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Abstract

The rates of electron scattering via phonons in the armchair single-wall carbon nanotubes were calculated by using the improved

scattering theory within the tight-binding approximation. Therefore, the problem connected with the discrepancy of the scattering rates

calculated in the framework of the classical scattering theory and ones predicted by experimental data was clarified. Then these results

were used for the solving of the kinetic Boltzmann equation to describe electron transport properties of the nanotubes. The equation was

solved numerically by using both the finite difference approach and the Monte Carlo simulation procedure.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

At present the interest to the study of carbon nanotubes
increases dramatically [1–23]. First of all it is caused by
prompt development of nanoelectronics technologies. Due
to these achievements it is possible to fabricate the pure
carbon nanotubes with high-quality structure [18,19]. The
prospect of their future application as active and passive
elements of nanoelectronics is out of doubts today
[6,8,11–17]. Moreover, it is necessary to note that the
theoretical study of carbon nanotubes presently has much
to be desired. It concerns both the descriptions of the
physical properties of nanotubes, and the descriptions of
the charge carrier transport in such structures. In our
opinion, this problem is connected on the one hand by that
the nanotubes are specific objects of quantum nature. That
is why the study of them is a rather complicated task. And
on the other hand these structures have been investigated
intensively in only one decade.

One of the important areas in investigations of the
nanotubes is the study of their electrophysical properties,
especially the properties of the armchair single-wall
e front matter r 2006 Elsevier B.V. All rights reserved.
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nanotubes. It is known that such nanotubes can be
reproduced in the best way, and their electrophysical
properties are practically independent on their diameter
[14,15,21]. This cannot be said about the nanotubes with
another chiralities. So, for example, zigzag type nanotubes
can have either metallic or semi-conducting properties
depending on their diameter [1]. That is why we will
consider armchair nanotubes only. Therefore, to avoid the
account of the edge effects let us consider rather long
structures (L420 nm), i.e. we will consider the armchair
nanotubes with the length greater than electron mean free
path [6,14,21].
To describe the electron transport in such carbon

nanotubes the semiclassical approach and the kinetic
Boltzmann equation for one-dimensional electron gas can
be used [6,24]. Both the finite difference method [6,24] and
the Monte Carlo imitative simulation [25–28] can be used
for solving this equation. Nevertheless, the correct use of
these approaches is possible only when all the dominating
charge carrier scattering processes are described in the most
precision way. In single-wall nanotubes these scattering
processes are the phonon ones [3–6,10,14,20–23]. At the
same time, as far as we know, this problem is very poorly
studied yet. Hitherto, in particular, the reason of a huge
difference in theoretical calculations and experimental
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definition of electron–phonon scattering rates as well as the
independence of the latter from the diameter of nanotubes
[14,21] are not cleared up. That is why the purposes of the
present paper are to calculate the rate of electron scattering
via phonons in the armchair single-wall nanotubes and to
develop a model of electron transport in such nanotubes
based on the solution of the Boltzmann transport equation.

2. Theory

Let us consider the phonon scattering in nanotubes at
the electric quantum limit, i.e. when the angular momen-
tum of all electrons is equal to zero [10]. To meet this
condition the nanotubes with small diameter do3 nm are
considered. Such nanotubes correspond to ðn; nÞ armchair
nanotubes with the chirality index np20 [1]. In this case the
scattering rates can be calculated by using the perturbation
theory [29]. Then, taking into account the one-dimensional
nature of the electron gas in nanotubes, the following
equations are valid [20,24,27,30–33]:
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where k is the electron wave vector; q is the phonon wave
vector; _ is the Plank constant; E is the electron energy
relative to Fermi level EF which is taken as zero (EF ¼ 0Þ; g

is the matrix element of electron–phonon coupling; kB is
the Boltzmann constant; oe=a

n is the cyclic phonon
frequency; Tn is the phonon gas temperature; n is the
index signing the phonon branch; e=a are the indexes
signing phonon emission or absorption. Furthermore, it
should be noted that in Eq. (1) the Pauli principle is not
taken into account [29]. The latter can be taken into
consideration while the Boltzmann equation is being solved
or while the Monte Carlo simulation of the electron
ensemble drift checking whether the final state is free
[25–27]. Moreover, the formula for the angular momen-
tums of electrons and phonons have not appeared in the
system of Eqs. (3) and (4). This formula is not considered
by us because in the electric quantum limit the electrons
will be scattered by only the phonons with zero angular
momentum due to the angular momentum conservation.
Therefore we will be taking into account only such
phonons.

