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ABSTRACT

DoS attacks on sensor measurements used for industrial con-
trol can cause the controller of the process to use stale data.
If the DoS attack is not timed properly, the use of stale data
by the controller will have limited impact on the process;
however, if the attacker is able to launch the DoS attack at
the correct time, the use of stale data can cause the con-
troller to drive the system to an unsafe state.

Understanding the timing parameters of the physical pro-
cesses does not only allow an attacker to construct a success-
ful attack but also to maximize its impact (damage to the
system). In this paper we use Tennessee Eastman challenge
process to study an attacker that has to identify (in real-
time) the optimal timing to launch a DoS attack. The choice
of time to begin an attack is forward-looking, requiring the
attacker to consider each opportunity against the possibility
of a better opportunity in the future, and this lends itself
to the theory of optimal stopping problems. In particular
we study the applicability of the Best Choice Problem (also
known as the Secretary Problem), quickest change detection,
and statistical process outliers. Our analysis can be used to
identify specific sensor measurements that need to be pro-
tected, and the time that security or safety teams required
to respond to attacks, before they cause major damage.
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1. INTRODUCTION

While compromising or disrupting devices or communi-
cation channels used to sense or control a physical system
is a necessary requirement to attacks aimed at disrupting
the physical process, the damage from the attack will be
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limited if the attacker is unable of manipulating the con-
trol system in a way to achieve her desired outcome in the
physical world. After all, breaking into a system is not the
same as breaking a system. In order to achieve a desired
impact on a control system (like Stuxnet [14]), the attacker
needs to assess how her attack will perform at the regulatory
control level. Launching such an attack requires a different
body of knowledge from the one used in IT security. In par-
ticular, attackers need to know how the physical process is
controlled, and that includes knowledge of failure conditions
of the equipment [15], control principles [30], knowledge of
process behavior [19], and signal processing, etc.

In this paper we consider an attacker that can read a sen-
sor signal for a given process variable, and then has to decide
on a time to launch a DoS attack in order to “freeze” a certain
process value above or below a set point in the controller’s
memory. Most Programmable Logic Controllers (PLC) op-
erate in a scan cycle architecture. During each cycle logic
in the PLC uses the last saved input buffers obtained from
sensor measurements to issue control command to the actu-
ators. If input buffers are not updated because of the DoS
attack, the last measurement received will be the one used
by the PLC in each subsequent scan cycle. By doing so
the attacker deceives the controller about the current state
of the process and can cause compensating reactions which
may bring the process into a state desired by the attacker,
e.g. an unsafe state.

Typical sensor signals in process control either fluctuate
around the set point or follow the dynamic changes in the
process. In both cases the process variable exhibits a time
series of low and high peaks. In order to move a sprocess
into an unsafe state, the attacker should aim to freeze the
sensor measurement at one of the optimal values of the pro-
cess variable (low or high). However, because the attacker
has to make the decision in real-time—where she needs to
consider each opportunity against the possibility of a bet-
ter opportunity in the future—the task the assaulter needs
to address becomes a sequential decision problem where the
attacker is presented with possible candidates at each time
step, and has to make a decision immediately whether to
launch an attack at this stage or not.

We formulate this challenge as an optimal stopping time
problem for the attacker. In particular, we formulate the
problem as a Best Choice Problem—also known as the Sec-
retary Problem (SP)-in which the adversary is presented



with a time series of system states obtained by sensors and
has to decide on the optimal time to attack based on cur-
rent and past sensor measurements. In this paper we show
that the problem the attacker has to solve is a non-trivial
task in many practical situations as sensor measurements
can be noisy and have sudden fluctuations. Using a plant-
wide chemical control process simulation, we identify differ-
ent types of sensor signals that can make the selection prob-
lem more challenging. We then explore different stopping
rules and compare their effectiveness for selecting optimal
sensor signal samples. Our results show that different stop-
ping rules will be selected by different types of adversaries:
risk-taking attackers (those who prefer to wait for a better
opportunity at the risk of waiting for too long to launch
an attack) and risk-averse adversaries (those who prefer to
attack as soon as a reasonable attack opportunity emerges).

Our new threat assessment model can be used to mea-
sure the impact of the DoS attacks on sensor signals and to
inform asset owners about the need to prioritize them for
protection. In addition, our analysis can be used to identify
the time interval (between the beginning of the DoS attack
and the response from the security team) before the plant
suffers either an emergency shutdown (if safety systems are
in place) or a safety accident (if the attacker has disrupted
safety systems as well).

2. TIMING AND CYBER-PHYSICAL SECU-
RITY

In this paper we focus on Process Control Systems (PCS)
which is a general term used to denote architectures, mech-
anisms and algorithms which enable processing of physical
substances or manufacturing end products. Process indus-
tries include assembly lines, water treatment, pharmaceuti-
cal, food processing and other industries. In the past few
decades plants have undergone tremendous modernization;
technology became an enabler of efficiency but also a source
of problems. What used to be a panel of relays is now an
embedded computer, and what used to be a simple ana-
log sensor is now an IP-enabled smart transmitter [24] with
multiple wired and wireless communication modes, a large
number of configuration possibilities, and even a web-server
so that maintenance staff can calibrate and setup the device
without approaching it.

