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Stimulated by recent progress in atom manipulation technology, the electronic properties of periodic
structures artificially created with atoms on a substrate surface are studied, where constituent atoms
are isolated from substrate atoms and interact with one another through neighboring-atom
interactions. By reducing the lattice constant from infinity, the neighboring-atom interaction is
gradually turned on, and discrete atomic states broaden to form energy bands. Band structures of a
simple one-dimensional atomic chain, a two-dimensional square array, and two parallel atomic
chains formed by Si are calculated as a function of lattice constant using the tight-binding theory
with universal parameters. For practical lattice constants, these Si structures are all metallic due to
the existence of the # band, within which the Fermi energy lies; however, at very low spacings,
possible for carbon, the double chain can become insulating. For group-II elements such as Mg, the
# band and the conduction band are empty while the valence band is fully occupied. The band-gap
variation with lattice constant is reflected in the electronic properties directly: e.g., a Mg atomic
chain is insulating for lattice constants greater than or less than 4.2 Å, at which the band gap
disappears and the chain becomes metallic. © 1996 American Vacuum Society.

I. INTRODUCTION

Due to the recent progress in atom manipulation technol-
ogy with scanning tunneling microscopy !STM", it is becom-
ing possible to move atoms one by one and arrange them as
desired on a substrate using a STM tip as tweezers.1 It has
been observed experimentally that there are preferred sites
for the atoms,2 and this suggests that the substrate surface
provides an array of potential wells where atoms can be
placed. Making use of this potential-well array, it is techno-
logically possible to arrange atoms periodically in one or two
dimensions !1D or 2D" on the given substrate. When such
arranged atoms are electronically isolated from the substrate
surface so that no chemical bonds are formed and the
neighboring-atom interaction is practically restricted to that
among arranged atoms, they form 1D or 2D electron sys-
tems. In these systems, we can change the interaction
strength by assigning different values for lattice constant.
This can be done, for example, by placing atoms at every
one, two, three, etc., potential wells, or changing the periodic
directions with respect to the crystal orientation of the sub-
strate surface. When a lattice constant is very large, the
neighboring-atom interaction is so weak that electrons are
confined to each atom and have discrete atomic energy lev-
els. With reduction in the lattice constant, the neighboring-
atom interaction will cause these states to form a band with
continuous momentum along the direction in which a peri-
odic structure is made. Since the interaction strength can be
changed by changing the lattice constant, the band width and
the band gap can be designed, and this will lead to band
engineering for atomic structures created on the substrate.
The electronic states of various atomic structures consist-

ing of Si adatoms, one of the most important materials in the

present semiconductor technology, are studied in detail.
Since a Si atom has four valence electrons and the highest
occupied atomic level is 3p and is one-third filled, a simple
periodic structure will be metallic if the periodicity just
broadens the atomic levels. This simple view is in contrast to
the fact that the usual three-dimensional !3D" Si crystal is
insulating. This is because the lattice constant is so short that
there are crossings of band edges, and a new gap is opened,
resulting in the existence of a fully filled highest band; each
Si atom is symmetrically surrounded by four neighboring
atoms and four covalent $ bonds per atom pair correspond-
ing to four filled valence bands. The number of atoms per
unit cell is two, not one, and the problem of accommodating
four valence electrons in four states is changed to accommo-
dating eight valence electrons in eight modified states, with
all bonding states fully filled. Accordingly, we study a 1D Si
atomic chain !the simplest periodic structure", a 2D square Si
array !four nearest neighbors", and Si parallel chains where
two 1D Si chains are placed in parallel !two atoms per unit
cell". We use a tight-binding theory with universal
parameters3 to calculate the band structures of these struc-
tures. It turns out that all of them are metallic for practically
possible lattice constant values, because the Fermi energy
lies in the # band originated from 3p orbitals perpendicular
to the structure, as shown below. Since the Fermi energy is
far above the only band gap, the modification of the band
gap with lattice constant cannot be reflected in the electronic
properties.
If we use group-II elements such as Mg or Be, resultant

