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Graph structures are a natural representation of important and pervasive data. While graph applications have
significant parallelism, their characteristic pointer indirect loads to neighbor data hinder scalability to large
datasets on multicore systems. A scalable and efficient system must tolerate latency while leveraging data
parallelism across millions of vertices. Modern Out-of-Order (OoO) cores inherently tolerate a fraction of
long latencies, but become clogged when running severely memory-bound applications. Combined with large
power/area footprints, this limits their parallel scaling potential and, consequently, the gains that existing
software frameworks can achieve. Conversely, accelerator and memory hierarchy designs provide performant
hardware specializations, but cannot support diverse application demands.

To address these shortcomings, we present GraphAttack, a hardware-software data supply approach that
accelerates graph applications on in-order multicore architectures. GraphAttack proposes compiler passes to
(1) identify idiomatic long-latency loads and (2) slice programs along these loads into data Producer/Consumer
threads to map onto pairs of parallel cores. Each pair shares a communication queue; the Producer asyn-
chronously issues long-latency loads, whose results are buffered in the queue and used by the Consumer. This
scheme drastically increases memory-level parallelism (MLP) to mitigate latency bottlenecks. In equal-area
comparisons, GraphAttack outperforms OoO cores, do-all parallelism, prefetching, and prior decoupling ap-
proaches, achieving a 2.87× speedup and 8.61× gain in energy efficiency across a range of graph applications.
These improvements scale; GraphAttack achieves a 3× speedup over 64 parallel cores. Lastly, it has pragmatic
design principles; it enhances in-order architectures that are gaining increasing open-source support.
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1 INTRODUCTION
Graphs provide a natural abstraction for relational data and as such, they efficiently capture
key properties of complex and pervasive systems, such as social networks and language models.
Graph algorithms operate over these structures and have applications in many domains, including
recommendation systems, information spread modeling, and disease classification [23, 25, 46, 67]. In
the era of big data, graph applications process datasets that are growing rapidly and the slowdown
of chip frequency and transistor scaling necessitates innovations that span architecture, compiler,
and application design to achieve performance gains.

While significant strides in software/hardware acceleration have been made for other application
domains in the big data era, e.g. DNNs, graph applications have not experienced similar successes.
There are three fundamental problems specific to graph applications that have hindered this process.
(1) Unlike DNNs, graph algorithms do not have repeating blocks of homogeneously parallel, dense
computations. Instead, both computation and parallelization are highly variable depending on both
the problem and the input graph structure [51], which is far from ideal for accelerator design [57].
(2) Any hardware acceleration for graph applications must compete for precious resources, e.g.
area/energy, in a system design. (3) Graph applications are characterized by irregular memory access
patterns that pose a data supply challenge. Each vertex computation typically involves several
pointer indirect accesses and conditional updates to node data. With datasets much larger than
the last-level cache (LLC), these neighbor accesses often miss in the cache, leading to long-latency
DRAM accesses that occupy (or stall) system resources. These accesses are difficult to predict
and have variable dependent computation chains, which confound prefetching, runahead, and
decoupled architecture designs.

A performant and scalable solution for graph processing should have: (1) hardware efficiency, i.e.
high utilization of system resources, and (2) sufficient programmability, i.e. the ability to program
and execute a variety of algorithm implementations. As a final design philosophy, we believe
that solutions must also have (3) an accessible architecture implementation that can feasibly be
integrated into existing open-source hardware design and compiler frameworks. In the golden age
of computer architecture, it is now more possible than ever to realize hardware-software co-designs,
even outside of an established chip design company. Existing solutions (both in software and
hardware) have fallen short of fully meeting these requirements, especially in today’s increasingly
heterogeneous graph application landscape.
Existing Software Solutions for Graph Applications. Software frameworks for graph applications

aim for efficient parallel solutions via shared memory CPUs [52, 66] and GPUs [44, 58]. These
frameworks largely target the data-parallel loops across vertices (and sometimes edges) and aim
to parallelize these loops efficiently in a homogeneous (i.e. same program per thread and single
device) manner, an approach also known as do-all parallelism. They use many threads to perform
irregular accesses simultaneously, exploitingMemory-Level Parallelism (MLP). Many innovations in
these frameworks involve load-balancing, efficient data representation, synchronization reduction,
and dynamic switching between neighbor flow directions (push or pull). While these approaches
show improvements over baseline implementations, they are limited by underutilized hardware.
For CPUs, the target cores are typically commercial OoO processors, which are designed with
latency tolerance mechanisms, e.g. load-store queues (LSQs) and reorder buffers (ROBs). These
components have high area and energy overheads and yet prior work has shown that without
additional hardware augmentation, they struggle with graph analytic kernels due to complex
load-load dependency chains, leaving components clogged and poorly utilized [11, 36]. Thus, OoO
designs are not an attractive choice for graph analytics at a small scale, e.g. edge devices that are
severely resource-constrained, nor a large scale, e.g. data centers that aim for multicore scalability.
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GPUs on the other hand have poor performance when contiguous threads access non-contiguous
memory regions, which stems from the neighbor memory accesses in graph applications [39].

