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structures 
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Paul-Drude-lnstitut t3r Festkorperelektronik. Hausvogteiplatz 5-7, 101 17 Berlin, Germany 
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Abstract. We investigate the electronic states in low-dimensional semiconductor systems created 
by 6 doping af donors by solving ScMdinpr  and Poisson equations self-consistently. The 
increase of the density of states near the population threshold leads to the existence of two 
physical solutions to the same boundary-value problem due to the electron-donor dipole charge 
potential. An empty and a filled State can be self-consistent for a depletion potential in the two- 
dimensional system for heavy carriers as well as in the one-dimensional and zero-dimensional 
systems. The bisolution behaviour for electrons in the GaAs wire persists up to - 37 K if level 
broadening is negligible. We find that the energy levels of the lowest subband an well described 
using simple variational functions. The canier density does not vanish gradually as the doping 
density that compensates the fixed depletion charge is decreased, indicating that true bistability 
does not take place in these systems. 

1. Introduction 

The increase of the density of states (DOS) g ( E )  at energies E near the bottom of the 
transverse subbands, g ( E )  c( for d = 1, 2, and 3, is one of the prominent 
features of low-dimensional systems and has been anticipated to improve device performance 
[ 1,2]. In optical devices, the energy distribution ,of the injected caniers is squeezed as the 
spatial dimensionality d is reduced, leading to low-threshold and narrow-spectral-width laser 
operation [ 11. In the last decade, semiconductor quantum wires and dots have been fabricated 
using various techniques. and many novel characteristics have been discovered [3]. In 
addition, a considerable number of theoretical studies has been devoted to examining the 
one-dimensional (ID) and zero-dimensional (OD) states in these structures [4-91. Additional 
confinements of a two-dimensional (2D) electron gas in heterojunctions, where the large band 
gap discontinuity provides an almost ideal hard-wall potential in the direction perpendicular 
to the heterointerface, are very often realized by means of depletion-type techniques [3]. 
The specific nature of the confined states, thus, depends crucially on the geometrical features 
of the structures. This fact requires us to solve the Poisson equation self-consistently even 
in a primitive analysis since screening s effects play an  essential role in establishing the 
confining potential in the vicinity of the channel boundary [7]. The self-consistency of 
the lateral potential depletion has been shown to imply a significant importance in edge- 
state equilibration [lo]. Nixon and Davies 141 employed the Thomas-Fermi model to 
investigate the disordered potential in ID channels due to the random distribution of donors 
in selectively doped heterostructures. Quantum-mechanical calculations of the ID and OD 
subbands were presented, for example, by Laux and Stern [7] and by Kumar and co-workers 
191, respectively. The OD energy levels in quantum dots are directly reflected in the Coulomb- 
blockade oscillations and have been studied extensively [ll, 121. We emphasize that the 
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role of the neutral region, which surrounds the depletion region of the quantum structures, 
was often omitted in the previous studies. Consequently, the position of the Fermi level 
was determined relative to the quantized energy levels to achieve required carrier densities. 
In reality, the Fermi level should be determined to be consistent with the whole system. 

In this paper, we investigate the electrostatic potential and the electron distribution in 
low-dimensional structures provided by 8 doping in GaAs. We explicitly take into account 
the presence of the neutral region, so that the position of the Fermi energy EF is determined 
globally. We have calculated the subband threshold energy as a function of the charge 
density Nd in the depletion region. Self-consistent treatment of the Poisson and Schrodinger 
equations yields two static solutions associated with the subband population. Because of 
the singular DOS in ID and OD systems, a significant number of electrons suddenly occupies 
the subband at the moment the bottom energy is lowered below EF. The threshold energy is 
pushed down abruptly as a consequence of a large electron-donor dipole potential originating 
from the excessive electron occupation, resulting in a jump in the threshold energy (and also 
in the electron density) when Nd is increased. On the other hand, if the threshold energy is 
raised from a value for which the subband is originally filled by decreasing Nd, the subband 
is depleted at a lower value of Nd compared to the reverse direction. The electronic states 
hence exhibit two physical solutions for a range of Nd around the onset of the population. 
We also calculate the energy levels using the variational wavefunction technique [6,13] at 
temperature T = 0 K. We find that this approach confirms excellently the results of the 
numerical simulation. Since the analysis is completely analytical, detailed physical insight 
into the nature of the electron states can be provided. 

