Exploring the effect of dataset on chatbot performance

Abstract

This paper explored the effect of dataset on chat bot performance. The chat bot are trained on Cornell Movie Corpus, Daily Dialog Corpus, and the mix of Cornell Movie Corpus and Daily Dialog Corpus. In order to improve the performance of the chat bot, we trained a Dialog Act Classifier to label Cornell Movie Corpus. Then add Dialog Act as a feature to train the Chat bot. We evaluated the chat bot in (1) grammaticality and (2) naturalness (3) interestingness for a sample of 100 for the three different models.

1 Introduction

The use of conversational agents or a ChatBot, which are computer programs using natural language interact with human users, have become a trend in industry given advantages they bring about to our daily life. The main job they provide is automatic customer services, which reduces a large amount of human labors. Despite of huge attentions paid on the development of a ChatBot, there still some limitations that need to be improved. That is, most of the ChatBot models are designed to respond to questions and generate an appropriate answers in a restricted domain. Thus, the respond generated from the ChatBot is unnatural or not human-like. This is because training datasets for the Chatbot model is insufficient. As an attempt to improve this limitation, we try expanding an existing dataset for the Chatbot model. We implement a pytorch (?) ChatBot tutorial to Cornell Movie Corpus (?) and Daily Dialogue dataset(?) individually. Also, we combine the two datasets and apply it to the ChatBot model.

2 Related work

Rule-based or template-based methods (Williams and Zweig, 2016), (Wen et al., 2016) and dialogue state tracking are typically adopted close-domain systems (Henderson, 2015)(Wang and Lemon, 2013)(Wen et al., 2016). In contrast, data-driven techniques such as Seq2Seq generation are used for open-domain chatbots. In general, QA knowledge base or conversational corpus is used to train the Seq2Seq based generation chatbots to generate a response for each input(Wu et al., 2016). Several previous works reveal that RNN based Seq2Seq models are suitable for this work (Cho et al., 2014) (Sutskever et al., 2014) (Ritter et al., 2011)(Shang et al., 2015) (Sordoni et al., 2015) (Serban et al., 2016). (Sutskever et al., 2014) proposed a basic seq2seq model and other works such as (Bahdanau et al., 2014)(Sordoni et al., 2015) (Song et al., 2016) (Quarteroni and Manandhar, 2007) (Qiu et al., 2017) (Ghose and Barua, 2013) enhanced model with attention, context information and diversified answers. Although lots of work have done, the output of seq2seq generation models tend to be unrelated to input and senseless.

067

inputencwu2016sequential

3 Dataset

3.1 Cornell Movie Corpus

We use Cornell Movie Corpus, which contains a large collection of fictional conversations extracted from raw movie scripts. To be more specific, it is composed of 220, 579 dialogues between 10,292 pairs of characters in 617 movies, which involve the 9,035 characters. In total, there are 304, 713 utterances in the corpus. Features included in movie metadata are genres, release year, IMDB (Internet Movie Database) rating, and number of IMDB votes. Features of characters meta-

