QuIET: A text classification technique using
automatically generated span queries

Vassilis Polychronopoulos®
University of California, Santa Cruz
vassilis@soe.ucsc.edu

Abstract—We propose a novel algorithm, QulET, for binary
classification of texts. The method automatically generates a set
of span queries from a set of annotated documents and uses the
query set to categorize unlabeled texts. QuIET generates models
that are human understandable. We describe the method and
evaluate it empirically against Support Vector Machines, demon-
strating a comparable performance for a known curated dataset
and a superior performance for some categories of noisy local
businesses data. We also describe an active learning approach
that is applicable to QuIET and can boost its performance.

I. INTRODUCTION

Categorization and labeling of textual data by applying
sets of multi-term queries that denote particular categories is
common practice in the industry. Given a set of categories,
domain experts write a set of queries for each category. Every
document is labeled as belonging to a specific category based
on the set of queries that hit it.

Text categorization systems based on query generation are
traditionally produced manually and are therefore costly. The
cost of manual query set construction is even higher for
complex categorization taxonomies involving large sets of
texts. Traditional machine learning techniques are increasingly
used as an alternative to query-based text categorization [1].
The models produced by machine learning techniques are
not human understandable and require expertise from their
users. Also, text datasets usually suffer from high category
skew which poses a challenge to machine learning methods.
Datasets of documents that contain noise and spam are com-
mon, especially if the data are obtained online.

As a motivating example, Groupon maintains a database of
millions of local businesses. Each local business needs to be
tagged with the services that it provides based on a Groupon-
specific taxonomy of services describing local businesses. We
want a method that can perform the tagging automatically,
as it is costly to manually go over all local businesses data.
The training sets we obtain through crawling of merchant
webpages and crowdsourcing are particularly noisy. In this ap-
plication, low performance comes at a cost because sales staff
waste time to engage with the wrongly classified merchants,
which means we need additional manual labor on top of the
automated text categorization. We desire a text categorization
method that can mitigate the effects of noise in the training

1 Contributed to this work during an internship at Groupon
2 Formerly at Groupon

nick.pendar @skytree.net

Nick Pendar?
Skytree, Inc.

Shawn R. Jeffery
Groupon, Inc.
sjeffery @ groupon.com

set and can return human understandable models that can be
validated and fine-tuned by their users.

We describe a new method that builds binary text classifiers
based on automated query generation. The method is called
QuIET, which stands for Query Induction and Extraction
from Text. Each classifier determines membership or non-
membership in a target category. We can use multiple binary
classifiers to tag unlabeled documents with all the categories
to which they belong. QulET extracts features from a set of
labeled documents that act as the training corpus and uses
them to generate a set of scored queries. It then uses the
queries and their associated scores to predict the category of
unlabeled texts. The query sets are human understandable and
achieve high performance even with the use of noisy training
data with high category skew. Manual annotation of a training
set is far less costly than manually constructing category-
characteristic sets of queries. The method is designed to scale
computationally to large datasets, as its construction time is
linear to the size of the training corpus and it employs methods
that can efficiently determine the queries that hit an unlabeled
document during classification.

In this paper, we describe QuIET in detail, and provide
empirical evaluation against Support Vector Machines. QuIET
achieves comparable performance in the case of the Modapte
split of the Reuters-21578 dataset and a superior performance
for noisy local businesses website data. We also implement
active learning using QulET, and show that it boosts its
performance by isolating noise and outliers in the training set.

II. RELATED WORK

Numerous machine learning techniques for text categoriza-
tion have been studied in the literature, including Decision
Trees [2], Naive Bayes [3], Support Vector Machines [4] and
boosting methods [5]. Recently, Tripathi et al. [6] proposed a
hybrid method for text categorization involving various two-
classifier and four-classifier combinations.

Support Vector Machines (SVM) achieve the highest ef-
ficiency in many cases. To train an SVM classifier for text
categorization, we need to extract informative features from
the training corpus to build a feature set. Typically, features
are words in the document corpus (unigrams). Each document
is described as a feature vector based on the feature words
it contains, and the SVM model is trained using the feature
vectors in the same manner as in non-textual applications.

Studies have suggested the use of n-grams as features for
SVM, but these approaches generally suffer from the curse
of dimensionality.

In [7], Hirsch et al. described a text categorization method
that automatically generates Apache Lucene queries and uses
them to classify texts. Human comprehensibility of the pro-
duced query sets provides the advantage that the results can
be validated and fine-tuned by humans. Query sets obtained
with this method can also be used for different tasks such
as information extraction. QuIET’s automatically generated
queries are not AND, OR and NOT queries as in [7], but
multi-term span queries. Moreover, QuIET uses a sophisticated
separation metric to assign scores to the generated queries.
The scores form an integral part of the method for classifying
unseen texts.

III. PRELIMINARIES
A. Queries

Definition Let D be a corpus of training documents. A feature
from set D is a word that occurs in documents in D and is
selected to be a member of a feature set F'.