electronic properties are much more attractive since they can
become insulating in principle. This is because s orbitals are
fully filled and p orbitals are empty, leading to the formation
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of the valence and conduction bands, separated by a band
gap. The band gap ranges from a few eV to zero as the lattice
constant is reduced, and a Mg chain will show wide variety
of electronic properties. The null band gap is realized for one
lattice constant d0!4.2 Å, at which the chain is metallic. The
chain is semiconducting near d0 , but either greater or less.
An insulator, semiconductor, or metal can be realized by ma-
nipulating the lattice constant. We have again a strange situ-
ation that Mg atomic structures are mostly insulating al-
though the usual 3D Mg crystal with the hexagonal close-
packed structure is metallic, and this can be attributed to the
difference in the effects of three, rather than one, dimension.
The energy bands for three Si atomic structures are calcu-

lated in Sec. II and the metallic nature is found. In Sec. III, a
Mg atomic chain is studied to demonstrate the usefulness of
group-II elements in forming an insulator. Discussions of
possible experiments are given in Sec. IV.

II. SILICON STRUCTURES
We use a tight-binding theory with universal parameters3

to calculate band structures of various atomic structures. This
method may not be as accurate as ab initio first-principle
methods, but it provides a clear physical picture, which is
more to the point. We need to design the band structure, e.g.,
we often need to known how to change the lattice structure
to widen or raise a band of interest. The tight-binding theory
with universal parameters provides a clear intuitive answer,
and is most suitable for the present purposes. In the applica-
tion of the theory, how the matrix elements coupling s and p
states on neighboring atoms change with an interatomic dis-
tance d is crucial. The matrix element connecting an l state
and an l! state !l ,l!!s ,p" with m bond !m!$ ,#), angular
momentum around the internuclear axis, is expressed by

Vll!m!% ll!m
&2

'd2 , !1"

where & is the reduced Planck constant, ' is the electron
vacuum mass, and d is the interatomic distance. The % ll!m
are universal dimensionless constants and all the necessary
values are tabulated in Ref. 4. It has been found that the
electronic structure of sp-bonded materials are described
well by Eq. !1".3 This means that the relation is valid for a
wide range of d, roughly corresponding to the sizes of small-
est to largest atoms, from 1 to more than 5 Å. Thus, we use
this relation throughout the present analysis. Actually, the
matrix elements will drop exponentially for larger distances
and therefore we may overestimate band widths for lattice
constants of order or beyond 5 Å. This overestimate, how-
ever, does not change any qualitative conclusions in this ar-
ticle. For s and p-state atomic energies (s and (p , the
Hartree–Fock term values are adopted, which are also tabu-
lated in Ref. 5, and only the nearest-neighbor interaction is
included as usual.3 The resultant secular equations are solved
numerically to obtain band structures.
The band calculations below are performed as if the

atomic structures were floating in the vacuum, neglecting the
effects from the substrate. Experimentally atomic structures

have to be created on the substrate and the presence of the
substrate will modify the electronic bands quantitatively, but
probably not qualitatively. In 1D structures, a Peierls transi-
tion corresponding to a spontaneous distortion of lattice to
reduce the total energy by opening a gap at the expense of
elastic energy,6 or an Anderson localization of electrons due
to the random fluctuation of lattice potential,7 could be rel-
evant under a certain situation !e.g., depending on substrate
surface or temperature" but are assumed not to occur here.
A Si atom has four valence electrons. Since the highest 3p

state is not fully but one-third occupied, simple periodic
structures will be metallic as long as periodicity just broad-
ens discrete atomic energy levels. This may not be the case
when the upper p-like bands separate or when there is a
significant mixture of 3s and 3p states. The formation of sp3
hybrids in 3D Si crystal with diamond structure is an ex-
ample of the second case, such that each Si atom is sur-
rounded by four nearest-neighbor atoms symmetrically. This
is also true for the 2D square Si array, but we shall see that it
is metallic. Another way to create a Si insulator would be to
change the number of atoms, and therefore electrons per unit
cell so that the highest energy band is fully occupied. Actu-
ally, 3D Si crystal has two atoms per unit cell and this
doubles the number of electrons available to each band. Ac-
cordingly, we will study a 1D Si atomic chain !the simplest
periodic structure", a 2D square Si array !four nearest neigh-
bors", and Si parallel chains where two 1D atomic chains are
placed in parallel !two atoms per unit cell". These structures
are schematically shown in Fig. 1.