Y T&guki and K Ploog 

2. Low-dimensional &doped structures 

In this section, we describe our model structure by considering a quantum wire produced 
by line doping of Si donors in GaAs [14], which is illustrated in figure l(a). The cylindrical 
doped region is assumed to be perfectly straight, so that the electron wave function in the z 
direction is represented by plane waves. The charge density in the structure consists of the 
distributions of free electrons and ionized donors and background acceptors. We assume 
a uniform distribution of the ionized-donor charge within the radius a. The background- 
acceptor density is also assumed to be uniform and equal to nA = lozo m-3. In searching 
for a self-consistent solution of the Schrodinger and Poisson equations, we divide the 
total doping density into two parts [15], no = n r  + &. The ionized acceptor charge 
is compensated by E?, and so zu2n:p' = 7cDZnA = Na, where D is the radius of the 
depletion region. The free electrons are generated by ng, i.e. 

Correspondingly, the Poisson equation is separated as 

where E is the dielectric constant of GaAs. The solution of (b), i.e., the depletion potential 
due to the fixed space charge, is 

( 3 4  
= EA - (&2Nd/4ir&)[2hl(D/r) f - 11 U < r < D (3b) 
= EA D c r. (3d 

2 2  2 Vd(r) = EA - (e2Nd/4X&)[2hl(D/U) - [(Dz - U 2 ) / D  U ]r ] 0 < r < U 
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Figure I. (4 A schemxic vie% of a line-doped smcture. Tho dopant aoms arc confined in 
the cylinder of radius o.  The ionized backgmund accepior chwgc i s  distnbutcd uniformly in he 
dcplclion region of radius D. The depletion region i s  sunounded by 3 neulral region. (b) The 
profilc ofthc conduction bAnd cdg< V ( r )  in the mdid dinction. The Fermi level EF i s  fixed a1 
the nccdptor h c l  EA in ths nautnl region. The open and filled circles represenr ionized and 
neutral acceptors. respecuvely. 

We considcr that the system is in equilibrium, so that the Fermi level EF in the neutral 
region is fixed, at T = 0 K, at the acceptor level E A  (sce figure I(b)). When EF lies 
above EA. the acceptor impurities are fully ionized. Throughout this article, all energies are 
measured relative to the Fermi level, i.e., EF is set to be zero. For simplicity, we assume 
that En is located at the midgap of GaAs. The results to be shown below do not depend 
qualitatively on the value of E,,. The elecuon density n ( r )  = N ,  p , ( r )  ' is obtained 
through the solution of the Schrodinger equation. Hcre, the sum runs over the occupied ID 
modes and the linear electron density N, of the i t h  mode with the threshold energy E, is 

N, = ( 1 / 7 ~ ) ( 2 m k s T / h ' ) ~  'F-1 ~ ( ( E F  - E , ) / k B T )  (4) 

U here Fk is the Fermi-Dirac integral of order k and m is the effective mass of electrons in 
GaAs. Because of the cylindrical symmetry, the wave function is separable in radial and 
angular directions: 

where qn,f(r) satisfies the radial equation 

(l/r)((d/dr)(r dqn,dr)/dr)) + [(2m/k2)Wn.1 - v(r)l- Zz/rzlpn,i(r) = 0 

n = 1 , 2 , 3  ,.... (6) 

The total (effective) energy of the conduction band edge is given as 

V(r) = vd(r) + Vdr) + Vxc[n(r); rl. (7) 

We include many-body effects in the numerical calculation. The exchange-correlation 
potential V,, is evaluated within the local-density approximation [16]: 