Definition 7erm array t is an ordered list of words. Let t"
be a term array of length n (with n = 0 defining the empty
array), and ¢, where 7 < n, be the ith element in term array
t". The length of term array ¢" is || = n. Any sequence of
tokens corresponds to a term array and vice versa.

Definition Given a text segment ts with n tokens we define a
subsequence yielding progression, denoted SYP, to be a strictly
increasing integer function p : {1,..,m} — {1,...,n} with
m < n. Note that every SYP corresponds to a subsequence
of tokens from ts, by substituting each number p() in the
sequence p(1)...p(m) with the token in position p(4) of ts. A
given subsequence may be the result of more than one SYPs.

Example For text segment ¢s="“very healthy and very tasty
meal’, SYP p;, where p1(1) = 2,p1(2) = 3,p1(3) = 5
corresponds to subsequence ‘“healthy and tasty” . SYP po,
where pa(1) = 1,p2(2) = 5 corresponds to subsequence “very
tasty” as is SYP ps, where p3(1) = 4,p3(2) = 5.

Definition Query ¢ is a tuple (t*,g), where t“ is a term
array and g € N denotes the maximum gap allowed between
the token indices of the first and last terms in ¢ in a given
text segment. For all queries of term arrays t!, i.e. single
term queries, we vacuously define g = 0. For a query with
term array t* with w > 1, it must that ¢ > w — 1. For
ease of reference, let terms(g;) and gap(qg;) refer to t* and g
components in query g;, respectively. Let () be the set of all
queries.

Definition With respect to a specific corpus D we define
function hit : @ — P(D) be a relation from the set of
queries into the powerset of the corpus documents. We say
that query ¢ : (t“,g) hits document d if there exists a text
segment ts in d with n tokens for which there is a SYP
p:{1,..,w} = {1,...,n} which corresponds to the sequence

of terms(g) and gap(q) > p(w) — p(1)

Example Assume D is a set of two documents D =“come
enjoy our delicious sandwiches” and Do =*“Join us for a
soothing fish pedicure” . We derive a set of features F' from
D, where F = {delicious, enjoy, join, pedicure, sandwiches,
soothing}. An example of a t? term array is [enjoy,sandwiches]
and an example of t3 term array is [join,soothing,pedicure).
Let ¢; = ([enjoy,sandwiches], 3), then hit(q;, D) = {D1}.
For q3 = ([enjoy,sandwiches], 1), hit(g2, D) = 0, because the
terms enjoy and sandwiches do not occur in any documents
in D within a gap of 1 or less.

Definition Query subsumption denoted by J,, defines a par-
tial order over Q; ¢; 34 g; if for every set of documents D,
hit(g;) D hit(g;). We say that query ¢; subsumes query g;.
It follows from the subset relation that query subsumption is
reflexive and transitive.

Example Query ([sandwiches |,0) subsumes query ([enjoy,
sandwiches |, 3) which is in turn subsumed by query ([enjoy,
sandwiches 1, 5).

Definition Term subsumption denoted by D, defines a partial
order over the set of all term arrays. For two term arrays t*, u9,
t¥ Dy uf, that is, t* term subsumes u?, if the sequence defined
by the terms in uw? contains at least one subsequence which
contains all the terms of ¢ in order. Term subsumption is
reflexive and transitive.

Example For term arrays r? = [enjoy, sandwiches] and r3 =
[enjoy, delicious, sandwiches), r? D; r3

Definition Let ¢, u? be two term arrays, and t* DO; uq.
Because of the term subsumption, there exists at least one
subsequence of the sequence defined by term array u? that
contains all the terms of ¢“ in order, and thus, there is at
least one SYP over the text defined by the sequence of u?
that corresponds to the sequence of t*. We call any such
progression over u? a critical progression. We define the m-
progression m : {1,..,w} — {1,...,q} to be the critical
progression such that

e The span of the largest and smaller number of the m-
progression, that is, m(w) —m(1) is the minimum among
all critical progressions.

o m(1) is the leftmost index of any critical progression of
the same span, that is, m(1) is less or equal to p;(1) for
all critical progressions p; for which p;(w) — p;i(1) =
m(w) —m(1)

We define:

o The left outer omission of t“ and w9, denoted
lom(t%,u9), is the term array (u‘f,...7ufn(1)71). For
m(1l) = 1, the left outer omission is the empty term
array.

o The right outer omission of t“ and w9, denoted
rom (¥, u?), is the term array (uil(w)+17...7ug). For
m(w) = ¢, the right outer omission is the empty term
array.

o The outer omission of t* and u9, denoted oo(t*,u?) is
the term array that results from the concatenation of term

arrays lom (¢, u9) and rom(t*, u?)

As an example, consider term arrays: ¢ = (b,e) and u =
{(a,b,c,d, e, f), for which t D; u. We have: lom(t,u) = (a),
rom(t,u) = (f) and oo(t,u) = {a, f)

Theorem 3.1: For any two queries qi, g2, if there is a
unique SYP on terms(g2) that yields terms(q;), then ¢1 J,
q2 iff gap(q1) > gap(g2) — |oo(q1, ¢2)|

Proof We define queries ¢ = {((t1, ..., %), g1) and
g2 = ((u1, ..., uq), g2). Assume that g3 J, go. We construct
a document d whose text is the terms U1, ..., Uq in order and
separated by a space. It follows that d € hits(go). If there is
no subsequence of terms(gs) that contains all the terms of
terms(q1) in order, then document d is not hit by query ¢1
which contradicts the assumption that ¢; J, ¢o. It follows that
terms(q1) D¢ terms(gz).