Cyber-abuse in the IT domain do not generally depend
on timing aspects. In certain instances such as during race
conditions, Time-of-Check to Time-of-Use vulnerabilities, or
cross-site scripting attacks that rely on getting access to
session cookies before they expire, the attacker needs to
make sure that their attack occurs within a tight window
of time. In cyber-physical systems, however, timing takes
an even more important role as the physical state of the
system changes continuously over time, and during the sys-
tem evolution in time, some states might be more vulnerable
to attacks than others. Timing also characterizes the vul-
nerability of a system; e.g., it may take minutes for a chem-
ical reactor to burst [31], hours to heat a tank of water or
burn out a motor, and days to destroy centrifuges [14].Un-
derstanding the timing parameters of the physical processes
does not only allow an attacker to construct a successful
attack but also to maximize its impact.

The dynamic response of a processes variable changing
from one state to another can be described with a simple
model consisting of process gain, dead time, and time con-
stant. The process gain describes how much the process will
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Figure 1: Time constants in process control, based on [30]

respond to a change in controller output, while the dead time
and time constant describes how quickly the process will re-
spond (Fig. 1). Precisely, dead time describes how long it
takes before a process begins to respond to a change in con-
troller output, and the time constant describes how fast the
process responds once it has begun changing. Controlling
the processes with large time constants is a challenging task
causing operators’ stress and fatigue [21]. The described
timing parameters are not only important for the design of
a control algorithm but also for the attacker to design an
effective attack.

2.1 Adversary Model

The adversary’s goal is to cause tangible impact on the
process. In the physical domain, the attacker can either
tamper with the sensor signals or modify the manipulated
variables issued by the controller. In this work we limit our
study to sensor signals. In particular we assume an attacker
who aims to bring the process into an unsafe state by deceiv-
ing a controller about the current state of the process and
thus forcing it to take harmful compensating actions. To
do so the attacker can force the controller to believe that a
process variable is below or above its set point. One way to
achieve this is to forge the process variable by the means of
a false-data injection attack. If the communication channel
between a sensor and a controller has integrity protections
(e.g., message authentication codes) and the attacker does
not have key material, the attacker might opt to jam com-
munication channel to prevent the controller from receiving
process measurement updates. In the context of this paper
we call this type of attack a DoS attack on a sensor signal.

As a rule, controllers store sensor signals in dedicated
memory registers which are updated whenever a new value
arrives. During the DoS attack, the input register assigned
to storing measurements of a particular sensor will not be
overwritten by fresh values. Therefore, the last process value
which reached the controller before the attack, will be used
by the PLC for the duration of the DoS attack. As a result,
the controller will generate control commands based on the
last received reading. A DoS attack when compared to a
false-data injection or integrity attack is different in that
the adversary does not have direct influence on the “attack
value”. Instead an adversary can take advantage of the tim-
ing parameters of an attack, such as the starting time ¢, of
the attack and the duration T,.

The impact of the attacks on PCS are sensitive to the spe-
cific state of the system, in particular, attacks might only
be effective if the process variable is above (or below) a cer-
tain threshold. The higher the attack process variable is
chosen beyond the threshold, the higher the impact. More-
over, since DoS attacks are easy to detect, one of the goals



of the attacker is to achieve its disruption objective as soon
as possible after the attack is launched. Therefore, the at-
tacker should aim at launching a DoS attack at the time
the process variable of interest reaches its local maximum
or minimum (a more vulnerable state).

The attacker faces the following problem: given a time-
series that exhibits a sequence of peaks and valleys of differ-
ent amplitude, she has to select one of the peaks to launch a
DoS attack in real time. If the attacker strikes too soon, she
might lose the opportunity of having a higher impact on the
system if she had waited longer (i.e., if the process variable
would reach higher value later in the future). However, if the
attacker waits for too long, the process variable might not
reach a more vulnerable state than previously observed, and
the adversary might miss the opportunity to cause maximal
damage, or even have the implanted attack tools detected
before they have the chance to launch the attack.

The problem of selecting a good time to attack can be
framed as an optimal stopping problem. These class of prob-
lems are concerned with the challenge of choosing the time
to take a particular action based on sequentially observed
random variables in order to maximize an expected payoff.
Such class of optimal stopping decision tasks in which the
binary decision to either stop or continue the search depends
only on relative ranks is modeled as Best Choice Problem,
also known as the Secretary Problem [9].

2.2 Susceptibility of Control Equipment to Stale

Data Attack

Almost every device in process control equipment needs
to deal with stale data but it is rarely documented in open
literature. In many environments the bandwidth required
to report the current state of every point (field devices)
in the system exceeds the capacity of the communications
channel. This is particularly prevalent when the data is
communicated over long-haul serial communications. Open-
source and proprietary protocols both describe themselves
as “report by exception” meaning the data is reported to
the server only when it has changed significantly. In many
cases the amount of change required for the process value to
be reported is configurable but the exact rules may still be
opaque.

Extensive testing of Industrial Control Systems was per-
formed at the Idaho National Labs and other facilities [6].
During those tests a number of scenarios were found where
stale data could be maintained in a system for indefinite pe-
riods of time. No general technique is known that is appli-
cable to every device so we describe some of the implemen-
tation details that have previously allowed for stale data.