The relation between the electron wave vector
and the electron energy is given by the known
formula [2,37]

E1;2ðkÞ ¼ �J0 1� 2 cos
ak

2

� �� �
, (5)

where E1;2 is the electron energy in the band 1 and 2,
respectively [2,4,15]; a ¼ 0:246 nm is the lattice constant
[1,5]; J0 ¼ 2:7 eV is the overlap integral [7,9]. The matrix
element of electron–phonon coupling can be calculated by
using the classical scattering theory within the tight-
binding model [2,34,35], but only with some improvements
which we are dwelling on below. In this case the basic
equations for the calculation of the matrix element can be
taken from [2,35]
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where l and t are the indexes signing the longitudinal and
transverse phonon modes, respectively [2].
Having calculated the scattering rates of all possible

phonon scattering processes in the armchair nanotubes we
have concluded that the dominant scattering mechanisms
are the longitudinal optical (LO) and acoustic (LA)
phonon backscattering processes as well as the transverse
acoustic (TA) phonon (twiston) backscattering. The long-
itudinal phonon scattering is intraband with the transition
from one Dirac point to another [2–4,10,15], whereas the
TA scattering causes interband transition in the vicinity of
Dirac points. The other phonon scattering processes can be
neglected because their rates are very little in comparison
with the TA, LA and LO backscattering rates of active
electrons, the electrons, which are in a vicinity of the Dirac
points K and K0 close to the Fermi level. It should be noted
that in other studies only these dominant scattering
mechanisms are taken into account [4,6,14,20–23]. Thus,
the scattering rates in the armchair single-wall nanotubes
can be calculated according to Eqs. (1)–(7) and the
following formulae describing the dispersion relations
between the phonon wave vector q and the phonon energy
_o for the phonons with zero angular momentum

_oLAðyÞ ¼

CLA
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y ¼ jakjð2pÞ�1. (11)

There are CLA
4� ¼ 0:459 eV, CLA

3� ¼ 0:645 eV, CLA
2� ¼ 0:029 eV,

CLA
1� ¼ 0:359 eV, CLA

4þ ¼ 4:740 eV, CLA
3þ ¼ 17:28 eV, CLA

2þ ¼

23:33 eV, CLA
1þ ¼ 13:77 eV, CLA

0þ ¼ 3:146 eV, CLO
4� ¼0:918 eV,

CLO
3� ¼1:100 eV, CLO

2� ¼ 0:195 eV, CLO
1� ¼ 0:020 eV, CLO

0� ¼

0:196 eV, CLO
3þ ¼ 0:069 eV, CLO

2þ ¼ 0:059 eV, CLO
1þ ¼ 0:094 eV,

CLO
0þ ¼ 0:083 eV, CTA

1� ¼ 0:124 eV, CTA
1þ ¼ 0:023 eV and

CTA
0þ ¼ 0:101 eV in Eqs. (8)–(10). These equalities have been

found by using the analytical approximation with high
precision for the phonon-zone structure of the armchair
single-wall nanotubes. This zone structure is determined by
means of the zone folding method [37] conformably to
phonon-zone structure of graphene [36]. The validity of such
an approach is discussed in Ref. [23].

Now let us consider the values ml, mt, ql and qt. Due to
our investigations it is found out that there are values ml ¼
2mC=a and mt ¼ 4mC=a (mC ¼ 2� 10�26 kg—the mass of
carbon atom) in jglj

2 and jgtj
2, respectively, instead of the

value of the armchair single-wall nanotube linear mass
density m ¼ 4nmC=a [2] (the first improvement of the
classical scattering theory). It is caused by equality of the
carbon atom oscillation phases on the whole circumference
of the cross-section perpendicular to the nanotube axis for
the phonon modes with zero angular momentum, i.e. by
the synchronism of oscillations of all the carbon atoms in a
half of the primitive cell. In that case it is possible to
consider all the atoms in the primitive cell like two, for the
longitudinal modes, or four, for the transverse ones,
massive particles bounded with each other 2n or n times,
respectively, as strong as two carbon atoms. The discussed
phenomenon clarifies the fact that the electron–phonon
scattering rates in the armchair single-wall nanotubes do
not depend on their diameters [14,21] as the values ml and
mt do not, too, in contrast to the value m.