Assume that there is only one critical progression on
terms(go) yielding terms(q;), which we deonote m
{1,...,w} — {1, ..., q}. For document d the following inequal-
ity holds:

g—1<g2=

= g—m(w) +m(w) - m(1) + m(1) 1 < gp =

= |rom(terms(qi), terms(gz))| + m(w) — m(1)+
+/|lom(terms(q1), terms(ga))| < go =

= |oo(terms(g1), terms(gz))| + m(w) —m(1) < go =
= m(w) —m(1) < ga — |oo(terms(q1), terms(gz2))|

Assume that g, — |oo(terms(q;), terms(g2))| > g1. We create
document d’ from document d by adding g2 — ¢ + 1 tokens
of a newly introduced term that is neither in terms(q;) nor
terms(gz), following the token in position mp(1) in document
d. Document d’ has exactly g» tokens. By adding go —q¢+1 to
the left part of all above inequalities we obtain equations since
this is the case where the span of the subsequence is precisely
equal to the gap of the query. Document d’ contains a subse-
quence corresponding to terms(gz) and is thus hit by query
¢2. The subsequence of terms(g;) in d’ is still unique since we
introduced a non-previously existing term and its span in d is
m(w) —m(1) + g2 — g+ 1 = g —oo(terms(qy), terms(g2)),
which is in turn larger than g; according to the assumption.
This means that document d’ is not hit by query ¢; which
contradicts the fact that ¢ J,; g2. Thus, it must be that
91 > g2 — loo(terms(qy), terms(gz))|

Inversely, assume that g1 > ga -
|oo(terms(qy), terms(gz))|. If a document d is hit by
query go, there is a text segment ¢ in d for which there
is a SYP p; : {1,....,q} — {1,...,n} that corresponds to
terms(g2). Text segment ts contains one progression that
corresponds to the m-progression on terms(gs) yielding
terms(qy), and therefore its image is a subset of the image
of p1. We denote this progression ps : {1,...w} — {1,...,n}.
For text segment ts:

p1(q) —p1(1) < g2 =
= p1(q) — p2(w) + p2(w) — p2(1) + p2(1) —p1(1) < g2

The gap p1(g) — p2(w) is at least as big as the length of
the right outer omission of terms(g;)and terms(gq), since it
contains the terms of the right outer omission and possibly
terms of document d that are not in the outer omission.
Likewise, p2(1) —pi1(1) is at least as long as the length of the
left outer omission of terms(q;) and terms(gs). Formally:
rom (terms(q1), terms(gz))| < p1(q) — p2(w) and
[lom(terms(g;), terms(q;))| < p2(1) — p1(1)

From the three inequalities above, it follows that:

lom(terms(qi), terms(gz))| + p2(w) — p2(1)+
+|rom(terms(q;), terms(gz))| < go =

= |om(terms(q1), terms(gz))| + p2(w) — p2(1) < g2 =
= pa(w) — pa(1) < go — Jom(terms(q), terms(gz))|

From the inequality hypothesis, it follows that:
p2(w) —p2(1) < g1. Thus, there is a SYP of span less than or
equal to g1 in ts that corresponds to terms(q;), hence, query
q1 also hits document d. Since this is true for every document
d that is hit by query g it follows that: ¢; 34 g2

Note that in proving the inverse direction of the theorem,
we did not require uniqueness of the SYP on terms(gs) that
yields terms(q;). This means that if there is term subsumption
and the gap inequality holds we can always infer query
subsumption without further checks.

B. Implementation of Query Subsumption Checking

As we explain in sections IV-C and IV-D, efficiently
checking for query subsumption is important for the speedy
execution of QuIET. Given a query ¢; and an existing query set
@, we need a method that efficiently identifies whether there
exists a ¢; € (such that either ¢; C ¢; or ¢; 2 ¢;. We can
identify query subsumption by first finding queries in () whose
terms either subsume or are subsumed by ¢;, and then checking
if the gap inequality of Theorem 3.1 holds. By ignoring the
uniqueness assumption, we would fail to identify subsumption
and keep redundant queries in the query set for some cases
of queries. For example, for queries ¢; = (enjoy, coffee, 1),
and ¢ = (enjoy, coffee, enjoy, coffee, 4) the gap inequelity
fails, yet, there is query subsumption. We can use the methods
proposed in [8] to check for uniqueness of the subsequence
involved in the term subsumption using suffix tree indices, but
this would unnecessarily inflate the implementation complex-
ity. This is because we generate queries based on tokens that
fall in the same sentence which makes such queries unlikely
to appear in practice. Thus, ignoring them causes a negligible
redundancy in the set of queries. Due to this, we decide term
subsumption by only checking for the existence of a given
subsequence in a larger string. The size of the outer omission
is obtained easily by counting the tokens left and right of
the subsequence identified by the term subsumption checking
algorithm. Thereafter, we check the inequality of Theorem 3.1
to decide query subsumption.

