d̂k−1|. This is known as the non-parametric
CUSUM detection statistic [22]. The CUSUM statistic is a
representative test belonging to the field of “Change detection
theory”, and it allows to detect persistent attacks even when
they are of small amplitude. Besides, it requires low compu-
tational capacities (e.g., it does not need to store all previous
values). The CUSUM statistic is defined as:

S0 = 0

Sk+1 = (Sk + rk − αk)
+ (10)

where Sk is the accumulated impact of the disturbance, and αk
is selected in such a way that E[rk −αk] < 0 when there is no
attack, i.e., the rate of change of Sk under normal conditions
(without attacks) remains close to zero or increases slowly. In
our proposed strategy, the use of the error *̂d̂k is due to the
fact that the ISO does not have knowledge about *. An attack
is detected when Sk > δ, and Sk is reset (set to 0). δ has to
be selected such that the number of false alarms is low and it
will be explained in the following section. It is important to
know how long will take to the detection algorithm to detect
and attack with certain frequency. It is possible to obtain some
bounds for the time of detection as follows.

We can define -d̂k = d̂k − d̂k−1. Replacing d̂k
from (5) and (6) we obtain -d̂k = Kêk−1. Using (8) and
due to the fact that K = (1 − φ)/*̂ we find that

|-d̂k| ≤ |1 − φ||*|Tµ

(1 − |φ|)|*̂|
.

Replacing in our detection algorithm, we obtain

Sk+1 ≤
(

Sk + |1 − φ||*|Tµ

1 − |φ| − αk

)+
.

Let us define k∗ as the detection time, i.e., the time at which
Sk∗ = δ, and we assume that αk = α is a constant value
properly selected such that the CUSUM tends to zero when
there is no attack. Thus, the time of detection is no worst than

k∗ ≥ δ
(

|1−φ||*|µT
1−|φ| − α

)+ (11)
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Clearly, high frequency disturbances (i.e., large µ) or a large
amount of compromised nodes (i.e., large * = −ρẇ(λ0)) lead
to fast detection. Note that the detection is independent on η.

Remark 5: If the attack is of ω = 0, i.e., a step input,
the sudden change will cause a single increase of Sk.
If the amplitude is smaller than δ, the attack cannot be
detected.

Remark 6: If the attacker designs an attack such that
|1−φ||*|µT

1−|φ| ≤ α the attack could not be detected at any time.
However, α is typically small, so undetected attacks do not
have a strong effect in the system.

A. Performance of the Detection Mechanism

The performance of a detection mechanism can be evalu-
ated by the time to detect an attack (i.e., the time at which
Sk = δ) and the number of false alarms; however, the number
of false alarms requires the specification of a time-interval,
which makes it difficult to obtain a general performance met-
ric. As δ depends directly on the number of false alarms when
the system is not under attack, large δ implies that it will
require more time to detect an attack, but it will decrease the
false alarms caused by normal changes in the system. On the
other hand, small δ increases false alarms but it is possible to
detect attacks faster. As a consequence, there exists a trade-off
between the number of false alarms and δ. Using some ideas
from Sequential detection theory, and due to the fact that we
want to monitor real-time control systems where there is not a
fixed amount of time to observe, we propose the average time
between false alarms TFA, or more precisely, the expected time
between false alarms E[TFA]. Clearly, E[TFA] depends on the
selection of δ. Therefore, for a given δ, we can take a series
of measures during T hours in a secure environment with no
attacks and find the number of false alarms nFA during that
time T. One way to calculate the expected time between false
alarms is E[TFA] = T/nFA.

For a given δ, we calculate E[TFA] and the minimum time
for detection obtained in (11), which allow us to evaluate
how decreasing the false alarms (increasing E[TFA]) affects
the speed to detect an attack. An example is provided in the
next section.