As for the values ql and qt, which are the deformation
constants in the directions along axis and circumference of
the nanotube, respectively, they can be calculated by using
the plane-wave approach. In contrast to the well-known
Slater local-orbital one giving the wrong results (see Ref.
[4]), where the values ql ¼ qt ¼ q0 are determined by means
of analysis of alteration of the overlap integral Jov due to
the distance alteration between two carbon atoms in
graphene [34,35], in the plane-wave approach the values
ql and qt can be defined by the same way, but at some
different assumptions. The difference is that the Slater
local-orbital model assumes that the electrons are indivi-
dual particles belonging to individual atoms, whereas the
plane-wave model assumes that the electrons are de Broglie
waves filling the whole space in the crystal lattice of
graphene. Moreover, it is supposed that the phonon
displaces only the ion but it does not displace the electron
orbit in crystal lattice within the Slater local-orbital
approach [34,35], whereas within the plane-wave one it is
supposed that the phonon displaces the whole carbon
atom. In an approach like that, in fact, it is taken into
consideration the ‘‘orbital relaxation’’ (see Ref. [4]) when
the relaxation time is assumed to be equal to zero.
Then, using the results of Refs. [2,34,35,37], the

following formulae can be written for the unfolded
graphite sheet obtained from the armchair single-wall
nanotube within the plane-wave approach at the tight-
binding approximation
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Here r is the two-dimensional radius-vector; k is the two-
dimensional wave vector; x is the coordinate along the
nanotube axis 0x; y is the coordinate along the nanotube
circumference 0y. In Eq. (14) the coefficient equal to 2
appeared because there are two carbon atoms in the
primitive cell of graphene. According to Eqs. (12)–(16) the
value of ql is equal to 8:643 nm�1, and the value of qt is
equal to 9:980 nm�1. Let us note that the values of ql and qt

calculated in the framework of the plane-wave approach
(the second improvement of the classical scattering theory)
are less than the value of q0 ¼ 25 nm�1 calculated within
the Slater local-orbital approach [35]. Our results are in a
good agreement with the assumption of Ref. [4] in which
the values of ql ¼ 8 nm�1 and qt ¼ 10 nm�1 were consid-
ered so as to secure the accordance of the theoretical results
with the experimental data.
For example, in Fig. 1 the functions of the electro-

n–phonon scattering rates versus the electron wave vector
for the armchair nanotubes calculated by using Eqs.
(1)–(11) at temperature T n ¼ 290K are presented. It can
be noted that the LA and LO phonon scattering rates are
of the same order whereas the TA phonon scattering rate is
about ten times less than those at T n ¼ 290K.
Let us write down the equations describing the state of

the electron gas in the armchair nanotube. In general, these
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equations can be presented as [6,20,24–28]
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qt
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qf 1;2

qk

dk

dt
þ
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qx

dx

dt
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qE1;2
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f 1 þ f 2
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udr ¼
1

pnL

Z þp=a

�p=a

ðu1f 1 þ u2f 2Þdk, (21)

J ¼ �enLudr. (22)

Here t is the time; f 1;2 ¼ f 1;2ðk; x; tÞ is the electron
distribution function in the band 1 and 2, respectively; Î

is the operator of the electron–phonon interaction with
account of the Pauli principle; F ¼ F ðx; tÞ is the electric
field strength in the nanotube along 0x; u1;2 ¼ u1;2ðkÞ is the
electron group velocity in the band 1 and 2, respectively;
nL ¼ nLðx; tÞ is the electron linear concentration; udr ¼

udrðx; tÞ is the electron drift velocity; J ¼ Jðx; tÞ is the
electric current in the nanotube; e is the value of elementary
charge. According to Ref. [27] the operator Î effects on the
electron distribution function as follows:

Î f ¼
X
ðWf ð1� f 0Þ �W 0f 0ð1� f ÞÞ. (23)

Here the sum is over all possible final states; f 0 is the
electron distribution function in a final state; W 0 is the rate
of scattering causing the return of electrons to the initial
state.
At the tight-binding approximation Eq. (19) can be

written as (see Eq. (5))

u1;2 ¼ �
aJ0

_
sin

ak

2

� �
. (24)

So, to study the kinetic processes in the armchair single-
wall carbon nanotubes it is necessary to solve the kinetic
Boltzmann equation (17) using the equations of motion
(18) and (24). Then the kinetic parameters nL, udr and J can
be calculated according to Eqs. (20)–(22).