To avoid checking all quadratic pairs of queries in a query
set) for query subsumption we construct set structures that
allow us to check only queries that are relevant.

For every term ¢ in the corpus we define queries(t) to be
the set of all queries in @ that contain term ¢.

Term-subsuming queries (tsg) of q; are queries in @
whose terms subsume the terms of ¢;. We identify the term-
subsuming queries of ¢; as follows:

n
tsg(q:) := {q;|q; € [] queries(t}) Aterms(g;) C; terms(g;)}
k=1
Term-subsumed queries (tsd) of g; are queries in () whose
terms are subsumed by the terms of ¢;. We identify the term-
subsumed queries of ¢; as follows:
n
tsd(q;) :=={qj|q; € U queries(t;)Aterms(g;) C; terms(g;)}
k=1
Thus, if a query g, fails to satisfy the set membership condi-
tions of the above conjunctions we can infer non-subsumption
without invoking the term subsumption checking algorithm.

C. Categorization Measures

Precision, recall and the F-measure are used as measures
of the performance of a classification method. A classifier
may erroneously classify a non-member of target category
c as positive and a member of the category c as negative.
These documents are called false positives and false negatives
respectively and define two sets that we denote F'P and
EF'N. The correctly classified positive documents are the true
positives and form set T'P and the correctly classified negative
documents are the true negatives and form set T'/N. Using these
sets we get the following definitions: precision = %,
that is, precision is the proportion of the truly positive docu-
ments in the set of documents that the classifier deems positive,
and recall = %, that is, recall is the fraction of the
number of true positive documents that the classifier returns
over the number of the actual documents of category c in the
corpus.

Precision, denoted as p, and recall, denoted as r, are
not good measures of classification performance alone. For
example, we can obtain a recall of 100% by trivially labeling
all documents in the corpus as positive. F; is the harmonic
mean of precision and recall: F} = 2- I%. It is a special case
of Fs = (1+3?)- %51y Where 3 is a non-negative real.
In our study, in addition to Fj, we use Fy 5 which places an
emphasis on precision.

IV. THE QUIET ALGORITHM

The input of the training phase of QulET is a set of labeled
texts which are used as the training set. The labels denote
membership or non-membership in a target category c. The
output of the training phase is a set of queries and associated
scores. These query sets are then used to categorize unlabeled
texts of the same nature. By building one such model for
every target category, we obtain a tool that can tag unknown
texts as belonging to multiple categories. Below we describe
the method for a single target class c. To build classifiers for
additional classes, we repeat the same process for a different

class. The process involves four steps: feature selection, query
generation, query selection, and categorization of unlabeled
texts.

Initially, the training set of documents undergoes the stan-
dard normalization and stemming of words to ascertain that
different forms of the same word are not counted as occur-
rences of different words. Thereafter, the method goes through
the texts and identifies the words that are the most informative
for binary classification according to a separation metric. The
selected words form the set of features.

We use these features to generate queries by going over all
sentences of the documents in the training set. We calculate
the number of documents that each query hits and select
only the queries that return documents that are members of
category c¢ with high precision. Once a set of high-precision
queries has been generated, we sort the queries by their recall
in descending order, and start selecting queries that are not
already subsumed by some other query in the final set. If we
identify a query that subsumes other existing queries in the
final set, we replace the subsumed query with the subsuming
query.

Finally, for the final set of selected high-precision and most
general queries we calculate a normalized score based on a
separation metric. The model is the final set of queries and
their scores. This allows us to calculate a threshold query
score, denoted as 6, that separates the training set optimally
according to a classification measure (see Section III-C for
measures of classification).

To classify an unseen document we calculate a normalized
document score based on the score of the queries of the model
that hit the document. QuIET considers the documents whose
document score exceeds threshold 6 as members of category
c and the rest as non-members of the category. Below we give
a more detailed explanation of the method’s steps.

A. Feature Selection

Feature selection, a standard step in text categorization, al-
lows us to only consider words that tend to be indicative of the
target class in query generation. For each word in the corpus
of labeled documents, we calculate a score corresponding to
the significance of the word in the category of interest and
select the words with the highest scores as features.

There are several scoring functions that we can use to
compute the score of the words in a training corpus. Prominent
examples are the Chi-Squared statistics test, Information Gain,
Document frequency, Odds Ratio and Log Probability Ratio.
In [9] and [10], extensive comparative results that study the
performance of the above methods are reported. In [11],
Foreman introduced a new metric called Binormal Separation.
The metric outperformed other metrics in most cases, while
its lead was wider for cases of elevated category skew, which
is rampant in text categorization. For this reason, we use
Binormal Separation (BNS) as the separation metric for feature
selection. We calculate the BNS score of each word in the
corpus, sort the words based on the score, and pick the desired
number of top words to form feature set F.