V,,[n(r); r ]  = -(e2/8a&@)(Z/nar,)[1 + 0.O545rs In(1 + ll.4/rs)] (8) 

where LY = (4/91r)'l~, r, = [ 4 n ~ ~ n ( r ) / 3 ] - ' ~ ,  and a. = 4n&Fi2/mez is the effective Bohr 
radius. 
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3. Numerical solutions 

In this section, we solve (B) and (6) numerically for a given n r .  The analytical approach 
using a variational function is discussed in the next section. Since the Fermi level is initially 
fixed in our approach, the total doping density is determined to satisfy charge neutrality, 
Ny = Ni. The presence of the electrons increases the separation of the conduction-band 
edge from the Fermi level. One may hence suspect that the iteration can diverge. We have 
found, however, that the convergence is achieved rapidly without using the damping factor 
[17], which is often introduced to stabilize the simulation. 

Y Tukuguki and K Ploog 

Figure 2. (a) The line3 elecrion densily .V, and (3) rhc threshold energy E, of modes t = (n, 1 )  
JS il funcuon of the roral linear doping dcnsoy Ne- .VJ 31 T = 0 K .  In (b) thhe Fcrmi lcvcl, uhch 
is 521 10 be z m .  IS ~ndicxed by the dolled line. Thc hysteresis in El,,, around lhc populaion 
rhre~hold is expmded in Ihc inrct. The mons indicate rhe dvecrion of the vularion of rhe 
doping densit). 

The linear electron density Ni and the threshold energy Ei of ID modes i = (n, I )  are 
shown in figure 2 as a function of the total linear doping density for T = 0 K. Because 
of the singular ID DOS, a significant number of electrons populate the modes even when 
the threshold energy is only slightly below EF. As has been observed in the 2D case [13], 
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the Fermi energy is pinned at the bottom of the ID modes when it crosses the threshold 
energies, resulting in the discontinuous increase of N, . One finds a hysteresis accompanying 
the population of each mode as the doping density is varied. In solving the equations for 
a series of Nd, the previous SolUtiOn iS used as an initiai guess in the iteration for self- 
consistency. The hysteresis in El,o is expanded in the inset of figure 2(b). 

8 -1 N, (10 m ) 
Figure 3. (a) The linear electmn density NLJI  and (b) lhe threshold energy Ec.o of the lowest 
mode as a funclion of Nd calculated at T = 0 (thin solid line and circles), LO (dnsh-dotted line), 
20 (dashed line), 30 (dotted line), and 40 K (solid line). Ideal d-function-type doping (a = 0) 
is assumed. The bistobility disappws for T =- 37 K. R s u l t c  within the Haruee approximation. 
which exhibit smaller hysteresis. are also shown for T = 0 K .  The mows indicate the direction 
of the variation of Nd. 

