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A detailed calculation of electron transport in AI,Ga,-As/GaAs quantum wires by the use of a 
balance-equation approach, considering all possible acoustic and optical phonon scattering and taking 
fifteen subbands into account, is reported. Crossover from one dimension (ID) to three dimensions 
(3D) in both low- and high-field regimes is studied by investigating mobility and electron temperature 
as functions of the radius of quantum wire. At low temperatures, the linear mobility of a quasi-1D 
electron system may be ten times higher or ten times lower than that of a 3D system depending on 
the relative position of the Fermi energy to subbands. At  very high electric field, the difference in the 
transport behavior of quantum wires with differing radii and that of a 3D system disappears as a result 
of high electron temperature and drift velocity. 

1. Introduction 

With remarkable developments in semiconductor technology, it has become possible to 
confine electrons in extremely small semiconductor quantum wires with lateral extension 
comparable to the electron de Broglie wavelength (w10nm) [l to 31. In addition to 
extensively studied Ohmic conductance of electrons [ 5  to lo], high-field transport in a 
quantum wire was explored by the Monte Carlo method [ll]. Recently, multisubband effects 
in a quantum wire have attracted much attention both theoretically [7, 11, 12 to 161 and 
experimentally [3]. Most of the previous investigations, however, were focused on longitudi- 
nal optical (LO) phonons, which play an important role at high temperature (T ,  > 40 K). 
Besides, the existing studies about subband effects on transport are mainly limited to the 
electron-impurity system [12] or limited to low-field conduction [12 to 161. The more 
interesting case of high-field transport with dominant electron-phonon coupling has not 
yet been reported in the literature. 

The purpose of this paper is to discuss the subband effects on the electron transport in 
quantum wires and to analyze the crossover from 1D to 3D behavior in both low and high 
fields. For the sake of simplicity, cylindrical GaAs wires surrounded by AlGaAs are 
considered where the transverse dimension can be described by one parameter, the radius 
of the wire. We first formulate the resistivity of electrons in quantum wires considering 
both inter- and intrasubband impurity and phonon scatterings taking advantage of the 
balance-equation method of Lei and Ting [ 171, and then calculate the transport properties 
in quantum wires, taking account of fifteen subbands. 

To facilitate comparison between the transport in quantum wires and that in bulk 
materials, we focus on the influence of phonon scatterings. When the electron wire density 
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is not too high, the subband effect and the crossover are observed mainly in quantum wires 
with radius larger than 5nm. In these systems, the surface phonons and the confined 
phonons can be neglected [7]. In this paper we assume that electrons interact only with 
bulk phonons, which includes longitudinal acoustic (LA) phonons (through deformation 
potential and piezoelectric interaction), transverse acoustic (TA) phonons (through piezo- 
electric interaction), and longitudinal optical (LO) phonons (through deformation potential 
and Frohlich interaction). 

2. Balance Equations in Quantum Wires 

As a simple model, we consider electrons confined in a cylindrical quantum wire of radius 
e and length L,. The electron energy in the quantum wire can be expressed as 

k,2 E,(k,) = E, + -, 
2m* 

where k ,  is the one-dimensional wave vector, E, the confined 2D n-th subband energy, and 
m* the electron mass. The wave function of the transverse subband state is given by 

(2)  
m = ..., -3, -2, -1,O, 1,2,3, ... 
1 = 1,2,3, 

qn = w;"(rII) = cy J, r l l )  eirnp; { 
where Cr = (fieyF)-' is the normalization factor, rII denotes the transverse coordinate, 
x;" represents the 1-th zero of the rn-th-order Bessel function, i.e. J,(x;") = 0, and y;" 
= J,+,(x~).  The corresponding eigenenergy is E, = E? = (~;")~/(2m*e*). In the following 
paragraphs, we use the subscript n to denote {;"}. 

When a uniform electric field E is applied along the wire, the electrons will drift along 
the z-direction. Introducing the center-of-mass momentum and coordinate variables P, Z 
in z-direction, we can express the Hamiltonian in the form 

H = H ,  + H e  + H,, + H,, + H,i ,  (3) 

where 

D z  
H ,  = - N l E Z  

2M (4) 

and 

are the center-of-mass and relative electron Hamiltonian, respectively, M = N,m*,  N ,  is the 
electron wire density, 
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is the Coulomb interaction, and x is the low-frequency dielectric constant of the quantum 
wire material, KO is the modified Bessel function of zeroth order. 

is the phonon Hamiltonian, 12q,A the phonon energy, and b:,(b,,) are creation (annihilation) 
operators of phonon with wave vector q in branch A;  q = (qI1, qz), qll = (qx ,  q,,). 

