Contact Theory vs Bulk (Doping) Theory

 

 

 

 

 

The device properties are generally determined by (1) the electrode contact and (2) the bulk channel. They may compete, but in a certain situation, one is more dominant than the other.

 

There are two theories for the gas detection mechanism using nanotubes (CNTs) or nanowires (NWs).

 

The contact theory can explain the gas detection mechanism even when the CNT has no direct chemical interaction resulting in charge transfer. The CNT conductance will be modified significantly through the transport property change across the contact. Let's assume there is an interaction between the gas and a metallic electrode. When the circuit is open, positive charges appear in the metallic electrode, but there are no charges in the CNT. But when the circuit is closed, positive charges will appear in the CNT side, too. This is essentially a pair of charged capacitors in series. The electrostatics there will modify the Schottky barrier. According to the contact theory, the gas is detected at the CNT electrode contact.

 

The bulk theory assumes the gas molecules remove charges, and leave the opposite charges in the CNT. In this picture, the gas-CNT chemical interaction resulting in charge transfer must exist. According to the bulk theory, the gas is detected at the CNT, and the CNT contact does not play any role.

 

The same thing goes with the substrate, STM tip, or generally environment. Device characteristics would be significantly influenced with them.

 

Publications

 

Home

 

Related Papers

 

Agenda

 

Contact Theory

Substrate effects

Bulk Theory

Contact Theory

 

Substrate effects on nano scale devices

 

 

PRB_99

 

 

 

 

 

 

JVSTA_99

 

 

 

 

 

 

 

 

 

 

CNT FET as a gas sensor

 

 

Science_00

 

 

 

 

 

 

 

 

 

 

CNT FET with Schottky contact

 

Nano_Lett_01

 

 

 

 

 

 

APL_00

 

 

 

 

 

 

JAP_10

 

 

 

 

 

 

 

 

 

 

 

CNT Tunneling at contact

 

APL_01

 

 

 

 

 

 

Chap. 7, CRC

 

 

 

 

 

 

 

 

 

 

 

N-type CNT behavior in air at low T

 

APL_02

 

 

 

 

 

 

PRB_07

 

 

 

 

 

 

 

 

 

 

 

CNT gas sensor

 

 

 

Nano_Lett_03

 

 

 

 

 

 

 

 

 

Weak gas CNT interaction

oxygen

PRB_03

 

Many papers

 

 

 

ammonia

PRB_04

 

in bulk theory

 

 

 

 

 

 

 

 

 

CNT Gas detection experiment

 

 

 

APL_05

 

 

 

 

 

 

 

 

 

CNT Schottky gas detection model

oxygen

PRB_04_pdf

 

Many papers

 

 

 

ammonia

APL_06

 

in bulk theory

 

 

 

 

 

 

 

 

 

CNT Gas detection experiment

 

ACS_Nano_09

 

 

 

 

 

 

Nano_Lett_09

 

 

 

 

 

 

 

 

 

 

 

Review on CNT gas detection mechanism

 

Sensors_Actuators_B_09

 

 

 

 

 

 

 

 

 

 

 

Recent CNT sensors

 

J_Disp_Tech_12

 

 

 

 

 

 

 

Nanotech 11

 

 

 

 

 

 

 

Carbon_11

 

 

 

 

 

 

T. Yamada, C. W. Bauschlicher, and H. Partridge, "Substrate for Atomic Chain Electronics," Phys. Rev. B 59 (23), 15430-15436 (1999).

 

 

T. Yamada, "Substrate Effects on Electronic Properties of Atomic Chains," J. Vac. Sci. Technol. A 17 (4), 1463-1468 (1999).

 

 

T. Yamada, "Analysis of submicron carbon nanotube field-effect transistors," Appl. Phys. Lett. 76 (5), 628-630 (2000).

 

 

T. Yamada, "Modeling of electronic transport in scanning tunneling microscope tip carbon nanotube systems," Appl. Phys. Lett. 78 (12), 1739-1741 (2001).

 

 

T. Yamada, "Modeling of Kink-shaped Carbon-nanotube Schottky Diode with Gate Bias Modulation," Appl. Phys. Lett. 80 (21), 4027-4029 (2002).

 

 

T. Yamada, Chapter 7, "Nanoelectronics Applications" in Carbon Nanotubes: Science and Applications, ed. by M. Meyyappan, (CRC, Boca, Raton, 2004).

 

 

T. Yamada, "Modeling of Carbon Nanotube Schottky Barrier Modulation under Oxidizing Conditions," Phys. Rev. B 69 (12), 125408 (2004).

 

 

T. Yamada, "Equivalent circuit model for carbon nanotube Schottky barrier: Influence of neutral polarized gas molecules," Appl. Phys. Lett. 88 (8), 083106 (2006).

 

 

T. Yamada, T. Saito , M. Suzuki , P. Wilhite , X. Sun , N. Akhavantafti , D. Fabris , and C. Y. Yang, "Tunneling Between Carbon Nanofiber and Gold Electrodes," J. Appl. Phys. 107 (4), 044304 (2010).