The most common root cause of stale data is when the
protocol stack was implemented in a stateless manner. The
master maintains a set of timers for the data tied to individ-
ual data points or a set of data points assigned to a class.
When data is received by exception the timer is restarted.
If the data changes often enough, the master never sends a
poll request. If the timer expires, the point is placed into
a point list to be requested during the next poll. If many
cases, the timer is reset when the poll request is sent with
the assumption that the point value will be returned in the
next reply. In other cases, the timer is only reset upon a
successful receipt of the updated data.

The most common finding was if the TCP session was
simply maintained without transferring any data, the sen-
sor was never reported as offline. The second most common

finding was that the protocol lacked replay protection and
old messages could simply be resent. Also more complex
attacks have been shown possible. Thus, in many imple-
mentations the server listens on both the UDP and TCP
ports. Messages received via TCP, UDP, or serial commu-
nication were routed to the same processing code without
checking which communications mechanism sent the mes-
sage. An exception report could be sent via the UDP port
but it would be merged with the ones received via an ex-
isting TCP session. In case the sequence numbers are used
to detect missing and retransmitted data, empty acknowl-
edgments with higher sequence numbers could be sent via
UDP to increment the internal sequence number of the con-
troller. When a legitimate message arrived at the TCP port,
it would be discarded as retransmissions.

Furthermore, a number of examples can be formed where
interfering with a data channel is possible but fully view-
ing and manipulating the data channel is not. The most
common case is networking equipment where the attacker
only has access to the administrative interface but not to
the data plane. For example, in common routers there is
a “fast path” where packets are routed in custom designed
application-specific integrated circuits (ASIC) and the “slow
path” where packets are transferred to the CPU. Access to
the administrative interface can give code execution on the
device, but only packets transiting the slow path can be ob-
served and manipulated. If all packets are requested by the
slow path, the CPU is saturated resulting in a DOS on the
communications link. If packets are sampled periodically,
they can be examined and with that allowing an attacker to
perform a DoS attack at the opportune time.

3. BEST CHOICE AND OPTIMAL STOPPING

PROBLEMS

In this section we introduce the theoretical background
used in our formulation.

3.1 Best Choice Problem

In the standard version of the Best Choice Problem, a
finite and known number n of items (or alternatives) are
presented to a decision maker (DM) sequentially, one a time,
in a random order. Time is discrete. At any period the DM
is able to rank all the items that have been observed in terms
of their desirability or quality. For each item inspected the
DM must either accept it, in which case the search process is
terminated, or reject it and then the next item in the random
order is presented and the DM faces the same problem as
before. The DM’s objective is to maximize the probability
of selecting the best item of all the n items available.

The classical Best Choice Problem is formulated in terms
of a hiring manager identifying the best secretary (the Secre-
tary Problem) it has interviewed among all applicants. This
problem is formulated in terms of six assumptions:

1. There is only one position available.

2. The number of applicants, n, is finite and known to
the DM.

3. The n applicants are interviewed sequentially, one at
a time, in a random order; consequently, each of the
n! orders is equally likely.

4. The DM can rank all the n applicants from best to
worst without ties. The decision to either accept or



reject an applicant in a given period is based only on
the relative ranks of those applicants interviewed so
far.

5. Once rejected, an applicant cannot later be recalled.

6. The DM is satisfied with nothing but the best. (Her
payoff is 1, if she chooses the best of the n applicants,
and 0 otherwise.)

Note that an applicant is accepted only if it is relatively best
among those already observed. A relatively best applicant is
called a candidate. The stopping rule suggested by the Best
Choice Problem theory is the following: do not make any
offer to the first n/e candidates (where e is the base of the
natural logarithm) and after that, make an offer to the first
candidate whose value exceeds the value of all candidates
seen so far (or proceed to the last applicant if this never
occurs, such case is called non-selection). In other words,
the algorithm starts with a learning phase in which the DM
sees n/e candidates and sets an aspiration level equal to
the highest value seen in the learning phase. After that,
the DM hires the first candidate that exceeds the aspiration
level. The main result of the best choice problem states that
the optimal stopping rule can select the best candidate with
at least (1/e) probability.

It has been recognized that the classical assumptions place
more constraints on the observation and selection than would
generally apply in practice [12]. Relaxing one or more as-
sumptions for a more realistic formulation of the standard
assumptions has attracted attention in the research commu-
nity. In this paper we consider the classical solution, and
a recent result that assumes the order in which the candi-
dates arrive is not completely random, but has a probability
distribution satisfying a hazard rate condition [20]. This as-
sumption is commonly used in standard engineering appli-
cations and states that given that the value of a candidate
is not less than y, the likelihood that it is equal to y in-
creases as y increases. As an example, Gaussian, uniform,
and exponential distributions satisfy this property. Under
these assumptions it was shown that the learning period falls
from n/e to n/log(n), meaning that it is enough to observe a
much smaller number of candidates to set the optimal aspi-
ration level and have a similar probability of success. Since
the probability of detecting an intrusion increases with time,
having a shorter learning phase is beneficial to the attacker.

Fig. 2 illustrates formulation of the Secretary Problem and
its solution in the context of an arbitrary sensor signal. We
call learning phase as an observation window and we refer
to the selection phase as an attack window. Notice that in
this case the maximum selected is lower than the overall
maximum in the attack window.