In (3) 

represents the impurity-electron interaction where U(n,  n’, qz) is the impurity potential 
and Z ,  the z-coordinate of the impurity. Considering an impurity located at R I 1  away from 
the center of the quantum wire with charge Z,(e( ,  we have 

= c c M(n,  n‘, 43 ( b q A  + b f q A )  C ~ , k z + q , C n ’ , k ,  
n,n’ q , L  

stands for the coupling between electrons and bulk phonons, and 

is the corresponding coupling matrix element with 

M(q, A) is the electron-phonon coupling matrix element in 3D Fourier representation and 
Fnn, is the form factor of the quasi-1D electron system. 

Following the treatment of the Lei-Ting balance equation theory, we use two parameters, 
udr the drift velocity, and T,, the electron temperature, to describe the transport system 
under the influence of an electric field E .  The force- and energy-balance equations in steady 
state are given by 

N,eE + F(ud) = 0 ,  

vdF(ud) + w ( u d )  = 0 .  

(10) 

(11) 

Here the frictional force F(ud) due to impurity and phonon scatterings can be expressed as 
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assuming the impurities to be randomly distributed along the quantum wire with wire 
density n,. The energy dissipation rate w(Vd) is given by 

Here oo E qzud, T denotes the lattice temperature, and n(x)  = (exp (x) - 1)-' is the Bose 
function. n,(n', n, q,, o) is the imaginary part of the electron-electron correlation function 
IJ(n', n, q,, o). In the absence of dynamic screening, it takes the form 

The Fermi energy E~ of this quasi-1D electron system (quantum wire) is determined from 
N, by the'equation 

N, = 2 c f ( E " ( k Z ) )  
n, k. 

Here f(E,(k,)) = (exp [(E,(k,) - 

= - N,euJF(vd). 

+ 1I-l is the Fermi function. 
The current through the quantum wire is J = Nleu,  and the mobility is p = ud/E 

3. Numerical Results and Discussion 

We have calculated the transport properties of quantum wires with radii ranging from 5 
to over 30 nm and at lattice temperatures from 2 to 100 K in the absence of impurity 
scatterings. Fifteen subbands are included and form factors Fnnp(qIl) are obtained numer- 
ically. 

Mobility and electron temperature are analyzed as functions of drift velocity. In 
carrying out the numerical calculation, we keep the electron volume density constant 
(n3 = 3.1831 x 10'' cmW3) for the bulk and all the quantum wire systems so that the electron 
wiredensity is given by N ,  = n,neZ. All the inter- and intrasubband scatterings due to 
bulk phonons (LA, TA, and LO) are taken into account, but the influence of surface phonons 
and confined phonons are ignored since they are expected negligible when the radius of the 
GaAs quantum wire is larger than 5 nm [5 ] .  The matrix element of electron-phonon coupling 
and related parameters are the same as those given in [18]. 

Numerical calculation shows that the maximum of the intrasubband form factor Fnn(qIl) 
is at q l l  = 0 with Fnn(0) = 1 and Fnn(qll) decreases to one half at about q , ,  = 2/e, and almost 
vanishes for qI1 over 5 / ~ .  Therefore, if the radius of the quantum wire is very large, the 
intrasubband transition contributes to resistivity only when qI1 = 0. The intersubband form 
factors, on the other hand, increase from zero with increasing qll(Fnn,*n(0) = 0) and arrive 
at their first maximum at qy (1). Generally, several peaks exist (the position of the i-th peak 
is denoted by qy(i)). Thus the contribution of intersubband transitions comes mainly from 
large qI1. These features of the form factors are illustrated in Fig. 1. 
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Fig. 1. Typical form factors of both 
intrasubband (solid curve) and in- 
tersubband (dotted curve) transi- 
tions as functions of normalized 
transverse wave vector qI1@ 
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3.1 Crossover from ID to 3 0  