3. Results and discussion

Let us consider electron transport in the infinite length
armchair nanotubes in uniform constant electric field. Such
a transport is practically equivalent to electron transport in
rather a long nanotube placed on the ideal metal contacts
[6,14,21]. Meanwhile, the nanotube can be considered as
long if its length is greater or at least the same order as the
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TA phonon limited mean free path of active electrons. In
this case Eqs. (17) and (20) are reduced to

eF

_

qf 1;2

qk
� Î f 1;2 ¼ 0, (25)

nL ¼
2

a
. (26)

The solving of Eq. (25) allows the kinetic parameters to be
calculated. Specifically it may be the electric current in the
nanotube.

In Figs. 2 and 3 some results of calculations of the
electric current in the armchair nanotubes at TTA ¼ T ¼

290K are presented. Here T is the temperature of the
nanotube surroundings. These results are obtained by
using both the numerical solution of Eq. (25) by the finite
difference approximation and the imitative Monte Carlo
simulation of the electron ensemble drift [38–40]. The
Fig. 2. The function of the electric current versus the electric field strength in a

curve is the experimental data from Ref. [14] (L ¼ 700nm). The circles are

theoretical results at TLA;LO ¼ 290K (L ¼ 1). The squares are our theoretica

phonons (L ¼ 1).

Fig. 3. The function of the electric current versus the electric field strength in a

curve is the experimental data from Ref. [21] (L ¼ 1000nm). The points are

theoretical results in which it is taken into account the non-equilibrium LA a
results coincide and are not resolved in the figure
scale.
Moreover, the experimental data are presented in Figs. 2

and 3 along with the theoretical results obtained by Javey
et al. [14], who applied the Monte Carlo simulation
procedure with use of fitting parameters. These figures
evidently demonstrate a very good agreement between the
theory and experiment. Especially it concerns those results
where the non-equilibrium LA and LO phonons
(TLA;LO4T ¼ 290K) [23] are taken into account. Some
discrepancy of the results in Fig. 3 at low fields is explained
by the TA phonon pinning effect at some conditions when
the TA phonon mode is partly suppressed due to an
influence of the substrate on oscillations of carbon atoms in
the nanotube [6].
We did not consider the pinning effect, which is probably

difficult to describe theoretically, but we considered a most
important effect like heating of the LA and LO phonon
rmchair single-wall carbon nanotubes (Z ¼ 1:063� 10�4 W�1 m). The solid

the theoretical results from Ref. [14] (L ¼ 700nm). The points are our

l results in which it is taken into account the non-equilibrium LA and LO

rmchair single-wall carbon nanotubes (Z ¼ 6:737� 10�4 W�1 m). The solid

our theoretical results at TLA;LO ¼ 290K (L ¼ 1). The squares are our

nd LO phonons (L ¼ 1).
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gas, i.e. the non-equilibrium LA and LO phonons [23]. As a
first order approximation this effect can be described by the
following obvious formula found from the energy con-
versation law

NðoK;TLA;LOÞ �NðoK;TÞ ¼ ZFJðF ;TLA;LOÞ, (27)

where oK is the cyclic frequency of the LA and LO
phonons at K point (_oK ¼ 0:151 eV) [36]; Z is the
parameter which is determined by the quality of the
thermal contact between the nanotube and its surround-
ings. The value of this parameter obviously depends on the
type of matter of the surroundings and the area of the
contact as well as another factors.

In our opinion, it is a very difficult task to calculate the
value of Z theoretically, but it is easy to find it from the
experimental data by using the fitting procedure to
theoretical results. So, we did like this. And the results
presented in Figs. 2 and 3 have been obtained at such
values of Z which give rise to the best agreement between
the theoretical results and experimental data. In Fig. 4, in
addition, the functions of the LA and LO phonon gas
temperature versus the electric field strength are given.
These functions have been calculated by means of Eq. (27)
at the best fitted parameter Z. It is clear from this figure
that the non-equilibrium phonons cause the superheating
of the LA and LO phonon gas (see Ref. [23]).