3.2 Peak Detection

In the time series of the physical phenomenon, each time
sample X; is heavily correlated with the next sample X;4.
Thus, if a process variable (e.g. temperature) is increasing,
it cannot drop radically in the next time instance. As follows
from the SP solution, upon completion of the learning phase
the attacker should select the first sample, whose value ex-
ceeds aspiration level. By doing so the attacker can miss
the opportunity to select an even higher value as in case
of an upwards trend where the process measurement will
keep increasing until it reaches its local peak. Therefore,
in contrast the static choice rule, the attacker may incorpo-
rate expectations about the future into her decision process.
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Figure 2: Illustration of the Secretary Problem solution ap-
plied to a sensor signal

The problem of identifying a signal peak is exacerbated by
the fact that process variables are moisy and therefore an
upward trend might be followed by a quick drop, followed
again by an even higher gain. We propose two algorithms
for peak detection.

3.2.1 Forward Looking Search

In our initial approach we add a low-pass filter to the
signal to smooth out short-term fluctuations and highlight
longer-term trends. In this case the choice between stopping
or continuing to search at sample X; is determined by the
difference between the stopping value and the continuation
value X;11. This allows a peak to be identified as soon as a
downward trend in a smoothed signal is detected (e.g., three
consecutive measurement drops). The optimal smoothing
interval depends on the sampling frequency of the signal.

3.2.2 Change Detection

A more sound approach to peak detection is quickest change
detection theory. Change detection tests are statistical tech-
niques that allow identification of a possible drift, abrupt,
and and sudden changes in data series at an unknown time.
Cumulative sum (CUSUM) is one of the most commonly
used algorithms for change detection problems. Most op-
timal stopping rules are parametric and require a priory
knowledge about the statistics of the signal and the size
of the expected shift. However, in several practical cases
the underlying distribution and the magnitude of shifts are
both unknown. In such cases the non-parametric scheme
(NCUSUM) is a more suitable choice. Let the sensor time
series be represented by a series X;. Our goal is to iden-
tify the peak of this time series as soon as possible. To do
this we define a new time series S;. In particular we use
two NCUSUM statistics for each signal, S;” to detect a local
maximum in the signal, and S; to detect a local minimum.
The NCUSUM is initialized with S§ = 0 and S; = 0 and
updates as follows:

S;r =max(0, | X;—1 — Xi| + S;r_1)7
S; = max(0, | X; — Xi—1| + Si_),

3
An alarm is triggered whenever S; > h, where h is a thresh-
old that can be used as a parameter to control the tradeoff
between the rate of false alarms and the delay for detect-
ing the local maximum or minimum of the signal. Although
NCUSUM statistic is general and can be applied to any sig-
nal, the threshold h has to be learned for specific types of



sensor signals.

3.3 Heuristic Algorithm

Generally speaking, the SP allows an attacker to select
the best possible “outlier” sample (due to noise) in the time
series. Although SP is based on a sound mathematical the-
ory, one of the disadvantages of the SP optimal solution is
the high number of non-selections (the last sample in the
time series is taken because the attacker ran out of time).
To avoid non-selections we propose an alternative heuristic
solution which we call the Outlier Test (OT).

In process control it is not uncommon to assume process
measurement noise follows a Gaussian distribution, which is
characterized by the mean value p and standard deviation o.
These parameters can be estimated for each signal (during
the observation period), and then, during the attack win-
dow, the attacker can use this knowledge to detect outliers.
According to the “three-sigma rule” in a normal distribution
nearly all values (0,9973%) lie within three standard devia-
tions of the mean. In this case, the attacker will select the
first sample in the attack window such that X; > p + 30
or X; < u— 30. Alternatively these thresholds can be low-
ered to values that may be achieved faster if the attacker
has a time deadline. A standard score curve can be used to
determine the optimal OT threshold h.

4. SIMULATION SETUP

One of the challenges of cyber-physical security research is
the lack of large-scale test beds to allow the study of complex
attacks and their effects on physical processes. To mitigate
this problem researches can leverage simulation models of re-
alistic industrial plants [7, 2, 5] which have been developed
for the process control community to focus on issues impor-
tant to the industry and to allow comparison of research
results. These models can be adapted to study the various
aspects of cyber-physical exploitation. In this work we use
the full plant-wide control problem proposed by Down and
Vogel [7].

4.1 Tennessee Eastman Challenge Process

The Tennessee Eastman (TE) process is a modified model
of a real plant-wide industrial process. The authors inten-
tionally omitted certain specific details of the process to
protect its proprietary nature. This makes TE problem
an excellent case study because the a priory information
about process is limited and thus allows emulation of the
“grey-box” exploitation use cases. For our empirical analy-
sis we use the TE Matlab model developed by Ricker [27].
The plant produces two liquid (lig) products from four fresh
gaseous (g) reactants involving two irreversible exothermic
reactions composed of chemicals A, C;, D, E, G and H:

A(g) + C(g) + D(g) — G(lig),
A(g) + C(g) + E(g) — H(lig),

The process has five major operation units: the reactor,
the product condenser, a vapor-liquid separator, a recycle
compressor and a product stripper as shown in Fig. 3. The
gaseous reactants and products are not specifically identi-
fied. Feed C is not pure and consists of 48.5% A and 51%
C. The byproducts and inert gases are purged from the
system in the vapor phase using a vapor-liquid separator
whereas products G and H exit the stripper base and are
separated in a downstream refining section. The plant has 12

Product 1,
Product 2.

valves for manipulation, and in total 41 measurements (with
added measurement noise) are involved in process monitor-
ing. The first 22 measurements are continuous, the rest are
sampled composition analysis from chromatographs with a
delay of 0.1 or 0.25 hours, depending on the process vari-
able. The simulation model control scheme consists of 18
proportional-integral (PI) controllers, 16 process measure-
ments XMEAS{1;2;3;4;5;7;8;9;10;11;12;14;15;17;31;40} and
9 set points which form 8 multivariable control loops and 1
single feedback control loop [17]. The full notation and units
of process characteristics including operation constraints can
be found in [7]. The default simulation time of a single ex-
periment is 72 hours.

