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Exploring the effect of dataset on chatbot performance
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Abstract

This paper explored the effect of dataset
on chat bot performance. The chat bot are
trained on Cornell Movie Corpus, Daily
Dialog Corpus, and the mix of Cornell
Movie Corpus and Daily Dialog Corpus.
In order to improve the performance of the
chat bot, we trained a Dialog Act Classifier
to label Cornell Movie Corpus. Then add
Dialog Act as a feature to train the Chat
bot. We evaluated the chat bot in (1) gram-
maticality and (2) naturalness (3) interest-
ingness for a sample of 100 for the three
different models.

1 Introduction

The use of conversational agents or a ChatBot,
which are computer programs using natural lan-
guage interact with human users, have become
a trend in industry given advantages they bring
about to our daily life. The main job they provide
is automatic customer services, which reduces a
large amount of human labors. Despite of huge
attentions paid on the development of a ChatBot,
there still some limitations that need to be im-
proved. That is, most of the ChatBot models are
designed to respond to questions and generate an
appropriate answers in a restricted domain. Thus,
the respond generated from the ChatBot is unnat-
ural or not human-like. This is because training
datasets for the Chatbot model is insufficient. As
an attempt to improve this limitation, we try ex-
panding an existing dataset for the Chatbot model.
We implement a pytorch (?) ChatBot tutorial to
Cornell Movie Corpus (?) and Daily Dialogue
dataset(?) individually. Also, we combine the two
datasets and apply it to the ChatBot model.

2 Related work

Rule-based or template-based methods (Williams
and Zweig, 2016), (Wen et al., 2016) and dialogue
state tracking are typically adopted close-domain
systems (Henderson, 2015)(Wang and Lemon,
2013)(Wen et al., 2016). In contrast, data-driven
techniques such as Seq2Seq generation are used
for open-domain chatbots. In general, QA knowl-
edge base or conversational corpus is used to train
the Seq2Seq based generation chatbots to generate
a response for each input(Wu et al., 2016). Several
previous works reveal that RNN based Seq2Seq
models are suitable for this work (Cho et al., 2014)
(Sutskever et al., 2014) (Ritter et al., 2011)(Shang
et al., 2015) (Sordoni et al., 2015) (Serban et al.,
2016). (Sutskever et al., 2014) proposed a ba-
sic seq2seq model and other works such as (Bah-
danau et al., 2014)(Sordoni et al., 2015) (Song
et al., 2016) (Quarteroni and Manandhar, 2007)
(Qiu et al., 2017) (Ghose and Barua, 2013) en-
hanced model with attention, context information
and diversified answers. Although lots of work
have done, the output of seq2seq generation mod-
els tend to be unrelated to input and senseless.

inputencwu2016sequential

3 Dataset

3.1 Cornell Movie Corpus

We use Cornell Movie Corpus, which contains
a large collection of fictional conversations ex-
tracted from raw movie scripts. To be more spe-
cific, it is composed of 220, 579 dialogues be-
tween 10,292 pairs of characters in 617 movies,
which involve the 9,035 characters. In total, there
are 304, 713 utterances in the corpus. Features in-
cluded in movie metadata are genres, release year,
IMDB (Internet Movie Database) rating, and num-
ber of IMDB votes. Features of characters meta-
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Dataset number of conversation dialogue act
Cornell Movie corpus 220,579 null

Daily Dialog 13,118 manually labeled
Cornell + Daily 233,697 classifier labeled

Table 1: Information of the dataset

data include gender (for 3,774 characters) and po-
sition on movie credits (for 3,321 characters).