	Dataset	number c	of conversation	dialogue ac	et
	Cornell Movie corpus	220,579		null	
	Daily Dialog	13,118		manually la	abeled
	Cornell + Daily	233,697		classifier la	beled
	Table	1. Information	tion of the datase	•t	
	Tuble	r. miorina	tion of the datase		
data includ	la gandar (for 2 774 abaratara) and no			
sition on n	active credits (for 3 321 characters) and po-			
SILIOII OII II	novie credits (101 5,521 charact	.018).			DECODER
3.2 Daily	y Dialog				I AM GOOD
We also u	se Daily Dialogue dataset wh	nich con-	E	ENCODER	Word Embedding + id2word
tains 13 11	18 multi-turn dialogues This	dataset is	_		
constructe	d by crawling the raw data fr	om vari-			
ous websit	tes where English learners pra	ctice En-	Word	12id +Word embedding	<go></go>
glish dialo	gue in daily life. Therefore, the	is dataset	TIME STEP	ARE YOU	
is written	by human, which makes it more	re formal	1	2 3	4 5 6 7
compared	to other datasets, such as Twitte	er Dialog			
Corpus an	d Chinese Weibo dataset. Als	so. Daily			
Dialogue d	lataset includes conversations r	egarding	(a)	Sequence to S	equence model
with a cer	tain topic, such as shopping a	and trips.			
For examp	ole, it includes a conversation	between			DECODER
a customer	r looking for a particular produ	uct and a			I AM GOOD
staff at a s	hop helping the customer. Also	o, it con-	13	NCODER	Embedding + id2word
tains a con	nversation between two student	ts talking			
about vaca	ation trips. Moreover, dialogue	es in this	Word?	id ±Word embedding	
dataset end	ds after more speaker turns con	npared to	DA HOW	ARE YOU ?	<g0></g0>
other datas	sets. That is, the dialogues in I	Daily Di-	TIME STEP		├─── ───
alogue inc	lude in average about 8 turns, 1	but about	1	2 3 4	5 6 7
three topic	es in other datasets. When it	comes to			
the averag	ge, average speaker turns per	dialogue	(h) Saguan	ce to Sequera	model and dialog act
is 7.9, ave	rage tokens per dialogue is 11	14.7, and	(b) Sequen	ce to sequence	model and dialog act
average to	kens per utterance is 14.6.	Also, the	Fi	gure 1: Cha	t bot model
Daily Dial	logue dataset is manually label	led to re-		0	·· -
flect intent	ion of communication and hun	nan emo-			
tions. For	intention of communication, w	which our	ter deleting D	A from Dai	ly Dialogue dataset, we
project is f	focused on, each utterance in th	e dataset	combine Corn	ell Movie	Corpus and Daily Dia-
is labeled	with one of four dialogue act	t classes,	logue as one d	ataset.	
that is, Inf	orm, when a speaker is providi	ng infor-		to Comme	nao Diologues A gazza
mation, Q	uestions when a speaker is see	eking for	4 Sequence	e to seque	ice Dialogue Agent
informatio	n, Directives when a speaker	requests,	4.1 Data pre	eparation	
instructs, s	suggest and accepts or rejects of	offer, and	Hondle 1. "	• • • • • • • •	manager of Com 11
Commissiv	ves when a speaker accepts or	rejects a	Mayia Diala	ig and pre	taget and deity diele
request/sug	ggestion/offer.		wovie-Dialogs	s Corpus da	laset and daily dialogue
			dataset.		

3.3 Mixed dataset

143

144

145

146

147

148

149

We first implement a chatbot model to Cornell Movie Corpus and Daily Dialogue dataset individually. In other words, we have a Cornell Movie Corpus, which is a dialogue dataset without a Dialogue Act (DA) label, and Daily Dialogue dataset, which already is already labeled with DA. Af-

4.2 Implement a sequence-to-sequence model with Luong attention mechanism(s)

193

194

195

197

198

199

Luong attention used top hidden layer states in both of encoder and decoder. In Luong attention they get the decoder hidden state at time t. Then calculate attention scores and from that get

Figure 2: Learning rate 0.01 and 0.001 on chat bot 1

the context vector which will be concatenated with hidden state of the decoder and then predict.

4.3 Jointly train encoder and decoder models using mini-batches

We built an encoder and decoder recurrent neural network (RNN) with long short-term memory units (LSTM) so that the model can capture word dependencies [15]. The embedding dimension is 300, and the dimensionality of the internal state is set to 512.

4.4 Implement greedy-search decoding module and beam-search decoding

A simple approximation is to use a greedy search that selects the most likely word at each step in the output sequence. This approach has the benefit that it is very fast, but the quality of the final output sequences may be far from optimal.