In figure 3, we show the electron density and the threshold energy Ei.0 of the 
lowest mode as a function of Nd. We have assumed here an ideal 8-function-type donor 
distribution (i.e., a = 0). This variation of a makes no practical difference except an 
overall shift in the doping density, though the hysteresis becomes smaller as a is increased 
beyond the extension of the electron wave function. The hysteresis is better illustrated here 
since Nd is roughly unchanged in figure 2 once the nodes are occupied. At T = 0 K, 
modes are populated by electrons when the threshold energy crosses EF as Nd is increased. 
Just after the level crossing at Nd = N t ,  a considerable number of electrons suddenly 
occupy the mode because of the singular ID Dos. As we are dealing with the 6-doped 
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system, this corresponds to a creation of an electron-donor dipole charge in addition to 
the fixed space charge. The conduction-band edge, and consequently the threshold energy, 
is substantially lowered due to the dipole-charge potential V,, leading to the abrupt jump 
in Nl,o(El,o) to N&(E$. Note that the energy level is pushed up if only electrons are 
added to the channel, i.e., the dipole charge in the &doped system is essential for the 
hysteresis effect. On the other hand, when Nd is decreased from a value for which the 
mode is initially populated, N1.0 remains finite and decreases gradually even for Nd e NF 
due to the space charge stored in the cylindrical well. Eventually, the mode is depleted 
at Nd = Nk < N!. Therefore, the self-consistent potential exhibits two solutions for 
the doping densities of Nk < Nd < N! as shown in figure 4. It should be noted that 
the total doping densities corresponding to the two electron states shown in figure 4 are 
different, i.e., Nd for the empty state and Nd+Nq for the filled state. Nonetheless, our result 
demonstrates that two distinct electron states can be self-consistent with a certain depletion 
potential in low-dimensional systems. The exchangecorrelation effect, which is usually 
not very important in GaAs, enhances-the hysteresis effect drastically, as shown in figure 3 
for T = 0 K, since we are dealing with a regime of low electron concentration where the 
average kinetic energy of electrons is comparable to the average interaction energy [13]. We 
note, however, that the effect is not essential for the occurrence of the bisolution behaviour 
itself. In double-barrier resonant-tunnelling semiconductor heterostructures, bistability due 
to the build-up of negative space charge in the quantum well between the two barriers has 
been observed in the current-voltage characteristics [IS]. We emphasize that the resonant 
tunnelling represents a dynamical process, while the effect presented here is due to a static 
charge build-up. The singular DOS belonging to the mode that crosses EF is responsible for 
the abrupt jump in the level energy, so that hysteresis takes place also when multiple modes 
are occupied. However, the hysteresis becomes smaller for higher modes since the addition 
of more electrons to the lower modes effectivety weakens the singularity. In figure 2, the 
hysteresis for higher modes is nearly invisible since the charge accumulation into the lower 
modes dominates the change of the total doping density. 

If Nl,o continuously approaches zero as Nd decreases, the energy level possesses true 
bistability. However, our numerical simulation indicates that this is not the case. On the 
contrary, there is a finite range of the total doping density, N k  c iTa2nD c Nk + N?,, for 
which our scheme does not give a solution since Nko > N! - Nk in our model structure. If 
nD is fixed, as is the case in conventional simulations [7,9], N, will be able to take arbitrary 
values around zero. However, these states are not ‘stable’ in our approach. 

In the classical approximation, the local electron density is estimated using the three- 
dimensional DOS and the Fermi-Dirac statistics [4,5]. Hysteresis is found not to take place 
in the classical simulation because of the slow increase of the number of electrons 1151. 
We have applied our numerical technique to a conventional 20 &doped structure and fo,und 
that the bistability does not take place either (for electrons). Broadening of energy levels 
due to scattering and thermal spread of the Fermi distribution smear out the singularity of 
the ID DOS. The results of a simulation at several temperatures are shown in figure 3. At 
finite temperatures, the Fermi level in the neutral region needs to be adjusted to balance the 
ionizations of the background donors and acceptors. We have assumed, however, that EF is 
always fixed at EA. This simplification will be reasonable at the low temperatures considered 
here. The excited states are substantially above EF in the regime of the hysteresis, and so 
the temperature effect primarily arises from the thermal population of the lowest mode. 
Although the abrupt jump in E,.o is triggered at lower N! with increasing T ,  it is still 
present over a wide range of T ,  indicating that the effect can survive in the presence of 
moderate disorder. The hysteresis disappears at T, - 37 K as the thermal energy becomes 

Y Takagaki and K Ploog 
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r (nm) 
F i p  4. Two salutions of the effective potential V ( r )  and the electron distribution n( r )  when 
themodeisoccupied(N1,,,=8.8xIO'm-~)fora= I n m a n d N ~ = 6 . 1 x 1 0 8 m - ' a t T = O K .  
The dashed lines indicate the corresponding mode threshold energies (9.3 and - 10.9 meV). The 
dotted line represents the F m i  level EF.  When the mode is not occupied, V = Vd. 

comparable to the separation of the two stable branches in El.0. We have also examined 
the hysteresis effect when the effective mass of the camiers is increased to simulate heavy 
holes, where we obtain N j  - N )  = 3.1 x lo7 m-', EYo = 126 meV, N:o = 8.4 x IO8 m-l, 
and T, - 170 K. The bisolution behaviour is enhanced for heavier carriers due to stronger 
many-body effects [13] and confinement of the carriers near the parent dopant atoms [15]. 
However, the level broadening, which is not included in the simulation, will be critical in 
the p-type channel. 