3.2 Daily Dialog

We also use Daily Dialogue dataset, which con-
tains 13,118 multi-turn dialogues. This dataset is
constructed by crawling the raw data from vari-
ous websites where English learners practice En-
glish dialogue in daily life. Therefore, this dataset
is written by human, which makes it more formal
compared to other datasets, such as Twitter Dialog
Corpus and Chinese Weibo dataset. Also, Daily
Dialogue dataset includes conversations regarding
with a certain topic, such as shopping and trips.
For example, it includes a conversation between
a customer looking for a particular product and a
staff at a shop helping the customer. Also, it con-
tains a conversation between two students talking
about vacation trips. Moreover, dialogues in this
dataset ends after more speaker turns compared to
other datasets. That is, the dialogues in Daily Di-
alogue include in average about 8 turns, but about
three topics in other datasets. When it comes to
the average, average speaker turns per dialogue
is 7.9, average tokens per dialogue is 114.7, and
average tokens per utterance is 14.6. Also, the
Daily Dialogue dataset is manually labeled to re-
flect intention of communication and human emo-
tions. For intention of communication, which our
project is focused on, each utterance in the dataset
is labeled with one of four dialogue act classes,
that is, Inform, when a speaker is providing infor-
mation, Questions when a speaker is seeking for
information, Directives when a speaker requests,
instructs, suggest and accepts or rejects offer, and
Commissives when a speaker accepts or rejects a
request/suggestion/offer.

3.3 Mixed dataset

We first implement a chatbot model to Cornell
Movie Corpus and Daily Dialogue dataset individ-
ually. In other words, we have a Cornell Movie
Corpus, which is a dialogue dataset without a Dia-
logue Act (DA) label, and Daily Dialogue dataset,
which already is already labeled with DA. Af-

(a) Sequence to Sequence model

(b) Sequence to Sequence model and dialog act

Figure 1: Chat bot model

ter deleting DA from Daily Dialogue dataset, we
combine Cornell Movie Corpus and Daily Dia-
logue as one dataset.

4 Sequence to Sequence Dialogue Agent

4.1 Data preparation

Handle loading and preprocessing of Cornell
Movie-Dialogs Corpus dataset and daily dialogue
dataset.

4.2 Implement a sequence-to-sequence model
with Luong attention mechanism(s)

Luong attention used top hidden layer states in
both of encoder and decoder. In Luong atten-
tion they get the decoder hidden state at time t.
Then calculate attention scores and from that get
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Figure 2: Learning rate 0.01 and 0.001 on chat bot
1

the context vector which will be concatenated with
hidden state of the decoder and then predict.

4.3 Jointly train encoder and decoder models
using mini-batches

We built an encoder and decoder recurrent neu-
ral network (RNN) with long short-term memory
units (LSTM) so that the model can capture word
dependencies [15]. The embedding dimension is
300, and the dimensionality of the internal state is
set to 512.

4.4 Implement greedy-search decoding
module and beam-search decoding

A simple approximation is to use a greedy search
that selects the most likely word at each step in
the output sequence. This approach has the benefit
that it is very fast, but the quality of the final output
sequences may be far from optimal.

The beam search that expands upon the greedy
search and returns a list of most likely output
sequences.Instead of greedily choosing the most
likely next step as the sequence is constructed, the
beam search expands all possible next steps and
keeps the k most likely, where k is a user-specified
parameter and controls the number of beams or
parallel searches through the sequence of proba-
bilities.

5 Experiment

5.1 Chat bot 1

Chat bot 1 is trained on Cornell Movie dataset. In
order to decrease the error, we tried two learning
rate, 0.01 and 0.001. The result is shown in Fig
5. Apparently, at learning rate 0.001, the training
error and validation error can decrease to as low as
1.2.

5.2 Chat bot 2

Chat bot 2 is trained on Daily dialogue dataset. As
shown in Fig 3, we conducted our experiment on

(a) learning rate = 0.01

(b) learning rate = 0.001

Figure 3: Learning rate of Chat bot 2

Figure 4: 5,10,15 Hidden layer on chat bot 2

chat bot 2 with learning rate 0.01 and 0.001. For
learning rate 0.01, the training reached 50 epoch,
the training error and validation error won’t de-
crease with the increase of epoch. For learning
rate 0.001, the error can decrease to 1.2 with only 5
epoch,however, the error stable at 2.6 even trained
to 50 epoch at learning rate 0.01. We also in-
creased the number of hidden layer to understand-
ing the model, as shown in Fig 4.