The beam search that expands upon the greedy search and returns a list of most likely output sequences.Instead of greedily choosing the most likely next step as the sequence is constructed, the beam search expands all possible next steps and keeps the k most likely, where k is a user-specified parameter and controls the number of beams or parallel searches through the sequence of probabilities.

5 Experiment

5.1 Chat bot 1

Chat bot 1 is trained on Cornell Movie dataset. In order to decrease the error, we tried two learning rate, 0.01 and 0.001. The result is shown in Fig 5. Apparently, at learning rate 0.001, the training error and validation error can decrease to as low as 1.2.

5.2 Chat bot 2

Chat bot 2 is trained on Daily dialogue dataset. As shown in Fig 3, we conducted our experiment on

261

272

Figure 4: 5,10,15 Hidden layer on chat bot 2

chat bot 2 with learning rate 0.01 and 0.001. For learning rate 0.01, the training reached 50 epoch, the training error and validation error won't decrease with the increase of epoch. For learning rate 0.001, the error can decrease to 1.2 with only 5 epoch,however, the error stable at 2.6 even trained to 50 epoch at learning rate 0.01. We also increased the number of hidden layer to understanding the model, as shown in Fig 4.

5.3 Chat bot 3

Chat bot 3 is trained on the mix of Cornell Movie dataset and Daily Dialogue dataset. We used 0.01 and 0.001 as our learning rate. The learning rate of 0.001 has better performance. In the future, we should explore more learning rate to decrease the error.

Figure 5: Learning rate 0.01 and 0.001 on chat bot 3

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

0		Grammaticality	Naturalness	Interestingness	350
)1	Chat bot 1, 5 epoch	3.3	2	1.7	35
2	Chat bot 2, 5 epoch	4	2.7	2.7	35;
3	Chat bot 2, 14 epoch	1	1	1.7	35
4	Chat bot 2, 25 epoch	1	1	2.3	35,
5	Chat bot 3, mixed dataset	3.7	4	2	35

Table 2: Average score for each criteria

Hi	Hi		
I am not going to get you to theout.	I am glad, I am not sure of you		
Where are you from?	Where are you from?		
I am not going to beout.	I am glad ofout		
What do you do for a living?	What do you do for a living?		
I am not going to beout.	I am glad, but I will be able to be aout.		
Can you let me know what time it is?	Can you let me know what time it is?		
I am not going to get out of here.	I am sorry, but I am not sure		
Do you have time to go shopping tomorrow?	Do you have time to go shopping tomorrow?		
I am not going to get aout.	I am glad I will		
When is your birthday?	When is your birthday?		
I am not going to get you.	I am sorry, but I am not sure of theout		
Which one do you prefer, a dog or a cat?	Which one do you prefer, a dog or a cat?		
I am not going to get you to theout.	I am sorry, but I am not sure of you		
When is the next Olympic?	When is the next Olympic?		
I am not going to get you.	I am glad, but I am not sure of you		
Can you recommend any country to go on	Can you recommend any country to go on		
a trip?	a trip?		
I am not going to beout.	I am glad of you		
How is the weather today?	How is the weather today?		
I am not going to get it out of my life.	I am sorry, but I am not sure of you		
I miss my family.	I miss my family.		
I am not going to beout.	I am sorry		

Table 3: the input and output of chat bot trainedwith Cornell Movie Corpus

6 Evaluation

318

341

342

344

We only conduct human evaluation to the outputs as it has been debated that it is the only measure that open-ended generation tasks can rely on (Li et al., 2016), (Wiseman et al., 2017). Indeed, it has been questioned whether automatic metrics, such as BLEU, are appropriate to capture response quality of open-ended generation tasks (Dai and Le, 2015) (Galley et al., 2015). Considering that open-ended generation does not aim to derive any correct answer, we characterize (1) grammaticality and (2) naturalness (3) interestingness for some samples of the four different models by conducting human evaluation. We asked three people to Table 4: the input and output of chat bot trained with Daily dialogue, 5 epoch. Underfitting result: training error larger than validation error 357

397

evaluate each criteria for each model, and average score of each criteria was calculated. Each criteria was evaluated compared to each model.