4. The variational wave-function approach 

We now investigate the electronic states in the ZD, ID and OD 8-doped structures using the 
variational wavefunction technique [ 131. We neglect the many-body exchange-correlation 
effects, for simplicity. The Hartree approximation may not be appropriate to examine the 
behaviour in the low-electron-density limit, as evidenced by the numerical simulation in the 
previous section. However, we think that the qualitative trend of the bisolution behaviour 
can be described within our approximation. 

Let us first consider the line-doped quantum wire. We assume that the donor atoms are 
confined in a cylinder of infinitesimal radius. The potential energy V,(r) due to free carriers 
induced in the space-charge region is given by the solution of the Poisson equation with the 
electron charge density and the corresponding donor density as the source term: 

Pdr) = -eN~DIlv(r)l* - a(r)l (9) 

and so 
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We employ the following variational wave-function for the lowest subband [13]: 

Y Tahgaki and K Ploog 

m ( r )  = (~/a)I”be-”.  (11) 

The average radius ro ( r )  of the electron channel for this wave function is b-’.  Because 
of the simplicity of the wave function, the expectation values of all the energy terms in the 
Hamiltonian are easily evaluated. The expectation values of the kinetic energy T ,  V,, and 
V, are given by 

(T) = fi2,BZ/8mDZ (12) 

(h) = E ~ + ( e 2 N ~ D / 4 ~ ~ ) ( 3 - 2 C - 2 1 n , B - 6 / ~ 2 )  (13) 

(14) (V,) = ae N, /A& 2 I D  

where D = ( N ~ D / a n A ) 1 / 2 ,  a = (ln2)/2 - i, and C = 0.577 is the Euler constant [19]. 
In (13), we have assumed that 6 z 2 6 0  >> 1. The ground electronic state is obtained by 
minimizing the total energy per electron, ( T )  f (vd)  + f(Vs), where the factor $ in the 
last term prevents double counting of electron-electron interactions. Since (V,) does not 
explicitly depend on ,5’, the energy minimization can be made independent of Ns. This is a 
great advantage of the 1D case since NJD needs to be determined to satisfy self-consistency. 
If we omit the ,T2 term in (13), the value of 6 to minimize the total energy per electron is 
given by 

60 = 2D/r0 = 2D(2N,’D/ao)1/2. (15) 

The threshold energy of the lowest subband is 

where VO is the threshold energy when N J D  = 0. If the subband is occupied below EF, NJD 
needs to satisfy the self-consistency condition. The linear electron density in (14) is related 
to the energy difference I(V,)[ - Vo between the Fermi level and the subband threshold 
(when I(V,)l > & > 0) through the ID DOS. Therefore, we obtain 

I(V,)l = a e 2 N , ’ D / ~ ~  = (I6aRy1/*/z~)([(VS)I - Vo)I/’ (17) 

where Ry = m e 4 / 3 2 ~ 2 ~ 2 h 2  is the effective Rydberg. We find 

I(V,)l = f128a2/n2)Ry + [ ( ( 1 2 8 ~ ~ / ~ ~ ) R y ) ~  - (256012/~2)Ry VO]”~.  (18) 

The results are plotted in figure 5. If the threshold energy is plotted as a function 
of NiD,  one finds two solutions for 0 < Vo < 64(a/n)’Ry. When VO + Of, 
EiD jumps from zero to -Z56(a/~]~Ry. On the other hand, the threshold energy is 
- 6 4 ( a / ~ ) ~ R y  c E;D c -256(a/a)’Ry when N i D  is decreased from a value for which the 
subband is originally occupied. However, EhD does not approach zero gradually but jumps 
from -64(a /~r )~Ry to 64(a /~r )~Ry when VO = 64(0r/a)~Ry. This instability in the low 
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3.0 - 
E 
v 