We would like to add that the TA phonon pinning effect
can be described, in principle, by the same way like the
superheating effect of the LA and LO phonon gas in
nanotubes. In other words it is possible to consider the
pinning effect as if the supercooling of the TA phonon gas
takes place (TTAoT). Then to achieve the agreement
between theory and experiment in Fig. 3, like it is in Fig. 2,
it must be guessed that the temperature of the TA phonon
gas TTA is equal to 200K (T ¼ 290K).
Fig. 4. The function of the temperature of the LA and LO phonon gas versus

nanotubes at Z ¼ 1:063� 10�4 W�1 m (solid curve) and Z ¼ 6:737� 10�4 W�1
So, the validity of the improved scattering theory is
verified by the things discussed above and the results
presented in Figs. 2 and 3. Moreover, it is confirmed by the
following reasons. The TA phonon limited mean free path
of active electrons lt as well as the LA and LO phonon
limited one ll calculated theoretically are in a good
accordance with the same values, respectively, found from
the experiments. For instance, the experiments, which the
pining effect is not observed in, predict that the value of lt
is equal to 500� 200 nm at T ¼ 290K [14,22]. The
improved scattering theory predicts that the value of lt ¼

uFðW
e
TAðkFÞ þW a

TAðkFÞÞ
�1 [21] is equal to 632 nm. Here uF

and kF are the absolute value of the group velocity and
electron wave vector, respectively, at the Fermi level in the
armchair single-wall nanotube. It also follows from the
experiments that ll is equal to 10–15 nm at very high
electric fields (�107 V=m) [6,14,21]. The theory gives that
the quantity of ll ¼ uFðW

e
LAðkFÞ þW a

LAðkFÞ þW e
LOðkFÞ þ

W a
LOðkFÞÞ

�1 possesses the following values: llðTLA;LO ¼

290KÞ ¼ 23:8 nm, llðTLA;LO ¼ 1200KÞ ¼ 15:0 nm and
llðTLA;LO ¼ 1970KÞ ¼ 10:0 nm. According to the results
discussed above and taking into consideration the super-
heating of the LA and LO phonon gas, one can draw a
conclusion that the improved scattering theory appropri-
ately describes the real scattering processes in the armchair
single-wall carbon nanotubes. Besides, it predicts that the
temperature of the LA and LO phonon gas is between 1000
and 2000K at very high electric fields. These temperatures
are much less and more reliable than those which were
guessed in Ref. [23] (46000K).
Thus, in the present paper the rates of the electron

scattering via phonons in the armchair single-wall carbon
nanotubes are calculated by using the improved scattering
theory. The model of charge carrier transport in such
nanotubes based on the solving of the Boltzmann transport
equation is developed. It is found out that the discrepancy
the electric field strength in the infinite length armchair single-wall carbon

m (dashed curve).
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of theoretical calculations in the framework of the classical
scattering theory and experimental estimations of the
values of ll and lt has the following reasons: (i) the features
of carbon atom oscillations for the one-dimensional
phonon modes with zero angular momentum are not taken
into account; (ii) the excessive values of ql and qt, obtained
by Pietronero et al. for graphene [35] by using the Slater
local-orbital approximation [34], are used; (iii) the super-
heating of the phonon gas is not taken into consideration.
Everything noted above sets conditions for that there is a
discrepancy between the value of ll (lt) calculated in the
framework of the classical scattering theory and the value
of ll (lt) obtained experimentally. As an example, this
discrepancy is more than two times for ð10; 10Þ nanotube.
Therefore, to provide the agreement of theory with
experiment it is necessary to use the values ml and mt
instead of the value m (the first improvement of the classical
scattering theory) as well as the value of ql ¼ 8:643 nm�1

and qt ¼ 9:980 nm�1 instead of the value of q0 ¼ 25 nm�1

(the second improvement of the classical scattering theory)
while calculating the phonon scattering rates of electrons in
armchair single-wall carbon nanotubes. Moreover, it is also
necessary to take into account the non-equilibrium LA and
LO phonons at high electric fields.

We think that we would succeed much more in the
agreement of the theoretical results with the experimental
ones if we considered the finite length nanotubes instead of
the infinite ones. But in that case the computational
complexity would increase much more, too. So, in
conclusion we would like to say that our subsequent
purpose is the calculation of the electrical characteristics of
the armchair single-wall carbon nanotubes at various
electric fields F ¼ F ðtÞ in the framework of the developed
scattering theory.
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