6.1 Grammaticality

For grammaticality, with a scale of 0-5, we evaluate grammatical errors such as whether a model obeys subject verb agreement, whether a model generates a random string of words or a full sentence, and which kind of tense it can generate. The chat bot 2, where 5 epoch was used, performs the best in terms of grammaticality. Compared to other models, it generates a grammatical full sentence, which obeys subject verb agreement

Hi	Hi
conversation sets awful pardon romance	cancer demand charges s
brilliant parcel discuss lisa efficient typicalout	speed.
swimming	Where are you from?
How are you?	cancer demand charges s
conversation sets wilson eaten own	palace speed cancer ! che
conversation level typicalout swimming	haven surpriseout speed.
What do you do for a living?	What do you do for a li
conversation sets awful romance level	cancer demand charges s
pleaseout dance discuss swimming	palace speed cancer ! che
Can you let me know what time it is?	hospital nice speed.
conversation sets wilson eaten own	Can vou let me know w
however level lisa cameras lisa coach	cancer demand allowed r
western swimming	cancer demand cheap po
Do you have time to go shopping tomorrow?	Do you have time to go
conversation sets wilson eaten own	cancer demand allowed r
owever level lisa cameras lisa coachout	cancer digital certainly s
swimming	definitely out speed
When is your birthday?	When is your birthday
conversation sets awful romance maintain	cancer demand allowed r
register swimming	cancer digital certainly s
Which one do you prefer, a dog or a cat?	mexico surprise library s
conversation sets awful romance maintain	Which one do you prefe
register swimming	cancer demand allowed r
When is the next Olympic?	cancer demand chean no
conversation sets awful romance maintain	iudge speed
register swimming	When is the next Olym
Can you recommend any country to go on	cancer demand allowed r
a trip?	cancer digital certainly s
conversation sets awful romance maintain	definitelyout speed
register swimming	Can you recommend ar
How is the weather today?	a trin?
conversation sets awful romance maintain	cancer demand allowed r
register swimming	cancer digital certainly of
I miss my family.	surpriseout speed
conversation sets awful romance maintain	How is the weather tod
register swimming	now is the weather tool
register swimming	cancer demand anowed I
	cancer digital certainly s
Table 5: the input and output of shot bet trained	speed.
rable 5: the input and output of chat bot trained	1 miss my family.

Table 5: the input and output of chat bot trained with Daily dialogue, 14 epoch.Just right result: training error approximately equals to validation error

439

440

441

442

443

444

445

446

447

448

449

and can generate future tense. Even if it generates meaningless words, it happens less than other models. Also, it puts a comma and a punctuation mark at the right place. On the other hand, the chat bot 3 performs similar to the chat bot 2 with 5 epoch, but it misses a punctuation mark between two sentences. Some models, such as chat bot 2

Hi	450
cancer demand charges songs exciting	hong 451
speed.	452
Where are you from?	453
cancer demand charges songs magazin	e 454
palace speed cancer ! cheap santa tend	safe 455
haven surpriseout speed.	456
What do you do for a living?	457
cancer demand charges songs magazin	e 458
palace speed cancer ! cheap santa tend	safe 459
hospital nice speed.	460
Can you let me know what time it is?	461
cancer demand allowed phone indepen	dent 462
cancer demand cheap police speed.	462
Do you have time to go shopping tom	orrow?
cancer demand allowed phone indepen	dent 404
cancer digital certainly safe towards ::	400
definitelyout speed.	466
When is your birthday?	467
cancer demand allowed phone indepen	dent 468
cancer digital certainly safe towards	469
mexico surprise library speed.	470
Which one do you prefer, a dog or a	cat? 471
cancer demand allowed phone indepen	dent 472
cancer demand cheap police whom can	icer 473
judge speed.	474
When is the next Olympic?	475
cancer demand allowed phone indepen	dent 476
cancer digital certainly safe towards me	exico 477
definitelyout speed.	478
Can you recommend any country to	go on 479
a trip?	480
cancer demand allowed phone indepen	dent 481
cancer digital certainly safe towards me	exico 482
surpriseout speed.	483
How is the weather today?	484
cancer demand allowed phone indepen	dent 485
cancer digital certainly safe towards me	exico songs 486
speed.	487
I miss my family.	488
cancer demand charges songs certainly	surprise
wear next speed.	405
	- 490
Table 6: the input and output of chat b	ot trained
with Daily dialogue, 25 epoch. Overfitt	ing result: 492