The process description includes a flowsheet, steady-state
material and energy balance as well as the operational con-
straints of both the optimal steady-state operations and the
process shutdown limits. Depending on her goal (economic
or physical disruption), the attacker would have to violate
these specified constraints. In addition, the original prob-
lem statement includes typical set points and load changes,
which along with other listed disturbances illustrate different
aspects of process operations. In total there are 20 distur-
bances modes IDV{1-20} and four set point changes. This
information is valuable to the attacker as any change in op-
erations causes variations in the process behavior which in
turn is visible in the process measurements (sensor signals).

Depending on the noise level and shape of the signal, sen-
sor signals in TE process can be roughly divided into 4 dis-
tinct groups (Fig. 4). Type 1 is characterized by a few dis-
tinct peaks and a low noise level. Type 2 is distinguished
by the multiple noisy signal peaks. Type 3 can be described
as a very noisy variation of Type 1 signal. The type 4 sig-
nal distinguishes itself by the overall slow signal amplitude
change with high amplitude noise. Depending on the state
of process, sensor signals can change their properties sub-
stantially. For example, A feed flow F4 is of Type 4 in a
steady state, of Type 2 under disturbance IDV(11) and of
Type 1 under IDV(8).

Initial model does not allow any randomness in the simu-
lations to guarantee the repeatability of the plant operation
disturbances. It means that each simulation run produced
identical results. In order to obtain statistically significant
results we modified the original code by generating a new
seed for the random number generator for each run while
preserving underlying dynamics of process behavior.

4.2 DoS Attack Model

Let X;(t) be a measurement of sensor ¢ at time ¢, where
0 <t < T, and T the duration of the simulation; time is
discrete. The attack interval Ty is arbitrary and is limited
to the simulation run time. In our setting, we simulate ma-
nipulated sensor readings X/ as follows:

X((t): Xi(t), fort¢T,
‘ X (t), forteT,,

where X{(t) is the modified reading (attack value).
During a DoS attack, new sensor measurements do not
reach the controller. If the attack starts at time t,, we have:

Xi(t) = Xi(te — 1).

where X{' is the stale data reading (the last value received
by the controller before the DoS attack).



CWS

%
®
ol

.............

IMNLEr>Z>

POOPOO

«

H
DIMNLF=Z>

T

1

Vapfliq I
separator

ei:li
@

g

A
N
A
L
Y
z
E
R
H
1

£ =P Production
@ monitor

Figure 3: Plantwide chemical process under control-based on [17]
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Figure 4: Different types of sensor signals in TE process

5. EXPERIMENTAL RESULTS

The TE model execution starts with the predefined base
values. The “warm-up” phase of the plant lasts for about
two hours and is excluded from our analysis. In the origi-
nal implementation the process data is downsampled to 100
samples per hour (s/h) before being stored in the Matlab
workspace. We conduct our analysis based on the sampling
rate of fs=2000 s/h which is used during the actual real
time simulations. We omitted analysis of XMEAS{31;41} as
these measurements are not real time. Unless specified dif-
ferently, the experimental results are conducted with IDV(8)
active which stands for the variation in the reactor feed.
This disturbance is successfully absorbed by the process
and does not impact operations but causes noticeable unpre-
dictable deviations in sensor signals. All statistical results

are averaged based on 50 simulation runs. The 95% con-
fidence interval is calculated using Student’s t-distribution
but due to space limitations are not included into paper.

5.1 Evaluation Metric: Shortest Shutdown Time

In our scenario, we assume an attacker whose goal is to
force the physical process into unsafe state and cause its
shutdown. To evaluate the result of such an attack we se-
lect the Shutdown Time (SDT) as a metric that measures
the time that the process is able to maintain safe operating
conditions (e.g., maintain the pressure in the reactor tank
below 3,000k Pa) after the attack is started. A longer SDT
is unfavorable to the attacker as plant operators have more
time to take corrective measures to bring the process back
into a safe state. In order to be able to compare the re-
sults of the proposed approaches, we first obtain reference
values of the shortest possible safety time for the attack on
each individual sensor. The reference values are selected by
looking at the overall lowest (min) and highest (max) pro-
cess values in each individual simulation run. These attacks
would be infeasible in real-time because they would require
an attacker to go back in time to select the best value. We
refer to these SDTs as optimum (Tbl. 1).

As can be seen, the sensitivity of control loops to de-
ception attacks varies greatly with a SDT range from min-
utes to more than 20 hours. We did not include results on
XMEAS{10;11} as no attack on these sensors places system
into an unsafe state. Also, only five F7*" attack instances
triggered a process shutdown. This is because susceptibility
of the process to the attack on A feed depends not only on
the attack value but also on the overall balance of A- and
C-components. At the same time, attacks P/ .ae and F{***
do not drive process into an unsafe state. This means an
assaulter planning an attack on e.g. reactor pressure should
strike only at the minimum peaks.