The mobility of a quantum wire may be much higher or lower than that of the 3D system 
depending on the position of the Fermi energies relative to the subband bottoms. All fifteen 
subband energies measured from the ground subband are shown in Fig. 2a as a function 
of wire radius by thin dotted curves. The thick solid curve and thin solid curve in Fig. 2a 
denote, respectively, the linear mobility of the quantum wire and the corresponding Fermi 
energy at 2 K. When the radius of the wire is small, the mobility is very low because of the 
singularity of the one-dimensional density of states and the low Fermi energy. With the 
increase of the radius e and corresponding rise of Fermi energy, the mobility increases 
rapidly until the Fermi energy touches the bottom of the second subband where the mobility 
reaches a maximum and then decreases steeply. The mobility exhibits a deep minimum 
following the sharp maximum, because the electrons can be scattered into the second 
subband easily when the Fermi energy is just below the second subband. Moreover, 
maximum and minimum show up repeatedly once the Fermi energy touches a new subband, 
exhibiting oscillations with the increase of quantum wire transverse size. The third peak in 
Fig. 2a is somewhat smaller because the corresponding subband is not degenerate. 

Fig. 2 b shows the linear mobility versus the wire radius at several lattice temperatures 
T = 10, 50 and 100 K (solid curves), and the corresponding 3D results are indicated by 
dotted lines. At higher temperatures, electrons with lower energy can also be scattered into 
the next subband, thus the peaks in the linear mobility move toward the smaller radius 
where the Fermi energy is lower. On the other hand, since the electron distribution function 
is broadened at higher temperatures, the amplitude of the mobility oscillation decreases 
and the curves approach the 3D cases. 

High-field mobility and electron temperature as functions of wire radius are illustrated 
in Fig. 3 (solid curves mark mobilities, dotted ones represent the electron temperatures, 
and the horizontal bars denote the 3D cases). In Fig. 3a where ud = 7.935 x lo4 m/s, 
T = 10 K, we can see that both the mobility and the electron temperature oscillate with 
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Fig. 2. a) Linear mobility p (thick solid curve) and corresponding Fermi energy eF (thin solid curve) as 
functions of quantum wire radius e and at lattice temperature T = 2K.  The long bar marks the 
mobility of the 3D case. The dotted curves represent associated subband energies (thick ones denote 
degenerate cases). Energies are measured from the ground subband, b) Linear mobility p (solid curves) 
as function of quantum wire radius e at different lattice temperatures (T = 10, 50, and 100 K). The 
dotted lines are results of the 3D system 
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Fig. 3. High-field electron mobility p (solid curve) and temperature difference T. - T (dotted curve) 
as functions of quantum wire radius e at lattice temperature T = 10 K for a definite drift velocity 
a) u,, = 7.935 x lo4 and b) 1.587 x lo5 m/s. The horizontal bars mark the corresponding 3D results 
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Fig.4. a) The temperature difference - T as a function of drift velocity at lattice temperature 
T = 2 K for differcnt quantum wire sizes. The result of the 3D system is marked by the dotted curve 
(5).  The inset denotes the results of the low-field case, where cooling appears when the Fermi energy 
is at the top of subbands. b) Temperature difference T, - T as a function of drift velocity a t  different 
lattice temperatures. The radius of quantum wire e = 12nm. When lattice temperatures are low 
(T = 2 K) and high (T = 100 K), T, may be lower than T. But T, is always higher than T at medium 
temperature T = 10K 
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increasing radius, but the mobility peaks correspond to the valleys of the electron 
temperature. This result is similar to that of [14]. The behavior of this mobility curve 
resembles the linear mobility one at lattice temperature T = 50 K because of the fact that 
the electron temperature T,  z 40 K, but the peaks move further to the small radius direction 
caused by the high drift velocity (the first one locates at e = 11 nm). Another feature at 
high field is that the nonlinear mobility of the 1 D system is lower than that of the 3D case. 
This is in contrast with the low-field case. In Fig. 3b, the drift velocity doubles and the 
electron temperature is T,  z 50 K. The first mobility peak is located at e = 8 nm. As the 
wire radius e is larger than 12nm, the mobility (temperature) of electrons increases 
(decreases) with increasing e. Both of them approach the results of the 3D case. 

3.2 Cooling effect of the electrons 

Just as in the 3D case, the electron temperature can be lower than the lattice temperature 
over a large range of drift velocities and reach a minimum at Vd - uSI for very low lattice 
temperature when the piezoelectric interaction is the major scattering mechanism. When 
the Fermi energy is close to the top of the subband, the cooling effect becomes stronger as 
shown in Fig. 4a, where the Fermi energy reaches the top of the first subband for e = 12 nm 
and comes into the bottom of the second subband at e = 13 nm. 