5.3 Chat bot 3

Chat bot 3 is trained on the mix of Cornell Movie
dataset and Daily Dialogue dataset. We used 0.01
and 0.001 as our learning rate. The learning rate
of 0.001 has better performance. In the future, we
should explore more learning rate to decrease the
error.

Figure 5: Learning rate 0.01 and 0.001 on chat bot
3
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Grammaticality Naturalness Interestingness
Chat bot 1, 5 epoch 3.3 2 1.7
Chat bot 2, 5 epoch 4 2.7 2.7
Chat bot 2, 14 epoch 1 1 1.7
Chat bot 2, 25 epoch 1 1 2.3

Chat bot 3, mixed dataset 3.7 4 2

Table 2: Average score for each criteria

Hi
I am not going to get you to theout.
Where are you from?
I am not going to beout.
What do you do for a living?
I am not going to beout.
Can you let me know what time it is?
I am not going to get out of here.
Do you have time to go shopping tomorrow?
I am not going to get aout.
When is your birthday?
I am not going to get you.
Which one do you prefer, a dog or a cat?
I am not going to get you to theout.
When is the next Olympic?
I am not going to get you.
Can you recommend any country to go on
a trip?
I am not going to beout.
How is the weather today?
I am not going to get it out of my life.
I miss my family.
I am not going to beout.

Table 3: the input and output of chat bot trained
with Cornell Movie Corpus

6 Evaluation

We only conduct human evaluation to the outputs
as it has been debated that it is the only measure
that open-ended generation tasks can rely on (Li
et al., 2016), (Wiseman et al., 2017). Indeed, it
has been questioned whether automatic metrics,
such as BLEU, are appropriate to capture response
quality of open-ended generation tasks (Dai and
Le, 2015) (Galley et al., 2015). Considering that
open-ended generation does not aim to derive any
correct answer, we characterize (1) grammatical-
ity and (2) naturalness (3) interestingness for some
samples of the four different models by conduct-
ing human evaluation. We asked three people to

Hi
I am glad , I am not sure of you ..
Where are you from?
I am glad ofout ..
What do you do for a living?
I am glad , but I will be able to be aout .
Can you let me know what time it is?
I am sorry , but I am not sure ..
Do you have time to go shopping tomorrow?
I am glad I will ..
When is your birthday?
I am sorry , but I am not sure of theout ..
Which one do you prefer, a dog or a cat?
I am sorry , but I am not sure of you ..
When is the next Olympic?
I am glad , but I am not sure of you ..
Can you recommend any country to go on
a trip?
I am glad of you ..
How is the weather today?
I am sorry , but I am not sure of you ..
I miss my family.
I am sorry ..

Table 4: the input and output of chat bot trained
with Daily dialogue, 5 epoch. Underfitting result:
training error larger than validation error

evaluate each criteria for each model, and average
score of each criteria was calculated. Each criteria
was evaluated compared to each model.

6.1 Grammaticality

For grammaticality, with a scale of 0-5, we evalu-
ate grammatical errors such as whether a model
obeys subject verb agreement, whether a model
generates a random string of words or a full sen-
tence, and which kind of tense it can generate.
The chat bot 2, where 5 epoch was used, per-
forms the best in terms of grammaticality. Com-
pared to other models, it generates a grammatical
full sentence, which obeys subject verb agreement
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Hi
conversation sets awful pardon romance
brilliant parcel discuss lisa efficient typicalout
swimming
How are you?
conversation sets wilson eaten own
conversation level typicalout swimming
What do you do for a living?
conversation sets awful romance level
pleaseout dance discuss swimming
Can you let me know what time it is?
conversation sets wilson eaten own
however level lisa cameras lisa coach
western swimming
Do you have time to go shopping tomorrow?
conversation sets wilson eaten own
owever level lisa cameras lisa coachout
swimming
When is your birthday?
conversation sets awful romance maintain
register swimming
Which one do you prefer, a dog or a cat?
conversation sets awful romance maintain
register swimming
When is the next Olympic?
conversation sets awful romance maintain
register swimming
Can you recommend any country to go on
a trip?
conversation sets awful romance maintain
register swimming
How is the weather today?
conversation sets awful romance maintain
register swimming
I miss my family.
conversation sets awful romance maintain
register swimming