B. Query Generation

After the feature selection, we iterate over the documents
that belong to the target category and generate multi-term
queries comprising the features extracted in the previous stage.

Given a piece of text containing n words, we can generate
up to (:f) multi-term queries containing 7 terms. As the
number of words increases there is a combinatorial explosion
of generated queries. To address this, we limit r to be less than
4. We also split the text into sentences and generate queries
using the features that are present in each sentence. We put
a hard cap on the number of words that a sentence can have.
If a sentence exceeds 15 words we artificially split it in two.
We generate all the combinations of one-, two- and three-term
queries in every sentence, therefore the maximum number of
queries per sentence is limited to a constant. Thus, the total
number of queries is asymptotically linear to the size of the
text corpus in the worst case.

C. Query Selection

To create a set of selected queries for binary classification,
we initially iterate over all positive documents in the training
corpus, that is, all documents that are labeled as belong-
ing to class c. For each document, we use the method we
described above to obtain all combinations of queries with
terms belonging to the feature set. We evaluate the queries
for each document in the document index to calculate the
precision of each query. Precision of a query is the number
of documents belonging to target category c in the training
corpus that the query hits as a percentage of the entire set
of documents of the training corpus that it hits. We only
retain documents that pass a minimum precision threshold.
We generally choose the threshold to be high, e.g. 90%. We
can tune the method for various precision thresholds to select
the one that provides the best final results. We then calculate
a score for each of the high-precision queries. The score
indicates the level of separative effectiveness of the query.
A good option for the score function is the same binormal
separation score (BNS) mentioned in Section IV-A, which we
use in our implementation.

We check generated queries for subsumption so that the
most general queries are selected and less general queries are
ignored. In this way, we increase the generalizability of the
final query set. Figure 1 shows the pseudocode for the process
of query generation and selection.

D. Categorization of Unlabeled Texts

After computing the scores of all selected queries we
calculate a score for each document in the training corpus.
For each document, we initially obtain a raw score as the sum
of the scores of the queries in the selected query set () that

hit the document: raw_score(d) = > q.score
q€Q s.t. dehits(q)
The distribution of the raw scores usually contains outliers.

If we normalize using the range of raw scores the majority
of documents cluster close to zero. We use normalization
factor: z = Q(3, raw_scores) + 1.5- IQ R(raw_scores), where

Function select_queries
Input : feature_set: a set of unigrams, document_index : an
index of documents, precision_threshold : a real
number, c¢: a document category
Output: A set of scored queries
Data: queries: a set of queries, scored_query_set: a set of
scored queries, precision, recall, score: real numbers

scored_query_set < (;
foreach document d of class ¢ in document_index do
foreach sentence s in d do
queries < generate_queries(feature_set, s);
foreach query ¢ in queries do
precision < calculate_precision(q,
document_index, c) ;
if precision > precision_threshold then
8 score < calculate_score(q);
9 recall < calculate_recall(q),
10 scored_query_set.add(q, recall, score);

A U B W N

<2

sorted_queries <— sort_by_recall_descending(scored_query_set);
2 selected_query_set < sorted_queries[0];

-
=

-

3 foreach ¢ in [1..size(sorted_queries)] do

14 q < sorted_queries[:];

15 if subsuming_queries(q, selected_query_set) != () then
16 L continue;

17 Q@ < subsumed_queries(q, selected_query_set);

18 if |@Q| > 0 then

19 L remove_all(Q), selected_query_set);

20 | selected_query_set.add(qg, selected_query_set);

21 return selected_query_set;

Fig. 1: Algorithm for query selection

Q (3, raw_scores) returns the value at the third quartile of the
document raw scores seen in the training data, and method
IQR returns the inter-quartile range of the raw scores. This
way, we are effectively setting our normalization factor z to the
maximum non-outlier raw score that exists in the training set
of documents. This allows us to compute a normalized score
using the formula: score(d) = min(raw_score(d)/z,1). We
sort the documents of the training set based on their scores.
Documents with higher scores are more likely to be positive
documents, while documents with lower scores are likely to
be non-positive. We calculate a threshold 6 of the document
scores that separates the documents optimally according to a
classification metric. For example, if we use the F- 1 measure,
the set of documents that has score that is equal or larger
to 6 has precision and recall that corresponds to the highest
F-1 measure compared to that of any other choice of score
threshold.

We use the selected set of scored queries () and the thresh-
old # to label unlabeled texts as members or non-members
of target class c. For each unseen document we calculate its
raw score according to the formula above. We then normalize
using the normalization factor z that we have obtained from
the training set. If the document’s normalized score is equal
or larger to the threshold 6, we label it as belonging to target
class c, otherwise we label it as a non-member of c¢. Running
all the queries of () on each document during classification can

be computationally expensive because typically the number of
queries that hit a document is far less than the number of
queries in the query set. During classification, our implemen-
tation generates queries from the document being classified
and checks those queries for subsumption by the queries in
the query set. This way, we can determine which queries of
the QuIET query set hit the document without actually running
every query on each document. Figure 2 shows the pseudocode
of the classification algorithm.

