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Hot-electron transport properties of AI,Ga, -,As/GaAs quantum wires under high electric fields are 
studied by means of the balance-equation approach using a model with multiple species of carriers. 
Each transverse subband is assumed to have its own electron temperature, Fermi level, and mean drift 
velocity differing from other nondegenerate subbands. The intersubband Coulomb interactions are 
taken into account perturbatively for the first time together with acoustic and polar optic phonon 
scatterings in the numerical calculation. Our calculation shows that although the electron temperatures, 
Fermi levels, and drift velocities of different subbands differ markedly from each other, the overall 
average drift velocity and the resultant nonlinear mobility are very close to those predicted by the 
conventional model assuming single species of carriers in the multisubband quantum wire system. 

1. Introduction 

Multivalley or multisubband occupations of carriers are known to play an important 
role in determining their high field transport behavior in bulk [l, 21 and low-dimensional 
[3 to 81 semiconductors. Electrons in different valleys (subbands) are coupled via electron- 
phonon, electron-impurity, and electron-electron (e-e) Coulomb interactions. Unlike in 
a bulk semiconductor, where carriers in different valleys have different effective masses and 
thus are usually treated as different species of carriers, in a low-dimensional semiconductor 
system, carriers dwelling in different subbands share a common effective mass and have 
usually been treated as a single species of carriers. Recently Guillemot et al. [4] studied the 
electron-longitudinal optical phonon coupling in quasi-two-dimensional quantum wells 
under steady-state high-field transport conditions. Their calculation, which is based on the 
balance-equation approach of high-field transport in a two-subband system, assumes a single 
center-of-mass velocity and a common electron temperature but separate Fermi levels for 
both subbands. Wang and Lei [7, 81 calculated high-field electron transport in quantum 
wires assuming a single center-of-mass velocity, a unique electron temperature and a common 
Fermi level for all the fifteen subbands. The feasibility of these assumptions needs to be 
examined. In a low-dimensional (e.g. quantum wire) system, although intrasubband 
Coulomb interaction is believed to be strong in comparison with impurity and phonon 
scatterings to yield an electron temperature and a Fermi level in each subband, the 
intersubband Coulomb scatterings, which involve small form factors, may not be strong 
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enough to give a common electron temperature or a common Fermi level for different 
subbands. 

The purpose of this paper is to discuss the Coulomb intersubband scattering on the 
electron transport in quantum wires using a model with multiple species of carriers. For 
the sake of simplicity, cylindrical GaAs wires surrounded by AlGaAs are considered where 
the transverse dimension can be described by one parameter, the radius of the wire which 
is taken as 9nm. For this system we can assume that electrons interact only with bulk 
acoustic (Ac) phonons and longitudinal optical (LO) phonons and calculate the transport 
properties without impurity scatterings. We consider the electron occupation of the ground 
and the first excited subbands. Each subband is assumed to have its own electron 
temperature, Fermi level, and average drift velocity. Our numerical results show that 
although the electron temperatures, Fermi levels, and the drift velocities of the ground and 
excited subbands differ markcdly from each other, the overall average drift velocity and 
the resultant nonlinear mobility are very close to those predicted by the conventional model 
assuming single species of carriers for the multisubband quantum wire system. 

2. Hamiltonian and Balance Equations 
for Forces, Energies, and Particle Numbers 

We consider a cylindrical quantum wire of radius Q and length L,, and denote by N the 
total number of electrons. The electron energy in the quantum wire can be expressed as 

where E, is the transverse two-dimensional (2D) energy of the n-th subband, kZ the 
longitudinal one-dimensional (1D) wave vector, and m the effective mass. To concentrate 
on the effect of the intersubband Coulomb interaction we consider the electron occupation 
of the lowest three subbands. The wave functions of these three transverse states are given by 

where C, = (fi eyn)- '  (n = 0, f 1) is the normalization factor, ( r , , ,  4) denotes the 
transverse coordinate, x InI  ( > O )  represents the first zero of the n-th order Bessel function, 
i.e. Jn(xlnl) = 0 and y, = Jn+l(xI,I). The corresponding eigenenergy is E, = xf,,/(2rn~~). It is 
easy to see that the n = 1 subband is degenerate with the n = -1 one. In the following, 
we label these two degenerate states as 1 and - 1, respectively, and the ground state as 0. 