Table 5: the input and output of chat bot trained
with Daily dialogue, 14 epoch.Just right result:
training error approximately equals to validation
error

and can generate future tense. Even if it gener-
ates meaningless words, it happens less than other
models. Also, it puts a comma and a punctuation
mark at the right place. On the other hand, the
chat bot 3 performs similar to the chat bot 2 with
5 epoch, but it misses a punctuation mark between
two sentences. Some models, such as chat bot 2

Hi
cancer demand charges songs exciting hong
speed.
Where are you from?
cancer demand charges songs magazine
palace speed cancer ! cheap santa tend safe
haven surpriseout speed.
What do you do for a living?
cancer demand charges songs magazine
palace speed cancer ! cheap santa tend safe
hospital nice speed.
Can you let me know what time it is?
cancer demand allowed phone independent
cancer demand cheap police speed.
Do you have time to go shopping tomorrow?
cancer demand allowed phone independent
cancer digital certainly safe towards ::
definitelyout speed.
When is your birthday?
cancer demand allowed phone independent
cancer digital certainly safe towards
mexico surprise library speed.
Which one do you prefer, a dog or a cat?
cancer demand allowed phone independent
cancer demand cheap police whom cancer
judge speed.
When is the next Olympic?
cancer demand allowed phone independent
cancer digital certainly safe towards mexico
definitelyout speed.
Can you recommend any country to go on
a trip?
cancer demand allowed phone independent
cancer digital certainly safe towards mexico
surpriseout speed.
How is the weather today?
cancer demand allowed phone independent
cancer digital certainly safe towards mexico songs
speed.
I miss my family.
cancer demand charges songs certainly surprise
wear next speed.

Table 6: the input and output of chat bot trained
with Daily dialogue, 25 epoch. Overfitting result:
training error less than validation error

with 25 epoch and with 14 epoch performs not
very well as they only generate a random string
of words.
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Hi
I am not sure I am not going to be aout.
How are you?
I am not sure I am not sure.
What do you do for a living?
I am not sure I am not going to be aout.
Can you let me know what time it is?
I am not sure.
Do you have time to go shopping tomorrow?
I am not sure I am a littleout.
When is your birthday?
I am not sure I am not going to be able to be aout.
Which one do you prefer, a dog or a cat?
I am not sure I am not going to be able to be aout.
When is the next Olympic?
I am not sure.
Can you recommend any country to go on
a trip?
I am not sure.
How is the weather today?
I am not sure I am not going to be aout.
I miss my family.
I am not sure.

Table 7: the input and output of chat bot trained
with mixed dataset, both Cornell Movie Corpus
and Daily dialogue.

6.2 Naturalness

For naturalness, with a scale of 0-5, we evaluate
whether a response from a model is similar to nat-
ural dialogue. All of the models perform not very
well on naturalness as they only repeat either the
same string of words or the same sentence. How-
ever, the chat bot 3 trained with a mixed dataset
was considered as performed the best. This is be-
cause for some questions asked to the chat bot, it
makes sense to answer with the repetitive sentence
that it generates,such as I am not sure.

6.3 Interestingness

For interestingness, with a scale of 0-5, we eval-
uate whether a response from a chat bot evokes
a person to continue talking to it. All of the re-
sponses generated from each model was not very
interesting to continue talking as they all repeat the
same sentence or words.

7 Conclusion and future work

We trained chat bots to produce open-ended gen-
eration by changing some hyper-parameters, such
as epoch, num layers, and learning rate, and re-
ported the results. The biggest problem of the
chat bots was that they repeat the same string of
words or a sentence. Thus, in order to understand
the model better, we need to conduct more experi-
ments on other parameters, such as batch size, rnn
size, learning rate decay, min learning rate, and
keep probability.
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