Function classify

Input : model: a set of query-score pairs, Feature_Set: a set of
unigrams, score_threshold: a real number, z: a real
number, document : a document

Data: score: the running score

Qutput: classification

score < 0;

foreach sentence s in document do

foreach query q in generate_queries(Feature_Set, s) do

foreach ¢’ in subsuming_queries(q,model) do
| score < score + ¢ .score;

L I N

6 score < min(score/z,1);

7 if score > score_threshold then
8 | classification < 1;

9 else

10 L classification < 0,

11 return classification;

Fig. 2: The classification algorithm

E. Active Learning with QuIET

Active learning is a technique widely used in machine
learning and artificial intelligence [12]. In a naive setting, a
training algorithm randomly picks data points from a wider
pool and assigns them to human annotators. The annotated
data are then used to train the model, and the model can
then in turn be used to classify non-annotated data. This may
be wasteful since some of the data we choose to annotate
may be less informative than others. Active learning is an
umbrella term for several techniques that perform the training
in iterations and augment the training set by smartly picking
instances from the pool that are likely to be more informative.

A simple active learning approach, applicable to techniques
such as linear regression and Support Vector machines, is to
pick training instances in proximity to the current decision
boundary. Active learning can lead to significantly fewer
number of manual annotations and lower the cost of building
the model. Previous studies have explored active learning
for text categorization purposes [13] [14] and data of highly
imbalanced categories [15] with the use of Support Vector
Machines.

Inspired by the use of active learning in machine learning
techniques, we implement an active learning approach for
QulET. We view threshold 6 as a decision boundary in a
one-dimensional space. To apply active learning to QulET,
we perform the query generation and selection in iterations.

We pick a small set of documents whose score is close to
the current threshold 6 and add them to the training corpus in
every iteration.

V. EXPERIMENTAL STUDY
A. Methodology

We use two datasets to evaluate the performance of QulET.
One is the Modapte split of the Reuters-21578 text dataset,
first used in [2], and subsequently in several studies. Our goal
is to evaluate QuIET on a known curated dataset. We compare
the results with SVM classifiers using RBF kernel function,
with optimally tuned C' and ~ for every category.

Subsequently, we present the results of QuIET on noisy
local businesses website data for a Groupon-specific set of
categories describing local businesses, contrasted with results
on the same data using SVM classifiers.

We thereafter evaluate the efficiency of the active learning
variant of QuIET. We implement two different approaches for
active learning with QulET, one eager and one lazy.

The eager approach builds the model using an initial random
set of 50 documents, then picks an additional 50 documents
and rebuilds everything from scratch, including the feature set.
It builds the query set using the new feature set and the entire
current training corpus. It selects the queries by evaluating
every query on every document in the corpus. It continues
to augment the training set by 50 documents until all the
documents in the pool are included in the training set.

The lazy approach builds everything from scratch only
periodically and not in every iteration. In most iterations, it
maintains the previous feature set and keeps the set of older
queries and their associated scores. It augments the query
set with new queries which are generated only using the
documents that are added to the training set in the current
active learning step. The reasoning behind this approach is
that for few additional items in the training set, we expect
small changes in the feature set and only few existing queries
that will fall below the precision threshold. We thus evaluate
fewer queries on the corpus and optimistically assume that
existing queries still qualify. This approach can lead to slower
increase in performance between active learning iterations but
it can save significant time, since query evaluation is the major
bottleneck in the construction time of the QuIET models. In
this implementation, we set the ratio of lazy to eager steps
to be 9:1, that is, we retrain everything from scratch once in
every 10 active learning iterations.

We ran QulET for a range of values of the precision
threshold for query selection to determine the optimal value.
We obtain the best results for both F; and Fj 5 in the vicinity
of precision threshold 0.90 for most categories and datasets.
We can obtain the best results by tuning individually for
each dataset which can lead to different optimal precision
thresholds. However, in a real setting, we do not have a labeled
test set, and we cannot know the optimal threshold unless the
test set is labeled. Thus, in real applications, we must use a
fixed precision threshold that is likely to produce good results
based on previous test results.

B. Reuters Dataset

In Table I we can see the comparative performance of SVM
with RBF kernel and QulET for the most populous categories
of the Modapte split of the Reuters dataset. QuIET uses a
precision threshold of 90% for query selection.

Method | Category | Precision | Recall | Fi Fos
SVM earn 0.98 0.99 0.98 | 0.98
QuIET earn 0.982 0.912 095 | 0.97
SVM acq 0.95 0.94 094 | 0.95
QulET acq 0.929 0.792 0.85 | 0.90
SVM crude 0.79 1.0 088 | 0.83
QulET crude 0.871 0.752 0.81 | 0.84
SVM corn 0.8 1.0 0.89 | 0.84
QulET corn 0.901 0.72 0.80 | 0.86

TABLE I: Comparative performance for Reuters dataset

We observe that QulET has a comparable performance
against Support Vector Machines. We obtained similar results
for other categories of the Reuters dataset. The results of
the SVM classifiers are the best among a variety of tuning
parameters of the kernel function for each category and test
set, which is not applicable in a real setting as mentioned in
the methodology section above. On the other hand, we report
QUuIET results for a fixed precision threshold parameter of
90%. If we have the flexibility to alter the precision threshold
parameter to the optimal for each category, we achieve a
boost in QuIET performance for several categories and test
sets. We use RBF kernels, since they produce results that are
similar to the best reported in the literature. Results for the
Reuters dataset using different kernels, such as String Kernels
[16] are comparable to SVM classifiers with RBF, having
slightly superior performance on some categories and slightly
inferior on others, but not demonstrating a generally superior
performance.