5.1.1 Without Peak Detection

In this subsection we analyze the attacker’s prospects of
selecting the highest possible process value in real time ap-



XMEAS Variable Optimum Secretary, n/e Secretary, n/log(n) Outlier Test, o = 2.0
name SDT,h SDT,h | Error,%| NS,% | SDT,h | Error,2%| NS,% | SDT,h | Error,%| NS, %
(1) min | A-feed 22.22 - 13.96 40 - 42.85 12 - 18.74 70
max | rate
) min | D-feed 5.15 5.93 8.52 26 6.05 19.57 0 6.72 42.93 0
max | rate 3.69 3.85 6.38 20 4.27 13.64 4 6.36 42.15 0
3) min | E-feed 4.29 4.46 8.13 38 4.55 17.65 2 5.26 44.87 0
max | rate 2.83 3.51 7.82 36 3.32 19.43 2 4.44 45.18 0
(4) min | C-feed 1.05 1.78 12.44 34 1.99 35.80 4 2.07 29.15 12
max | rate 1.78 2.38 18.83 44 1.93 34.45 8 2.20 28.44 6
(5) min | Recycle 4.39 5.44 17.12 32 8.73 39.17 2 6.77 28.92 14
max | flow 9.17 9.90 25.12 40 10.11 42.66 0 10.17 35.44 12
(M) min | Reactor 8.56 8.2 23.41 34 8.21 39.20 8 8.51 25.93 8
max | pressure
®) min | Reactor 2.37 2.90 14.57 34 3.31 30.05 2 3.96 44.98 0
max | level 2.73 3.08 11.13 32 3.40 24.20 0 3.71 37.69 0
) min | Reactor 1.34 1.39 4.06 30 1.45 13.54 8 1.75 45.25 0
max | temper. 0.65 0.69 3.74 40 0.70 13.56 6 3.71 37.69 0
(12) min | Separator 5.50 6.92 17.10 36 8.74 40.67 0 8.15 31.18 0
max | level 3.49 4.28 15.97 30 5.86 41.60 2 5.96 36.10 4
(14) min | Separator 12.03 12.10 17.50 34 11.88 39.16 0 12.58 34.01 0
max | underflow 11.58 11.13 20.22 26 11.69 40.70 2 12.15 34.33 2
(15) min | Stripper 6.39 7.96 20.28 20 11.06 49.43 4 9.70 35.63 14
max | level 6.35 8.54 23.76 34 13.05 56.36 2 9.71 34.01 10
(17) min | Stripper 1.86 2.33 4.89 18 3.37 13.91 4 6.75 42.77 0
max | underflow 1.33 2.36 7.07 24 3.10 19.99 2 7.14 43.30 0

Table 1: Simulation results of the approaches to the Best Choice Problem solution

plying SP approach, without dealing with the fact that sen-
sor measurements are correlated. To begin, the attacker has
to decide on two parameters in the context of the secretary
problem, namely on the number of samples or alternatives
n she is going to consider, and the duration of the learning
phase. For simplicity we measure n in hours. In this case,
with a time frame of 48 hours, the number of alternatives
is equal to 48 x fs. We test both lengths of the learning
window n/e and n/log(n). There is no specific requirement
to the size of learning window for the Outlier Test. We keep
it set to n/e to obtain results comparable with the “classic”
secretary approach. Additionally, the Outlier Test requires
a decision on the detection threshold. We set it to o = 2
which accounts for 95.45% of the data set. We evaluate
the approaches based on two metrics: (1) error in selecting
the max value in the attack window, in %; (2) number of
non-selections (NS) — when no sample is higher than the
one observed in the observation window. To evaluate the
influence of the error in selecting the highest value we also
measure the SDT for each attack instance. The results of
the simulations are summarized in Table 1.

Although the classic SP solution with the size of learn-
ing window n/e results in the lowest error when selecting
the best sample, its shortcoming is a high number of non-
selections. This side effect is disadvantageous for the at-
tacker as she either has to choose a clearly suboptimal can-
didate (last sample in the attack window) or decide to not
launch an attack. Cutting the learning window to n/log(n)
or applying the Outlier Test substantially reduces the num-
ber of non-selections albeit at the cost of selecting a lower
attack value and an increased SDT. As the table indicates,
most of the control loops are sensitive to the magnitude of
the selected attack value.

Another feature of the classic SP solution is at odds with

the attacker requirements in that it prescribes a long learn-
ing phase before selecting a candidate. The length of the
observation window together with a time to selection (TTS)
constitute a time to attack (TTA). The longer TTA, the
greater chance for the attacker to be detected (also acci-
dentally). Table 2 presents a comparison between the ap-
proaches based on the aggregated (averaged) results from
Thbl. 1 and results on TTA and TTS. Although OT and SP
with n/log(n) algorithms demonstrate roughly similar re-
sults in the accuracy of selecting the maximum value and
time before making a selection, the latter approach benefits
from a drastically smaller time to attack with a very small
observation window. It is therefore is more advantageous to
the attacker.