with 25 epoch and with 14 epoch performs not very well as they only generate a random string of words.

training error less than validation error

493

494

495

496

497

498

499

5	0	0	
5	0	1	
5	0	2	
5	0	3	
5	о П	2	
ט די	0 0	-4 F	
0	U c	с С	
5	0	6	
5	0	7	
5	0	8	
5	0	9	
5	1	0	
5	1	1	
5	1	2	
5	1	3	
5	1	4	
5	1	5	
5	1	6	
5	1	7	
5	1	8	
5	1	0	
5	2	9 0	
J	2	J -1	
о г	2		
5	2	2	
5	2	3	
5	2	4	
5	2	5	
5	2	6	
5	2	7	
5	2	8	
5	2	9	
5	3	0	
5	3	1	
5	3	2	
5	3	3	
5	2	л	
ט די	3	-+ F	
0	3	с с	
5	3	0	
5	3	7	
5	3	8	
5	3	9	
5	4	0	
5	4	1	
5	4	2	
5	4	3	
5	4	4	
5	4	5	
5	Δ	6	
5	- 2	7	
5	-1	2	
J	÷	0	

H	i
Ia	am not sure I am not going to be aout.
H	ow are you?
Ia	am not sure I am not sure.
W	/hat do you do for a living?
Ιa	am not sure I am not going to be aout.
С	an you let me know what time it is?
Ia	am not sure.
D	o you have time to go shopping tomorrow?
Ia	am not sure I am a littleout.
W	/hen is your birthday?
Ia	am not sure I am not going to be able to be aout.
W	hich one do you prefer, a dog or a cat?
Ia	am not sure I am not going to be able to be aout.
W	hen is the next Olympic?
Ia	am not sure.
С	an you recommend any country to go on
a	trip?
Ia	am not sure.
H	ow is the weather today?
Ia	am not sure I am not going to be aout.
I	miss my family.
Ia	am not sure.

Table 7: the input and output of chat bot trained with mixed dataset, both Cornell Movie Corpus and Daily dialogue.

6.2 Naturalness

For naturalness, with a scale of 0-5, we evaluate whether a response from a model is similar to natural dialogue. All of the models perform not very well on naturalness as they only repeat either the same string of words or the same sentence. However, the chat bot 3 trained with a mixed dataset was considered as performed the best. This is because for some questions asked to the chat bot, it makes sense to answer with the repetitive sentence that it generates, such as I am not sure.

6.3 Interestingness

For interestingness, with a scale of 0-5, we evaluate whether a response from a chat bot evokes a person to continue talking to it. All of the responses generated from each model was not very interesting to continue talking as they all repeat the same sentence or words.

7 Conclusion and future work

We trained chat bots to produce open-ended generation by changing some hyper-parameters, such as epoch, num layers, and learning rate, and reported the results. The biggest problem of the chat bots was that they repeat the same string of words or a sentence. Thus, in order to understand the model better, we need to conduct more experiments on other parameters, such as batch size, rnn size, learning rate decay, min learning rate, and keep probability.

Acknowledgments

We are thankful to Prof. Marilyn Walker who provided expertise that greatly assisted the research.