QuIET maintains the advantage of human comprehensibility
of the query sets that it produces. The results suggest that
QuIET is an efficient method for text categorization that can
be used either as a stand-alone text classifier or as an extra
vote to boost the performance of ensemble classifiers [17].

C. Local Businesses Website Data

Groupon merchant taxonomy comprises a hierarchy of
merchant categories. Categories lower in the hierarchy which
we call ‘services’ are often more fine-grained and among
available data there is generally more diversity and noise. We
obtain the categories of each local business through the use of
crowdsourcing. The low quality of the training set is due to
both the inherent noise that is ubiquitous in online content but
also due to the existence of errors in the crowdsourced labels.
For this kind of datasets, machine learning text classification
methods perform poorly. As an example, a merchant under
the high-level category ‘Health & Beauty’ may or may not
provide fish pedicure services. The fish pedicure service is
thus under the general category ‘Health & Beauty’ in the

taxonomy. Traditional machine learning methods achieve high
performance for the high-level category ‘Health & Beauty’
but they give poor results for the ‘fish pedicure’ service.
For four such service categories that inhabit lower floors in
the taxonomy, Table II shows the results of the comparative
performance of QuIET and SVM with radial basis kernel
function tuned for optimal performance. The size of the feature
set is 40, 000.

Method | Category | Precision | Recall Fy Fos
SVM A 0.231 0.0536 | 0.09 | 0.14
QuIET A 0.417 0.179 0.25 | 0.33
SVM B 0.371 0.425 0.40 | 0.38
QulET B 0.42 0.38 0.40 | 0.41
SVM C 0.24 0.19 0.21 | 0.23
QulET C 0.36 0.21 0.27 | 0.32
SVM D 0.609 0.955 0.74 | 0.66
QulET D 0.755 0.627 0.69 | 0.73
TABLE II: Comparative performance for local businesses

website data

The performance is low for both methods, yet, we observe
that QuIET outperforms SVM for all four categories. The
results suggest that for heavily noisy data, a common problem
for data obtained online, a query-based text categorization
algorithm such as QulET is likely to produce better results
than traditional machine learning techniques in some cases.
Also, QuIET places an emphasis on precision (due to the high-
precision queries which comprise the QuIET model), which is
often a desideratum.

Threshold 6 which acts as a decision boundary can be
manually fine-tuned by the users of QuIET. This is because
QUIET calculates 6 using the training set and may not always
generalize optimally for a given test set. For example, for
Category D, while the training set based threshold 6 achieves
a 69% F-1 measure performance on the test set, the optimal
separation on the test set of documents sorted by their score
reaches 84%.

D. Performance of Active Learning with QulET

For Category D, we have 1,650 documents in the training
set. In Figure 3 we demonstrate the performance of the active
learning variant of QuIET for Category D. The results we ob-
tained for other categories are qualitatively similar. We report
the F-1 measure for three different methods of training QuIET
in iterations. For all three methods, the training starts with a
random subset of the training set containing 50 documents.
Due to this random initialization, we report the average result
from 3 executions of each experiment.

The non-active method picks an additional 50 documents at
each iterative step randomly from the training set and retrains.
As the size of the training set increases, we observe that
the non-active QuIET gradually increases performance until
it reaches the final performance of 69% (same as reported in
Table II).

F-1 measure, Category D

1 ‘ . . ; ; .

Active QUIET (Eager) —«—

0.95 | Active QUIET (Lazy) —=—
0.9 | Non-active QUIET

0.85
0.8
0.75
0.7
0.65
0.6
0.55

0.5 ' : ‘ ‘ ‘ ‘ : :
200 400 600 800 1000 1200 1400 1600

Size of training corpus

F1

Fig. 3: Performance of QuIET with active learning

Active QulET surpasses the performance of non-active
QuIET by using a fraction of the training set. The performance
of the eager variant gradually increases, it achieves a maximum
performance that approaches 88% using roughly two thirds of
the size of the training corpus, and starts gradually decreasing
until it reaches the final performance of 69%. The lazy variant
demonstrates a similar behavior, outperforming non-active
QUuIET but achieving a lower maximum than that of the eager
implementation.

The reason behind this boom and bust is the presence of
spam and wrongly classified examples in the training set that
are isolated in the active learning process. For example, the
training set may contain a spam webpage that is correctly
labeled as a non-member of the category, yet, the content may
contain text segments that are common in positive examples of
the category and are therefore hit by the same query. Given that
the content of the website is bogus, it is unlikely that its score
value is near the current score threshold 6, and will therefore
not be picked during the active training process. When the
spam webpage is eventually included in the training set it may
cause some of the existing queries that hit it to fall below
the precision threshold and be excluded from the query set
despite the fact that these queries may be useful in separating
categories. This way, the generality and quality of the QulIET
model decreases.