Error TTS TTA NS
SP, n/e 13.78 % | 11.52h | 27.17h | 3777 %
SP, n/log(n) | 31.26 % | 7.63 h 9.61 h 3.36%
OT,0=20 |3693% | 5.32h | 20.98 h 3.9 %

Table 2: Aggregated comparison between the approaches

5.1.2  Peak Detection

To take advantage that sensor signals are correlated, the
attacker may add a peak detection step into her attack strat-
egy in order to wait if the signal shows a trend. In the
forward looking search approach we apply a simple moving
average with a smoothing interval m = 250 to filter out high
frequency noise.

The threshold in the CUSUM algorithm depends on the
scale of the change an assaulter would like to detect. Thus,
for the noisy signals the threshold should be selected higher
than for the low noise signals. We determined optimal thresh-
olds being A = 0.005 for signal or Type 1 and 2, and h =
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Figure 5: Distribution of the error in selecting highest pos-
sible sample, without and with peak detection

0.015 for signal of Type 3. There are no distinct peaks in
the signals of Type 4. We compare the peak detection ap-
proaches with the classic SP solution as it delivers the most
optimal results in selecting the max value (without peak de-
tection). We illustrate the comparison of the results in the
form of a histogram which represents the distribution of the
error in selecting an optimal sample (Fig. 5).

As can be seen, peak detection approaches deliver supe-
rior results in comparison to the SP algorithm for the sensor
signal of Type 1 (first row in the figure). This is because
in the SP search finishes too early by ignoring the corre-
lations of the signal, thus yielding high error in selecting
the max value. At the same time the low noise level allows
accurate detection of the signal peak. In contrast, the pro-
posed approaches do not perform well in the case of noisy
signal. Thus, noise corrupts the CUSUM statistics resulting
in high false alarm rate. Although smoothing reduces the
noise in a signal, it introduces a delay of smoothed signal by
(m —1)/2 samples resulting in the peak detection when the
actual signal is already decaying. Vice versa, the SP delivers
a lower error while dealing with noisy signals as it sets up
the aspiration value based on the highest outlier value in the
observation window.

Whereas enhancing SP solution with peak detection may
in certain cases substantially increase the attacker’s chances
in selecting max value, any peak detection algorithm re-
quires to be tuned first to match sensor signal properties.

5.1.3 Attacks in a Steady State

So far we have reported results with disturbance IDV (8)
active. However, one of the primary goals of process con-
trol is to keep the process as close as possible to its opti-
mal steady state (without disturbances). In the TE process
variables in a steady state do not deviate much from the
set points and accurately follow the Gaussian distribution.
Most of the sensor signals are of Type 4 (with few signals
of Type 3). Results from Table 3 shows that relative to
each other, all approaches demonstrate performance simi-
lar to the use case from 5.1.1 with the exception of the NS
statistics for OT. Even with a higher threshold of ¢ = 3.5
the Outlier Test delivers diminishingly small number of non-
selections. Also, in a steady state the observation window

Error TTS TTA NS
SP, n/e 3.20 % | 2.87h | 28.53 h | 37.09 %
SP, n/log(n)) | 9.09 % | 8.39h | 10.37h | 8.64 %
OT,0 =35 7.82 % | 6.39h | 22.02 h 1.5 %

Table 3: Comparison between the approaches, steady state

for the OT can be substantially reduced. For most of the
sensor signals it is sufficient to observe only 5 hours of sam-
ples in order accurately identify p and o. With that the TTA
in the Outlier Test becomes comparable to the one of the
secretary approach with reduced learning window n/log(n).
Due to the minimal variations in the process measure-
ments all approaches demonstrate a lower error in selecting
best possible value. However, for the same reason the se-
lected attack values are also lower. Moreover, in a steady
state the process is more resilient to the attacks on certain
individual control loops. For instance, it becomes impossi-
ble to bring the process into unsafe state with any attack on
XMEAS(1) and the SDT for the attacks on XMEAS{5;12;17}
increases more than twice. Therefore, it might not be re-
warding for the attacker to strike at a steady state.

5.2 Discussion and Future Areas of Research

After obtaining access to the process measurements the
attacker faces a number of uncertainties. She neither knows
the process variable range nor the sensitivity of the pro-
cess to the magnitude of the manipulations. What is more
important, the adversary has no knowledge about the time
constants of individual control loops and specifics of distur-
bances propagation. It means that the attacker is not certain
which attack value to choose and for how long to carry out
her assault. The latter is crucial knowledge, for instance for
planning concealing activities. Hence, to maximize the im-
pact and minimize attack duration the attacker should try
to select the highest or lowest process value possible.

The results of our study shows that the characteristics of
the sensor signals even in the same facility are very dissimi-
lar and the attack strategies deliver radically different results
when applied to the different types of process measurements
at the different plant states and operating modes. Attack-
ing without knowledge about current state of the plant is
highly likely to only result in nuisance rather than an ac-
tual disruption. In contrast, a knowledgeable attacker may
bring the system down in a matter of minutes leaving opera-
tors no chance to respond with countermeasures (e.g. [31]).
Therefore destructive capabilities in the cyber-physical do-
main predominantly exist in relation to a specific target and
knowledge on process dynamics (such as results from Ta-
ble 1) are only valid for a specific process control scheme.
We would have to conduct a separate analysis for the other
control schemes of the TE process, such as [22, 28, 19].