$ P 
2.4 

6.12 6.14 6.16 6.18 

N2D (IO'm-') 
Figure 5. The bottom energy of the lowest subband EAD and the average radius of the wave 
function in a I D  8-doped quantum wire. The re.suIIs of the numerical simulation in the 
Hamm approximation are shown at N i D  = 6.I1-6. I4 x IOs m-', while those of the analytical 
approach are shown at N i D  = 6.14-6.19 x IO' m-l. The m w s  indicate the direction of the 
variation of N i D .  

carrier density is in agreement with the numerical result. The minimum electron density 
given by 16ci/n2ao is 3.6 x lo7 m-' in GaAs and is much larger than the change of N:D in 
the regime of bisolution behaviour. Consequently, the ID system does not exhibit bstability 
if the subband energy is displayed as a function of the total doping density NAD + N i D .  
The bisolution behaviour is stronger in semiconductors with a larger effective mass and a 
smaller dielechic constant, such as Si. We note that ro is solely determined by NAD when 
the variational function (1 1) is used. Our numerical simulation, however, indicates that ro 
depends on the electron density and takes two different values corresponding to the two 
solutions. 

We have applied a similar procedure to a ZD &doped system with infinitesimal thickness 
of the doped plane. If we assume the e-'lrl-type variational wave function [20] (the z 
direction is perpendicular to the doped plane), we have, instead of (13) and (14), 

where N P  and N:D are the corresponding sh&t-doping densities, and the depletion width 
is given by D = NdD/2nA. We have chosen the constant of integration to make V,(O) = 0, 
and so Vs(z)  + e2N:DD/2&p when z --f 00 [13]. This offset is to be subtracted 
when we calculate the subband energy. The ground-state energy is minimized when 
B = (8 irNja0)I '~D with N = NjD + iN:D if only the p-' term in (19) is retained. 
The subband energy is thus given by 

E:' = E A  - e2NdDD/4& + (~ 'e4 /2m&2)1/3(N213/4  + N i D / 2 N L / 3  - N:D/4N"3). (21) 
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The self-consistent condition, N,ZD = (m/zA*)[Eol, is now given by 

Y Takagaki and K Ploog 

(22) 

where n = NhW/NdzD, y = y 0 ( z ~ ~ ~ ~ ) " ~  with M = 2, and VO is the subband energy when 
N:D = 0. One finds that the bisolution behaviour does not take place in the 2D system 
when y > I, and 

3 + n ( l  +n/4)-'13 -(1-1-n/4)~/~-2(1 +n/4 ) - Ip  = y(n-mlVol/nB 2 Nd 20 ) 

P o l  = (1 - Y-o-'lvol (23) 

in the limit of N:D < N i D .  When y is reduced to unity, the slope of lE0l with respect to 
I Vol becomes infinity, suggesting the occurrence of bistability. The numerical calculation 
shown in figure 6 indicates that this is indeed the case. Since the 2D DOS is proportional 
to the effective mass, the hysteresis effect emerges, according to our numerical simulation, 
when the effective mass is larger than - 0.15mo (corresponding to yo = 2.8) for GaAs in the 
Hartree approximation [ZO]. Therefore, n-type 8-doped GaAs will show normal behaviour, 
whereas the hysteresis effect is anticipated for heavy holes provided level broadening is 
negligible. 

Figure 6. The bottom energy of the lowest subband in a ZD &doped quantum well. Solid 
lines and circles show results of numerical simulations in the Hamm approximation for the 
effective masses of 0.5,no and 0.067me. Analytical results using nial functions b'lZexp(-hlrl) 
and (Zb/S) '~(hlr l  -C I)exp(-hlrl) are shown by dotted and dashed lines. respectively. 