A. 1D Si atomic chain

Figure 2 shows the calculated band width as a function of
lattice constant. The 1D Si atomic chain is metallic for all
lattice constants d, since the Fermi energy always lies inside
the doubly degenerate # band which is originated from 3py
and 3pz orbitals perpendicular to the chain direction x. The

FIG. 1. Schematic of atomic structures studied in this work.
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lower and upper bands are originated from 3s and 3px and
can accommodate two electrons per unit cell, respectively,
while the # band can accommodate four electrons. There is
one atom per unit cell, so four valence electrons have to be
accommodated in four states and this explains the position of
Fermi energy indicated by the broken line. Although there is
a band gap between the lower and upper $ bands, it will not
be directly reflected in the electronic properties due to the
high position of Fermi energy. The bottom of the lower band,
the bottom of the # band, and the top of the upper band are
at ), while the other edges of these bands are at X !or its
neighbor for small d", as seen by the dispersion plots for
different d in Fig. 3.

B. 2D square Si array

Figure 4 shows the band width of a 2D square Si array as
a function of lattice constant. The lower $ band and the
upper two $ bands are originated from 3s , 3px , and 3py
orbitals, where x and y are parallel to the array plane, and the
# band is originated from 3pz orbital. Each of these $ bands
as well as the # band can accommodate two electrons. We
have one atom per unit cell and thus four valence electrons.
The Fermi energy indicated by a broken line is inside the #
band, and this makes the 2D Si square array always metallic.
If an insulator is sought in the context of four symmetrically
arranged nearest neighbors, four $ bonds have to be created
using all the 3s and 3p orbitals, as in the case of 3D Si
crystal with the diamond structure. In the present square ar-
ray, there is no way for 3pz state to couple with 3s , 3px , or

3py state on the neighboring atoms since the matrix elements
are mathematically zero due to symmetry. This creates an
isolated # band, and the Fermi energy lies inside this band.
Energy extremals in the present case are observed to occur at
):k!(0,0) or at zone boundaries. The top and the bottom of
the lower band are at M :k!(1,1)#/d and ), respectively.
The top and the bottom of the upper two bands are at X:k
!(1,0)#/d . The bottom of the # band is at ) and the top is
at M. For clarity, energies at ) ,M , and X are shown as a
function of the lattice constant. The top of the lower band
and the bottom of the upper bands change abruptly at small
lattice constants where there is a crossing of two energy
lines. Due to the existence of the # band, it is expected that
2D Si rectangle (dx*dy" arrays are also metallic. This is
observed for several combinations of dx and dy !figures not
shown".

C. Si parallel chains

Changing the number of atoms per unit cell could allow
us to realize an insulator. The structure considered here is
two parallel atomic chains with the same lattice constant dx ,
and the separation of two chains is dy , as shown in Fig. 1. Or
in other words, we first form a molecule Si2 in the y direction
with the separation of dy and arrange it periodically in the x
direction with a period of dx . If we can fully fill the highest
energy level of Si2 , then the parallel atomic chains will be a
good candidate for an insulator. In Si2, there are four
$-orbital states $g ,$g* ,$u , and $u* originated from 3s and
3py , and two doubly degenerate #-orbital states # and #*

FIG. 2. Band width of a 1D Si atomic chain as a function of lattice constant. The broken line indicates the Fermi energy.
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FIG. 3. Dispersion of a 1D Si atomic chain for lattice constant values of 2.2, 3, and 5 Å.

FIG. 4. Band width of a 2D Si square array as a function of lattice constant. The broken line indicates the Fermi energy.
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originated from 3px and 3pz ,8 where states with and without
an asterisk are antibonding and bonding, and g and u stand
for even and odd, respectively. # and #* states are degener-
ate since 3px and 3pz are symmetric with respect to the
diatomic axis y. Each $ state can accommodate two electrons
and each # state can accommodate four electrons including
degeneracy. There are eight valence electrons and eight states
in Si2 . For large interatomic distance dy , the order is
$g ,$g* ,$u ,# ,#*, and $u* from the bottom. Thus, the high-
est occupied level is # and is half-filled. Simple tight-
binding consideration indicates that by reducing dy there is a
possibility that we can realize the ordering of
$g ,$u ,# ,$g* ,#*, and $u*, so that the highest band is # and
is fully filled.
Figure 5 shows energy levels of Si2 as a function of in-