As the lattice temperature increases, the cooling disappears gradually until the contribu- 
tion of the optical phonon plays an overwhelming role in momentum and energy relaxation. 
In Fig. 4b  we plot the electron temperature as a function of ud at different lattice temperatures 
(T  = 2, T = 10, and T = 100 K) for a quantum wire of e = 12 nm. At T = 2 K, the 
electron temperature may be 0.1 K lower than the lattice temperature when ud 5 uSI. At 
T = 10 K, the electron temperature is never lower than the lattice temperature and no 
cooling can be observed at low electric field. As the lattice temperature rises to 100 K, 
because of the optical phonon contribution, the electron temperature is always lower than 
the lattice temperature until the drift velocity exceeds 9 x lo4 m/s. The temperature difference 
IT, - TI is about 0.5 K at the minimum where ud is about 7 x lo4 m/s. It is worth noting 
that neglecting the influence of form factors will overestimate the temperature difference in 
the cooling effect. 

The optical phonon-induced cooling can also be observed at low lattice temperature as 
shown up in Fig. 4a, where (T,  - T )  versus ud curves at lattice temperature T = 2 K for 
different wire dimensions is represented. There are electron temperature minima in all curves 
around the drift velocity ud % lo5 m/S. 

Those results are obtained without the influence of impurities. Generally, impurity-electron 
scattering will diminish or remove the cooling of electrons. 

3.3 Nonlinear transport properties at high electric field 

Fig. 5a depicts the nonlinear electron mobility p versus ud functions at lattice temperature 
T = 2 K with different wire radii (Q = 11 nm, e = 12 nm, and e = 13 nm) and they are 
compared with that of a 3D system (dotted curve). When the Fermi energy is on the top 
of the subband (e = 11 nm and e = 12 nm), the linear mobility of quantum wires is very 
high and the mobility decreases steeply with the increase of drift velocity because of the 
electron transition into the next subband. On the other hand, when the Fermi energy is at 
the bottom of the subband (e = 13 nm), a mobility minimum appears at the drift velocity 
ud % 8 x lo3 m/s, another multisubband effect. 
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Fig. 5. a) Phonon-limited mobilities of the quantum wire as function of drift velocity (ud) for different 
quantum wire radii at lattice temperature T = 2 K. b) Drift velocity (ud) dependence of phonon-limited 
mobility (p) of the quantum wire (solid curves) compared with that of a 3D system (dotted curves) at 
several lattice temperatures (T = 2, 10, and 100 K) for a definite quantum wire radius (e = 12 nm) 
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In Fig. 5b, we calculate the mobilities of a quantum wire for a fixed radius (e = 12 nm, 
solid line) and a 3D system (dotted curves) at different lattice temperatures (T  = 2, 10, 
and 100 K). We find that at high temperature, the mobility of the quantum wire approaches 
to that of the 3D system. 

It is worthy noting that the mobility plateau appearing in the drift velocity range 
ud x (lo4 to 5 x lo4) m/s in Fig. 5 and the corresponding electron temperature saturation 
in Fig. 4a result from the saturation of the acoustic phonon scattering rate. In addition, 
we can find that mobilities in quantum wires are lower than those in the 3D system as 
shown in Fig. 5 and the electron temperature in quantum wires is relatively higher as 
depicted in Fig. 4 in the drift velocity regime ud 1.5 x 10’ m/s. This fact is a consequence 
of the displacement of mobility peaks (valleys) as the electric field increases as illustrated 
in Fig. 3. At extremely high electric velocity (vd > 3 x 10’ m/s), the subband effcts are 
smoothed out by the high electron temperature and high drift velocity, such that the 
difference of mobility between quantum wires and 3D system disappears. 

In conclusion, we have discussed both low-field and high-field transport properties of 
quantum wires with differing transverse radii as well as those of 3D systems. The electron 
mobility in quantum wires oscillates around that in a 3D system with increasing radius. 
At high lattice temperatures or extremely high fields, the mobility oscillation is suppressed 
and the conductance behavior is similar to those of 3D systems. Our results are qualitatively 
similar to those of experiments carried out by Ismail et al. [3]. 
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