In the framework of balance-equation approach [9, lo], the Hamiltonian of the system 
is written in the form 

H = H ,  + H ,  + H ,  + H c p ,  ( 3 )  
where 
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are the center-of-mass (CM) Hamiltonians, where ui and Zi are the CM drift velocity and 
coordinate (in z-direction) of subband i (i = 0, 1). E = E i  is the applied electric field 
along the wire. fi,, fi,, and fi-, are the electron numbers of subbands 0, 1, and -1. In 
the second quantization representation of the relative electron systems they are expressed 
by (n  = 0, *l)  

N o  + N ,  + N - ,  = N .  We assume, for the two degenerate subbands 1 and -1, that the 
average velocities and electron numbers are equal, u ld  = u -  Id, and N ,  = N - , .  The relative 
electron Hamiltonian reads 

(6) 
is the Coulomb interaction and ~t the low-frequency dielectric constant. K,(x) is the 
modified Bessel function of zeroth order. 

H ,  = c Qqlb;lbql 
92  

is the Hamiltonian of bulk phonons; q = (qI1, 4,). 

= c c 1 M(n ,  n’, 4, A) (bql  + b t q l )  C!k,+q,oCn’k,a 
nn’ q l  a 

is the coupling between electrons and bulk phonons, the coupling matrix element is 

M(n,  n‘, q> 4 = M(q,  4 Fnn+ll)  

(7) 

with the 3D electron-phonon coupling matrix element M(q,  A), and the form factor is given by 

0 

The intrasubband form factors F,, and F ,  , and intersubband form factors F,, and F ,  , 
are illustrated in Fig. 1. The Knn,, ,,, term in the electron-electron Coulomb interaction 
describes the collision between an electron in subband m and an electron in subband m’, 
which are scattered, respectively, into subband n and subband n‘. K,,,,,, K l l ,  11, and 
K -  , - - , are involved in pure intrasubband Coulomb scattering. These collisions 
contribute to establishing an electron temperature within each subband. In our treatment, 
we have assumed that each subband has its own temperature and hence we need not 
calculate the explicit expressions of KO,, ,,, K ,  ,, , and K - , - ,, , - 1. Furthermore, the 
two degenerate subbands 1 and - 1 are assumed to share a common electron temperature 
and there is no need for the explicit expressions of intersubband Coulomb scattering between 
these two subbands. The collisions between electrons in the ground subband 0 and electrons 
in the first excited subbands 1 and - 1 are essential in our model. As a matter of fact there 
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Fig. 1. Intrasubband (0-0 and 1--1) 
and intersubband (0-- 1 and 1 -( - 1)) 
form factors as functions of normal- 
ized transverse wave vector q , , @  

0 2 4 6 8 I0 
411 4 - 

are only two classes of nonzero coefficients in our model. The first class including 

electrons of different subbands but which are scattered within the same subband. This kind 
of collisions tends to give a common temperature for the ground subband and the first 
excited subbands. v = e2/(4n~oxL,).  The second class, including Kol,  ol, Klo,  o - l ,  
K -  - K ,  - oo, K -  1 1 ,  oo, Koo,  - and Koo, - involves exchange of particles between 
different subbands with conserving the number of electrons within each subband (Kol, ol ,  
Klo,  K O -  I, o -  and K -  - or with transferring two electrons from one subband to 
the other ( K ,  - oo, K -  oo, Koo,  ~ and Koo,  l l ) .  All these coefficients have the same 
value and will be denoted by vX’( lq , ( )  in the following. In Fig. 2 X 2  and X’2 are plotted 
as functions of 1q,1 e. Note that X 2  is almost two orders of magnitude larger than X”. 
Hence the Coulomb interaction can be separated into three parts: the first is the 
“intrasubband” part containing Knn, nn (with n = 0, f l), which contribute to an electron 
temperature T,, in subband n. The second part includes terms Knn,,mm, (with n, n’, m, 
m‘ = 4 l), which is assumed to be efficient in rendering TI, = T-le. The last part, which 
is made up of the remaining terms, will be denoted by H:. The relative electron Hamiltonian 
can now be rewritten as H e  = Hoe + H l e  + H:, in which 