B. Simulations: Detecting Attacks

We assume a populated area with 1 million households, each
one receiving information about the price every 30 minutes.
To improve the realism of the simulations, we assume that
the parameters D and bk change each time period according
to a half-hourly baseline demand profile provided by NYISO
from the New York city from June 15th to June 30th. The
baseline load per house is a scaled version of the real one.
The parameters of the linear CEO model are p = 31 and
q = 917 during the simulation time. We estimate the expected
time of a false alarm E[Tfa] for a time interval of 7 days for
δ ∈ [0.01, 10] when there are no attacks. A large δ means
that it will take us longer to raise a false alarm. Using this
metric we can visualize the trade-off between δ and the time
of detection.

Fig. 5. Left: Minimum time of detection with respect to the estimated time of
false alarms; right: example of the detection mechanism for δ = 5, α = 0.06,
and an attack da

k = 0.1 sin((π/4)kT) after 10 h. The minimum time for
detection is 3.9 h and E[Tfa] = 150 h.

We assume that an attack is launched and modifies the
price information of 50% of the households. The attack is
of amplitude 0.1 $ /MWh, and frequency ω.

The estimation is based on prior information of the baseline
load. However, we assume an error in the real-time baseline
consumption, such that the ISO calculates the estimation and
the robust control based on an approximate load profile, and
not the real time consumption. Despite that limitation, the
detection algorithm is able to detect an attack when a threshold
is achieved.

Fig. 5 (left) illustrates the minimum time of detection with
respect to E[Tfa] for attacks of different frequencies. The ISO
can choose a small δ to increase the detection speed but it
would cause an increase in the number of false alarms. For
high frequencies, the time of detection is low, which is an
advantage in order to start a scan in the smart meters and find
the victims of the attack. For instance, Fig. 5 (right) depicts
the detection metric for δ = 5, α = 0.06, and an attack da

k =
0.1 sin((π/4)kT) after 10 h. According to (11), the minimum
time of detection is 3.9 h and E[Tfa] = 150 h. After the attack
is launched at t = 100 h, it takes approximately 4 h to detect it.
If we select δ = 0.2, the detection is almost instantaneous, but
several false alarms will be generated.

Our work on detection is preliminary, and in future work
we plan to identify the tradeoffs the attacker will face
when deciding to launch attacks that maximize the error
between power generated and consumed while also maintain-
ing the attack undetected. Moreover, we plan to compare the
CUSUM statistic with other detection mechanisms such as the
Shiryaev-Roberts test and the bad-data detection.

VIII. CONCLUSION

In this work we used the theory from sensitivity analysis
to understand how previously proposed attacks could be gen-
eralized and evaluated in a formal setting. In particular we
showed how to find better attacks than previously proposed,
and how to design robust control systems that can mitigate a
large number of attacks.

We also found that the design of the price adjustment
mechanism is fundamental in the resiliency of the system.
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In particular, low values of η reduce the effect of the attacks
on both the prices and sensors.

We also proposed an attack-resilient controller and an attack
detection mechanisms. We believe we are one of the few
research papers focusing on the important aspect of design-
ing robust control algorithms against false data injection, as
much of the previous work tends to focus on state estima-
tion but does not consider the control actions of the system
under attack, and how to design a controller that mitigates
these attacks.

Our results show principled ways to use control theory in the
design of attack-resilient cyber-physical systems. In general
we believe that a well-designed defense-in-depth mechanism
for cyber-physical systems will have to leverage not only infor-
mation security expertise, but control theory to detect, respond,
and reconfigure systems that can survive partial compromises.

One interesting area of future research that we did not
address in this paper are the possible attack strategies that
can be achieved by combining attacks to both: sensors and
control signals. All our models assumed the attacker compro-
mised the price signals, but not both. It is clear that if the
attacker controls all control signals and all sensor signals then
there is nothing we can do, but if the attacker has partial com-
promise of controllers and sensors, then the defender might
still be able to design a robust algorithm that attenuates the
attacks. We plan to look into this area in future work.
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