564

References

- Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to align and translate. *arXiv preprint arXiv:1409.0473*.
- Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase representations using rnn encoder-decoder for statistical machine translation. *arXiv preprint arXiv:1406.1078.*
- Andrew M Dai and Quoc V Le. 2015. Semi-supervised sequence learning. In *Advances in neural informa-tion processing systems*, pages 3079–3087.
- Michel Galley, Chris Brockett, Alessandro Sordoni, Yangfeng Ji, Michael Auli, Chris Quirk, Margaret Mitchell, Jianfeng Gao, and Bill Dolan. 2015. deltableu: A discriminative metric for generation tasks with intrinsically diverse targets. *arXiv preprint arXiv:1506.06863*.
- Supratip Ghose and Jagat Joyti Barua. 2013. Toward the implementation of a topic specific dialogue based natural language chatbot as an undergraduate advisor. In 2013 International Conference on Informatics, Electronics and Vision (ICIEV), pages 1–5. IEEE.
- Matthew Henderson. 2015. Machine learning for dialog state tracking: A review.
- Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, and Dan Jurafsky. 2016. Deep reinforcement learning for dialogue generation. *arXiv preprint arXiv:1606.01541*.
- Minghui Qiu, Feng-Lin Li, Siyu Wang, Xing Gao, Yan Chen, Weipeng Zhao, Haiqing Chen, Jun Huang, and Wei Chu. 2017. Alime chat: A sequence to

sequence and rerank based chatbot engine. In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*, pages 498–503.

- Silvia Quarteroni and Suresh Manandhar. 2007. A chatbot-based interactive question answering system. *Decalog 2007*, 83.
- Alan Ritter, Colin Cherry, and William B Dolan. 2011. Data-driven response generation in social media. In *Proceedings of the conference on empirical methods in natural language processing*, pages 583–593. Association for Computational Linguistics.
- Iulian V Serban, Alessandro Sordoni, Yoshua Bengio, Aaron Courville, and Joelle Pineau. 2016. Building end-to-end dialogue systems using generative hierarchical neural network models. In *Thirtieth AAAI Conference on Artificial Intelligence*.
- Lifeng Shang, Zhengdong Lu, and Hang Li. 2015. Neural responding machine for short-text conversation. *arXiv preprint arXiv:1503.02364*.
- Yiping Song, Rui Yan, Xiang Li, Dongyan Zhao, and Ming Zhang. 2016. Two are better than one: An ensemble of retrieval-and generation-based dialog systems. *arXiv preprint arXiv:1610.07149*.
- Alessandro Sordoni, Michel Galley, Michael Auli, Chris Brockett, Yangfeng Ji, Margaret Mitchell, Jian-Yun Nie, Jianfeng Gao, and Bill Dolan. 2015. A neural network approach to context-sensitive generation of conversational responses. *arXiv preprint arXiv:1506.06714*.
- Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning with neural networks. In *Advances in neural information processing systems*, pages 3104–3112.
- Zhuoran Wang and Oliver Lemon. 2013. A simple and generic belief tracking mechanism for the dialog state tracking challenge: On the believability of observed information. In *Proceedings of the SIG-DIAL 2013 Conference*, pages 423–432.
- Tsung-Hsien Wen, David Vandyke, Nikola Mrksic, Milica Gasic, Lina M Rojas-Barahona, Pei-Hao Su, Stefan Ultes, and Steve Young. 2016. A networkbased end-to-end trainable task-oriented dialogue system. *arXiv preprint arXiv:1604.04562*.
- Jason D Williams and Geoffrey Zweig. 2016. Endto-end lstm-based dialog control optimized with supervised and reinforcement learning. *arXiv preprint arXiv:1606.01269*.
- Sam Wiseman, Stuart M Shieber, and Alexander M Rush. 2017. Challenges in data-to-document generation. *arXiv preprint arXiv:1707.08052*.
- Yu Wu, Wei Wu, Chen Xing, Ming Zhou, and Zhoujun Li. 2016. Sequential matching network:

7

A new architecture for multi-turn response selection in retrieval-based chatbots. *arXiv preprint arXiv:1612.01627*.