Kol,  = = Klo, o1 - - K-lo ,o - l  e v.X((q,(), describes collisions between two 

t = 1 E O ( k z )  C ~ k , u C O k , u  + c 1 K O O ,  OO(Iqz1)  cO, k . + q , a C O ,  k : - q . o r C O ,  k :u ’COk,o  7 
k .0  k.k:q, uu’ 

H k  l e  = 1 c c n ( k z )  C!k,aCnk,u 
k,u n =  ? 1 

H i ,  along with electron-phonon interaction He,, will be handled perturbatively against 
H o  = Hoe + H l e  + H,. In the balance-equation theories [9] 

1 
40 = 2 ~ X P  ( - f f o e / T o e )  ~ X P  ( - H k  l e /TIe)  ~ X P  (HpIT) (10) 
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Fig. 2. Intersubband Coulomb “form 
factors” X z  (solid curve) and X” 
(dash-dotted curve) as functions of 
normalized 1D wave vector 1q,1 e 

with T being the lattice temperature. The density matrix y ( t )  should satisfy the Liouville 
equation i di(t)/dt = [ H ,  4( t ) ]  and the initial condition &?(to) = yo. The statistical averages 
of the rate of change of the electron total momentum P, = N n m u n d  (n = 0, kl), P, = 

-i[P,, HI, the rate of change of the electron energy, H, ,  = - i [H, , ,  HI in subband n, and 
the rate of change of the particle number, #o = - i[H0, HI, in a steady-transport state, lead 
to the force, energy, and particle number balance equations, 

1 
- NoeE + Fop + F,, = 0 ,  
N 

2Nl -eE + F,,  + KIP + F , ,  + El, = 0 ,  

(1 1) 

(12) 

(13) 

(14) 

N 

NO 
- - eUodE + wop + f’&, = 0 ,  

N 

N(UOd, u l d ,  POF, p1F) = ’ 

These five equations, together with the constraint 

N o  + 2N1 = N 

and the relations 

Nn = 1 f ( [ E n ( k z )  - pnFI/Tne) (n = 021) 
kzo 

( f ( x )  = l/[exp (x) + 11 is the Fermi function) form a complete set of equations to determine 
the steady-state values of vOd, uld, To,, T,,, poF, plF, No,  and N ,  at given E ,  T ,  and N .  The 
expressions for Fnp, F,,, Wnp, W,, (n = 0, f l), and N in (1 1) to (15) are given in the Appendix. 
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Table  1 
Parameters used in the numerical calculations 

K, 10.8 24 12.9 
Qo (meV 35.4 3 (eV) I 
Jnlm, 0.07 N ,  (m-3) 8.35 x loz3 
0 5 1  (m/s) 5.3 x lo3 d (ks/m3) 5.3 x 103 

3. Numerical Results and Discussion 

We have performed numerical calculations from (1 1) to (17) of the two-species-of-carriers 
model (TSCM) for an AI,Ga, -,As/GaAs quantum wire to obtain high-field steady-state 
transport for electric fields up to lo5 V/m at lattice temperature T = 100 K. In the 
calculation we have included all the intrasubband and intersubband scatterings due to LO 
phonons with the Frohlich matrix element 

and those due to Ac phonons with the deformation potential matrix element 

Here x, is the optical dielectric constant, 52, the LO-phonon frequency, 8 the acoustic 
phonon deformation potential, v,, the longitudinal sound velocity, and d the mass density 
of the crystal. The values of these parameters are given in Table 1. 