Let us finally consider an ideal OD &doped system, which is similar to the H atom [21]. 
In a OD system, the total electron charge can be only integer multiples of e, and so the 
hysteresis effect is expected to be significant. In quantum dots, spin degeneracy is broken 
due to Coulomb blockade [221. However, we neglect the spin splitting, for simplicity. The 
expectation values of vd (in the limit of fl >> 1) and V,, when a trial function (b3/~)'/2e-b' 
is used, are given by 

(Vd) = EA + (e2N,0D/8nsD)(3 - 6 - lZ/fi2) (24) 

(V,) = -(3eZNPD/64nsD)B (25) 
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where NdOD and NPD are the numbers of donors, and the radius of the depletion region is 
D = (3N:D/4Zn~)”3. Keeping only the leading term in (Vd), the lowest discrete energy 
level is given by 

(26) E, OD - - E A + 3e 2 Nd OD ISRED - (NfD + $N,OD)(NfD + &N:D)Ry. 

The magnitude of (Vs) is given by 

I(Vs)l = +[NfD + *NPD]NPDRy. (27) 

Although (V,) depends on  ,B. the lowest energy level can accommodate only two electrons, 
i.e., NP” is either zero or two. Therefore, we can deduce the energy shift due to the 
level occupation if we ignore possible population of excited energy levels. The dependence 
of E,OD on NdDD is shown in figure 7. Here, NdOD is treated as a continuous variable for 
convenience. We have also evaluated the energy of excited levels [21] numerically. The 
second-level energy is > 0.57 eV for the doping densities in figure 7, so that the effects 
of higher levels are negligible where the hysteresis of the lowest level is concerned. The 
energy separation between the two branches in Eo is drastically increased on reducing 
the dimensionality. Although E:D gradually approaches zero, one finds that the electron 
state when 12 ionized donors are embedded is not stable in our approach because of the 
discreteness of the electron charge stored in the level. 

Figure 7. The lowest energy level EGD and the average radius of the wave function r:’” in 
a (ID &doped qumhlm dot in the Harttee approximation. The analytical results are shown by 
solid lines whereas the numerical ones are shown by circles. Two electrons are accommodated 
for the filled state. The excited energy levels appear far above this energy rage (> OS7 eV). 
The mows indicate the direction of the variation of NjD, which is regarded as a continuous 
variable. 
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5. Summary 

In conclusion, we have demonstrated that the self-consistent energy levels in low- 
dimensionally 8-doped structures can possess two solutions associated with the onset of 
the mode population. This effect originates from the excessive carrier occupation due to 
the singular DOS. The large electron-donor dipole charge potential abruptly pushes down 
the energy level. We point out that it is important to separate the donor density into two 
parts, Ns and Nd. The hysteresis effect may be obscured if only the total doping density 
is considered. We have developed the variational wave function technique in the Hartree 
approximation to examine the nature of the hysteresis effect. The use of a variational 
function means that only an upper bound to the true ground-state energy is obtained. 
However, the energy gap between the two branches is found to be in good agreement with 
the numerical calculations, indicating that the simple trial functions we used reasonably 
resemble the true wave functions. Our result indicates an existence of critical mass in the 
ZD case. Our observation provides a possibility that hysteresis occurs in the energy levels 
in low-dimensional systems beginning to fill with electrons, or empty. If the filled-state 
energy level in a I D  system reaches the Fermi level continuously as the doping density 
is reduced, the system shows true histability. However, because of the level instability at 
low carrier densities, the electronic states do not exhibit true bistability in the structures 
considered in this article. One needs alternative structures or material systems to overcome 
this instability. Further investigation to understand the mechanism of the instability is 
also required. Unfortunately, the electron mobility in a 8-doped system is typically low 
due to the large overlap of the electron wave function and the parent ionized impurities. 
Therefore, the bistability effect found here may not survive in real samples. However, if 
one could construct, for example, a structure in which an AlGaAs column with doping 
along the centre is embedded in GaAs, the selective doping would improve the mobility 
and reduce the level broadening due to random distribution of impurities. We note that the 
energy separation between the two branches associated with the bistability becomes larger 
in lower-dimensional systems, so the disorder effect may not be critical in a OD system. If 
the Coulomb-potential effect associated with filling and emptying the state has a significant 
importance, it is most likely to show up in the experiments in a OD system. 
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