The lazy method achieves a lower boost in categorization
quality because of failing to properly update the query set in
some cases, but the training occurs much faster. In particular,
the decrease in construction time can be in the order of 9x
(the ratio of lazy to eager steps). The construction of a QuIET
query set involves the evaluation of thousands of queries on
each document of the training set and typically requires several
hours of execution time using a modern processor. The eager
active learning repeats the construction from scratch at each
iterative step and may require several days to complete. The
speedup of the lazy variant is therefore significant. Lazy active
learning can thus be the method of choice for quickly training
numerous binary classifiers for a taxonomy involving many

categories, even if the derived query sets achieve slightly
reduced categorization performance compared to the eager
implementation.

VI. CONCLUSIONS

QulET is a new method that produces human understand-
able text classifiers. Training of QuIET scales to large datasets
while its categorization efficiency outperforms machine learn-
ing techniques for some noisy datasets. The method is suitable
for large sets of documents obtained from online sources
where noise and spam is ubiquitous. Active learning is ap-
plicable to QuIET and can boost its performance in many
cases.

REFERENCES

[1] F. Sebastiani, “Machine learning in automated text categorization,” ACM
Comput. Surv., vol. 34, no. 1, pp. 1-47, Mar. 2002.

[2] C. Apte, F. Damerau, and S. M. Weiss, “Towards language independent
automated learning of text categorization models,” in Proceedings of the
17th annual ACM/SIGIR conference, 1994, pp. 23-30.

[3] E. Frank and R. R. Bouckaert, “Naive bayes for text classification with
unbalanced classes,” in Proceedings of the 10th European Conference
on Principle and Practice of Knowledge Discovery in Databases, ser.
PKDD’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 503-510.

[4] T. Joachims, “Text categorization with suport vector machines: Learning
with many relevant features,” in Proceedings of the 10th European
Conference on Machine Learning, ser. ECML "98. London, UK, UK:
Springer-Verlag, 1998, pp. 137-142.

[5]1 S. Bloehdorn and A. Hotho, “Boosting for text classification with
semantic features,” in Proceedings of the MSW 2004 Workshop at the
10th ACM SIGKDD conference of knowledge discovery and data mining,
2004, pp. 70-87.

[6] N. Tripathi, M. P. Oakes, and S. Wermter, “Hybrid classifiers based on
semantic data subspaces for two-level text categorization,” Int. J. Hybrid
Intell. Syst., vol. 10, no. 1, pp. 33-41, 2013.

[7]1 L. Hirsch, R. Hirsch, and M. Saeedi, “Evolving lucene search queries
for text classification,” in Proceedings of the 9th Annual Conference on
Genetic and Evolutionary Computation, ser. GECCO ’07. New York,
NY, USA: ACM, 2007, pp. 1604-1611.

[8] J. Pei, W. C.-H. Wu, and M.-Y. Yeh, “On shortest unique substring
queries,” in Proceedings of the 2013 IEEE International Conference on
Data Engineering (ICDE 2013), ser. ICDE *13. Washington, DC, USA:
IEEE Computer Society, 2013, pp. 937-948.

[9] D. Mladenic and M. Grobelnik, “Feature selection for unbalanced class

distribution and naive bayes,” in In Proceedings of the 16th Interna-

tional Conference on Machine Learning (ICML. Morgan Kaufmann

Publishers, 1999, pp. 258-267.

Y. Yang and J. O. Pedersen, “A comparative study on feature selection in

text categorization.” Morgan Kaufmann Publishers, 1997, pp. 412-420.

G. Forman, “An extensive empirical study of feature selection metrics

for text classification,” J. Mach. Learn. Res., vol. 3, pp. 1289-1305, Mar.

2003.

B. Settles, “Active learning literature survey,” University of Wisconsin,

Madison, 2010.

S. Tong and D. Koller, “Support vector machine active learning with

applications to text classification,” J. Mach. Learn. Res., vol. 2, pp. 45—

66, Mar. 2002.

B. Yang, J.-T. Sun, T. Wang, and Z. Chen, “Effective multi-label

active learning for text classification,” in Proceedings of the 15th ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining, ser. KDD *09. New York, NY, USA: ACM, 2009, pp. 917-926.

M. Bloodgood and K. Vijay-Shanker, “Taking into account the differ-

ences between actively and passively acquired data: The case of active

learning with support vector machines for imbalanced datasets,” ser.

NAACL-Short *09, 2009, pp. 137-140.

H. Lodhi, J. Shawe-taylor, and N. Cristianini, “Text classification using

string kernels,” Journal of Machine Learning Research, vol. 2, pp. 563—

569, 2002.

L. Rokach, “Ensemble-based classifiers,” Artif. Intell. Rev., vol. 33, no.

1-2, pp. 1-39, Feb. 2010.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