0 2 4 6 8  10 
E(70 ‘ V/m) - 

Fig. 3. Calculated Fermi level vs. electric field E. The solid and dash-dotted curves are, respectively, 
pOF and pIF predicted by TSCM. The dotted curve is the calculated result of pF from SSCM. The inset 
shows the fraction of electrons in subband 0 predicted by TSCM (solid curve) and by SSCM (dotted 
curve) 
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Fig. 4. The electron temperature as a func- 4 450~ ' ' ' I 1 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' I tion of external electric field E. The solid- 

300 1 
curve represents To,, the electron tem- 
perature of subband 0, and the dash-dotted 
curve stands for TI,, the electron tem- 
perature of subband 1 (and - 1 )  obtained 
in TSCM. The dotted curve is thc electron 
temperature x, obtained by SSCM 

/ 1 
0 2  4 6 8 I0 

E (70 ' v/m)- 

For comparison we have also performed numerical calculations for the same system 
using the single-species-of-carriers model (SSCM), i.e. assuming a common center-of-mass 
velocity vd, a single electron temperature T,, and a unique Fermi level pF for all the electrons 
in different subbands as in [7, 81. 

In Fig. 3 we plot the calculated Fermi levels as functions of the applied electric field E. 
In absence of the applied field E, poF = plF and they split off when E += 0. The inset of the 
figure shows the fraction of electrons in the ground subband: no = No,". The solid and 
dash-dotted curves are the results of TSCM and the dotted curves are results of SSCM. 
The two models predict different Fermi levels and electron occupations. 

In TSCM the electron temperatures of the ground subband (Toe) and the upper ones 
(T1J differ markedly at high fields as shown in Fig. 4. The electrons in the upper subbands 
are hotter than those in the ground one. The electron temperature T,  predicted by SSCM 
is very close to but slightly lower than To,. This tallies with the electron occupations no 
predicted by the two models as shown in Fig. 4. 

The drift velocities uOd and u l d  calculated from TSCM are plotted in Fig. 5 as functions 
of the applied electric field. The overall averaged drift velocity 

- f 2 N l u l d  
Ud = 

N 

and the nonlinear mobility 

- ud p = -  
E 

predicted by TSCM, and the drift velocity ud and nonlinear mobility p obtained in SSCM, 
are also shown in the figure. It can be seen from the figure that although the drift veloc- 
ity vld of the upper subbands is markedly higher than that of the ground subband, v0d in 
TSCM, the overall average drift velocity Vd and nonlinear mobility fi  predicted by TSCM 
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L F 

Fig. 5. Steady-state drift velocities uOd 
and u l d  of subbands 0 and 1 (- 1) and 
the overall average drift velocity Cd 

and nonlinear mobility p calculated 
by TSCM, are shown as functions of 
the applied electric field E. For com- 
parison, the steady-state drift velocity 
vd and nonlinear mobility p, predicted 
by SSCM for the same GaAs quan- 
tum wire are also shown 

0 2 4 6 8 I0 
E(D4 V/m) - 

are very close to u,, and p obtained in SSCM. This justifies that the much more simplified 
SSCM calculation yields essentially correct results for the overall drift velocity and nonlinear 
mobility in a realistic quantum wire system. 
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Appendix 

We give below the full expressions of the quantities appeared in the balance equations 
(11 to 15). The forces and the energy loss rates induced by LO and Ac phonons are 
given by 

Fop = 2 c IM(O, 0, 4, L)l2 q J 2 ( 0 , 0 ,  q,, Qq, + 0 0 )  
q, 
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with w, = U n d q 2 ,  c n k ,  = E,(k,) - &F and E n k z  = En(k2) + kzV,d ( n  = 0, 1). n,(n,  a', q,, w )  is 
the imaginary part of the e-e correlation function n ( n ,  n', qz, w). In the absence of dynamic 
screening, it takes the form 

The expressions for fl, and wlp  can be obtained from (A2) and (AS), respectively by 
exchanging all the indices 0 * 1. 

The force experienced by the center of mass and the energy-loss rate of electrons in 
subband 0 due to intersubband Coulomb interaction, are 

x n,(o,o, 42, w )  H,(L 1,429 0 - mod 3 ('49) 

in which ool = wo - w1 = qL(vOd - uld). The forces and the energy-loss rate of electrons 
in subbands 1 and -1 due to intersubband Coulomb interaction Flc + and 
W,, + W- Ic  can be obtained from (A8) and (A9), respectively, by exchanging all the indices 
O H  1. 
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