The attacker can do her home work well and design part of
the attack in advance; however she will have to tune the at-
tack locally through reconnaissance activities such as chang-
ing configuration parameters, manipulating process variables
or turning components on and off while observing the sys-
tem’s reaction. From the defense point of view, such short-
term “testing” process deviations can be detected by the
process-aware anomaly detection solutions [23, 4]. Below we
describe further considerations and areas of future research.

5.2.1 Impact of the Sampling Frequency

The sampling rate of the sensor signals changes its noise
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profile. Therefore we also investigated the impact of the
fs- As anticipated, the lower signal sampling rate results
in lower error in selecting the best sample due to reduced
noise level. However, the selected attack value is also lower
if compared to the attack on the signal sampled at a higher
rate due to the reduced number of the high amplitude outlier
samples (Fig. 6). Depending on the control loop sensitivity,
we could observe increase in shutdown time up to 3 hours.

5.2.2  Detection of Plant State Change

Reference value learned in the observation window is only
valid for a particular plant state. In practice, the process
periodically undergoes through the periods of changes in its
operating conditions such as updates of set points, operating
modes, production loads, disturbances, etc. The attacker
needs to be able to detect such changes quickly in order
to adapt her attack strategy to new circumstances. Fig. 7
demonstrates detection of the A/C feed ratio change using
CUSUM algorithm. With a threshold A = 0.001 such change
can be detected in 8.5 min and with A = 0.005 in 12.5 min.
Once the change is detected, the attacker can either reset
her learning phase straight away or wait for some time and
see whether process state will keep changing.
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Figure 7: Detection of the plz;ur’it state change, h = 0.005

5.2.3 Chaining Attacks

As was mentioned in 5.1.3, even after executing a success-
ful DoS attack in a steady state it would take a long time
to bring the process into unsafe state. In order to achieve
shorter SDT, the attacker would need to disturb the process
first to cause greater deviation of the process measurements
(so that she could select a higher or lower attack value).
Causing a plant-wide disturbance might be hard, however
the attacker can “chain” two DoS attacks to accomplish her
goal. For instance, F;Z;," attack on a separator underflow
causes an oscillation effect on the separator level (Fig. 8a).
After 30 min the separator level Lsep reaches 30%. The at-
tacker can use CUSUM algorithm to detect the change and
launch a DoS attack on Lsep, when its value reaches its lowest

point. In this way the shutdown can be reached in 3.43 hours
in comparison to 12.03 hours if the assaulter would execute
a direct attack on separator level sensor in a steady state.
Similarly, LZZ,” attack causes an immediate step change of
the separator underflow (Fig. 8a) which can be quickly and
accurately detected and used for the successive DoS attack.
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Figure 8: Examples of chaining attacks

6. RELATED WORK

Securing process control infrastructure and control com-
munication is the first step to safe and secure operations.
A large body of literature on Industrial Control Systems
(ICS) security looks at intercepting and manipulating the
traffic [29], infection by malware [3], access by unauthorized
users [18] and addresses the threats by designing ICS-specific
defenses such as intrusion detection systems [32, 13], authen-
tication and encryption schemes [8], access control [26], code
verification [25] and others.

Physical processes and their particular states are inher-
ently time dependent. The important role of the timing
parameters in cyber-physical security was already demon-
strated in few academic works. Thus it was shown that
process-aware segmentation of the control network increases
survivability of the process and extends its time to shut-
down [10]. In another work authors studied the effective-
ness of remotely executed cyber attacks on a valve in a Boil-
ing Water Power Plant [11]. PLC task scheduling turned
to have one of the major impacts on the attack outcome.
In [1] authors discuss synchronization as a timing parame-
ter crucial for the stability of the power grid and provide an
understanding of the impact of timing uncertainty on the
system model accuracy needed to achieve timely situational
intelligence. A heuristic triangle approximation algorithm
from [16] can be used for peak detection in sensor signals.

7. CONCLUSION

In this paper we introduced the problem of timing DoS at-
tacks based on real-time measurement of process values. We
used the TE process to illustrate our approach, but our basic
methodology is applicable to any cyber-physical system.

The results of our study shows that the characteristics of
the sensor signals even in the same facility are very dissimilar
and the attack strategies deliver radically different results
when applied to the different types of process measurements.
We also showed that applying peak detection algorithms for
dealing with correlated time series can potentially improve
the performance of the attacker. However noisy signals can
render peak detection ineffective.

In general, it is not possible to give definite conclusions
regarding which of the proposed approaches is more effec-



tive. All approaches have their own advantages and disad-
vantages, and their performance largely depends on the type
of the signal under analysis and the state of the plant. For
instance, NCUSUM can detect changes to the plant state
(e.g., in case of the reference variable change) as it is quick
and can be easily tuned; however, it was not a significant
addition to the problem of detecting peaks in noisy signals.

Overall, the classic secretary approach delivers the best
results at the cost of having a long learning phase and a
relatively high number of non-selections; however, it con-
sistently delivers good results regardless of the plant state
and signal shape. This is particularly useful in the context
of black-box exploitation, when the attacker has no a prior
knowledge about sensor signals properties. Adversaries that
do not want to take the risk of ending the observation period
without making a decision may select the SP solution with
the reduced learning window n/log(n) or the Outlier Test
in order to shorten the time to attack.

In future work we plan studying how attacking multiple
sensor signals can affect the system, and to include DoS
attacks on control signals.
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