teratomic distance dy . The tight-binding method is some-
times inaccurate in predicting the ordering of energy levels
in diatomic molecules, but gives the correct ordering9 for the
present Si2 case. The figure shows that the ordering of
$g ,$u ,# ,$g* ,#*, and $u* needed for an insulator occurs at
an extremely short dy around 1.2 Å, much shorter than the
natural interatomic distance of 2.2 Å for Si2 ,9 or crystalline
spacing of 2.35 Å, and is not practically realizable. This
ordering is known to occur in the molecule C2,8 and the
same idea can be pursued for C atomic structures to form an
insulator. In case of Si parallel chains, it is expected that the
structure is always metallic because the highest occupied
band in Si2 is partially filled. This is confirmed in Fig. 6,
where the dispersion curves are shown for some dx values
with dy fixed at 2.2 Å. The band structure is understood in
connection with that in Fig. 3. The discrete molecular levels
of $g ,$g* ,$u ,# ,#*, and $u* broaden to form bands, total-
ling eight states per unit cell. The degeneracy of # and #*

levels are lifted since 3px and 3pz are not symmetric after
the parallel chains are formed in the x direction. The Fermi
energy indicated by a broken line lies inside the bands. Al-
though the molecular # level is half filled in Si2 , the highest
occupied bands in the parallel chains are not half-filled, so
that the Mott transition,6 which causes a metal with a half-
filled band in a 1D system to become an insulator due to the
Coulomb interaction, is irrelevant here.

III. STRUCTURES BY DIVALENT ATOMS

As shown above, all three Si atomic structures are consis-
tently metallic, although the usual 3D Si crystal is an insu-
lator. The main reason for this is the # band originating from
3p orbitals perpendicular to the structures !the chain direc-
tion or the array plane", inside which the Fermi energy lies.
In the 3D Si crystal, this # band is eliminated due to the
formation of 3D bands, often associated with sp3 hybrid.
If we wish to form an insulator, it will be better to use

divalent atoms belonging to group II, since their highest oc-
cupied level is valence s and is fully filled while all the
valence p levels are empty. Thus, we can empty the un-
wanted # band, and the band gap between the lower and
upper bands which we discuss above is reflected directly in
the electronic properties. In order to demonstrate the attrac-
tive features of group-II elements, a Mg atomic chain is stud-
ied. Figure 7 shows the band width as a function of lattice
constant d. The lower band is completely filled and the upper
band is empty at zero temperature, so we call them the va-
lence and conduction bands, respectively. HOMO and
LUMO stand for highest occupied molecular orbit and low-
est unoccupied molecular orbit, respectively. The Mg atomic

FIG. 5. Energy levels of a Si2 molecule as a function of interatomic distance.
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FIG. 6. Dispersion of Si parallel chains for some combinations of dx and dy , where x is the chain direction and y is the molecular direction, as depicted in Fig.
1.

FIG. 7. Band width of a 1D Mg atomic chain as a function of lattice constant.
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chain is almost always insulating, except around d!4.2 Å,
where the band gap becomes zero and the chain behaves as a
metal with a finite density of states at the Fermi energy. For
Be, the corresponding d is 4.5 Å !not shown". Again, we
encounter a strange situation since the 1D Mg atomic chain
is an insulator while the usual 3D Mg crystal with hexagonal
close-packed structure is a metal. The difference can be at-
tributed to crossing of the s and p bands at small spacing.

IV. EXPERIMENTAL FEASIBILITY
Atomic structures have to be created on the substrate ex-

perimentally, although the above band calculations are per-
formed for an ideal situation so that all the substrate effects
are negligible, as if the structures were floating in the
vacuum. A Si substrate could be available for this purpose,
but we need to passivate the dangling bonds of the surface
atoms since they would otherwise create chemical bonds
with the atomic structure. We may use hydrogen atoms to
terminate.10 After successful termination, all the dangling
bonds are saturated and the atoms are arranged at potential
minima determined by the Van der Waals interaction, without
creating any chemical bonds with the substrate atoms. The
arranged atoms are subject to the thermal diffusion on the
surface, and therefore, low temperature environment is pre-
ferred.
There are conventionally two characterization techniques

to distinguish metal from insulator—optical and electrical
ones. The former is promising since a near-field optical mi-
croscope approaching the atomic system size is now being
developed.11 The spot size is currently on the order of 500 Å
in diameter, which is two orders of magnitude larger than a
typical lattice constant. The input light causes a vertical !mo-
mentum conserving" transition of electrons from the lower
filled band to the upper empty band in an insulator, and from
the lower filled band to the states above the Fermi energy in
the upper band in a metal, both via dipole interaction. De-
tecting signals from an atomic system without having un-
wanted response from the bulk substrate is not trivial be-
cause of the spot size. We may study the second-harmonic
generation !SHG", or the generation of light with double the
input-light frequency.12 The significant advantage of this
measurement is that SHG does not occur in the bulk sub-
strate, due to the presence of space inversion symmetry, and
can occur only at the surface, where the symmetry can be
made absent. Thus, we can only detect the surface atomic

structure and avoid the unwanted response from the substrate
automatically by making use of the nature of the SHG pro-
cess.
Electrical characterization is not easy since there is no

obvious way to obtain ohmic contacts. If an atomic structure
makes chemical bonds with surface atoms of the conductor
substrate, there will generally be a potential barrier at the
junction, which usually shows nonlinear I–V characteristics.
Since there is no simple way to place electrical leads to the
atomic structure, plural STM tips could be used in place of
lead lines to feed current and detect voltage to estimate con-
ductance. The temperature dependence of the conductance
will determine the phase of the atomic structure—an expo-
nential dependence for an insulator with the activation en-
ergy corresponding to the band gap, and practically no tem-
perature dependence for a metal. It is also of interest to check
experimentally whether the conductance for a 1D atomic
chain in the metallic phase is quantized as in mesoscopic 1D
conductors.

ACKNOWLEDGMENTS
One of use !T. Y." is grateful to Y. Takiguchi, D. Huang, J.

Chen, and T. Hiroshima of ERATO Quantum Fluctuation
Project for useful discussions.

1It is impossible to cover references on this topic. Some examples are: J.
A. Stroscio and D. M. Eigler, Science 254, 1319 !1991"; I.-W. Lyo and
Ph. Avouris, ibid. 253, 173 !1991"; H. Uchida, D. Huang, F. Grey, and M.
Aono, Phys. Rev. Lett. 70, 2040 !1993".
2M. F. Crommie, C. P. Lutz, and D. M. Eigler, Science 262, 218 !1993".
3W. A. Harrison, Electronic Structure and Properties of Solids !Freeman,
San Francisco, 1980"; Surf. Sci. 299/300, 298 !1994".
4W. A. Harrison, Phys. Rev. B 24, 5835 !1981".
5W. A. Harrison, Phys. Rev. B 31, 2121 !1984".
6C. Kittel, Introduction to Solid State Physics, 5th ed. !Wiley, New York,
1976".
7P. W. Anderson, Phys. Rev. 109, 1492 !1958"; P. W. Anderson, D. J.
Thouless, E. Abrahams, and D. S. Fisher, Phys. Rev. B 22, 3519 !1980".
8H. B. Gray, Electrons and Chemical Bonding !Benjamin, New York,
1964".
9A. Redondo, W. A. Goddard III, and T. C. McGill, Phys. Rev. B 15, 5038
!1977".

10J. W. Lyding, T.-C. Shen, J. S. Hubacek, J. R. Tucker, and G. C. Abeln,
Appl. Phys. Lett. 64, 2010 !1994".

11R. D. Grober, T. D. Harris, J. K. Trautman, E. Betzig, W. Wegscheider, L.
Pfeiffer, and K. West, Appl. Phys. Lett. 64, 1421 !1994"; W. P. Ambrose,
P. M. Goodwin, J. C. Martin, and R. A. Keller, Phys. Rev. Lett. 72, 160
!1994".

12T. F. Heintz, M. M. T. Loy, and W. A. Thompson, Phys. Rev. Lett. 54, 63
!1985".

1249 Yamada, Yamamoto, and Harrison: Energy band of manipulated atomic structures 1249

JVST B - Microelectronics and Nanometer Structures