Existing Hardware Solutions for Graph Applications. To address the inefficiencies of modern chips
for graph applications, several areas of hardware innovations have been proposed. Specialized
prefetchers [6–8, 11, 54, 63] offer flexible programming models, but incur high area and energy
overheads relative to simple, in-order cores, as well as additional memory traffic. Furthermore, many
designs aim to service large, power-hungry OoO cores; offering modest performance improvements
while incurring poor core utilization. In contrast, other approaches propose accelerator designs with
specialized pipelines and memory scratchpads [21, 38, 43]. These pipelines offer high performance
for specific algorithm implementations, but cannot adapt to different optimized variants produced
by state-of-the-art software frameworks [37, 66]. Additionally, chip designers of a heterogeneous
SoC must be careful not to overspecialize with too many accelerators for single applications, as
competition for precious area and energy resources due to fixed transistor budgets and power
limitations cause increasing optimization to have diminishing performance returns [17, 57].
Another set of hardware solutions propose processing near- or in-memory [5, 65, 69] to hide

latency. These approaches require invasive changes to the memory system, which cause significant
barriers to implementation. Memory systems are complex and small modifications can impact many
components of the system, e.g. cache hierarchies, NoCs, and DRAM, requiring significant effort to
verify [29]. This contrasts with modular solutions, designs that propose architecture components
with simple interfaces for existing core models and memory systems to target. Such innovations
can be contained and implemented on top of a variety of accessible open-source designs [1, 9, 64].
Decoupled Architectures for Latency Tolerance. Finally, decoupled architectures aim to provide

efficient data supply by overlapping memory accesses with computation [49]. Programs are sliced
to create two parallel instruction streams that handle memory and compute individually; the
memory access stream runs ahead and supplies data to the computation stream in advance. More
recently, DeSC [19, 20] introduced a specialized Terminal Load Buffer, to allow loads to be performed
asynchronously with respect to core operations. The Supply core, responsible for memory access,
can issue requests and continuewith its operations, while outstanding requests have entries reserved
in the buffer for their returned data. This allows the Supply to run ahead of the computation stream
and avoid long data supply latencies. However, requests tracked in the Terminal Load Buffer must
have no dependent memory accesses, otherwise the Supply stream cannot run ahead. Unfortunately,
graph applications involve load-load dependency chains where control flow dependent on irregular
memory accesses inhibits DeSC and existing decoupled architecture designs from leveraging
efficient program slicing.

Our Approach: GraphAttack. To overcome the shortcomings in existing prior approaches for
graph analytics, we present GraphAttack: a hardware-software data supply optimization for graph
application acceleration on in-order multicore architectures. GraphAttack is composed of compiler
techniques and modest hardware additions that together automatically identify idiomatic pointer
indirect neighbor memory accesses (NMAs) and mitigate their latencies. Our approach’s design
principles are in line with the open-source hardware renaissance seen in modern SoC designs. This
movement entails emerging designs that opt for dense fabrics composed of many simple processing
elements, e.g. in-order cores, rather than large, complex OoO cores [2, 10, 57]. These architectures
provide a pragmatic and accessible chip foundation for innovations in both hardware and software,
enabling their development outside of a legacy chip design company.

GraphAttack builds on the key insight that the critical loops in graph analytic kernels can often
be sliced into two instruction streams such that: (1) a Producer thread performs all computation to
issue the NMAs and (2) a Consumer thread performs all computation dependent on their returned
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Fig. 1. Comparison of two execution timelines of the SSSP kernel (c), with the NMA highlighted in red: (a) a
single in-order core and (b) a GraphAttack pair. GraphAttack mitigates long-latency effects by slicing the
kernel such that the Producer has no instructions dependent on the NMAs and can therefore asynchronously
issue them to exploit MLP (overlapping NMAs).

data. This slicing enforces a one-way dependence: the Consumer depends on values issued by the
Producer, but never the opposite. In hardware, GraphAttack maps these slices onto parallel cores
and augments each Producer/Consumer pair with an asynchronous access buffer (AAB) that receives
asynchronous memory requests, which are loads or atomic read-modify-writes (RMWs). These
accesses can be handled by the memory hierarchy simultaneously with respect to core operations,
preventing the Producer core from having to wait for their data to return. The AAB issues these
requests to the memory hierarchy and tracks all outstanding requests simultaneously to exploit
MLP and reduce the apparent cost of each long-latency DRAM access through overlapping accesses.
By targeting the AAB, the Producer runs ahead and issues long-latency memory accesses before
the Consumer needs their data, preventing stalls that in-order cores would typically experience.
Fig. 1 illustrates how GraphAttack achieves latency tolerance with this efficient Producer/Con-

sumer slicing of the SSSP kernel (Fig. 1c). Fig. 1a and b present executions of two inner-loop
iterations of the kernel with the NMAs shaded in red. Fig. 1a displays the execution timeline of a
single in-order core, where all instructions are executed in order. This execution incurs the long la-
tency of each NMA. We further characterize the consequences of this behavior in Sec. 2.1. Figure 1b
demonstrates GraphAttack running on in-order Producer and Consumer cores and effectively
overlapping the long NMA latencies to mitigate their costs.

We developed GraphAttack in the context of a full-system multicore chip design project. As such,
GraphAttack is an optimization on top of simple, in-order multicore architectures, which enables
significant software and hardware flexibility. That is, the system can be augmented with simple
hardware components to accelerate certain application domains, and in the absence of acceleration
opportunities, the system can fall back to traditional parallelism on the in-order cores. We envision
its implementation in a a standalone specialized datascience computer, e.g. [2], or a co-processor
as part of a larger heterogeneous design. This coarse-grained reconfigurability allows reuse of
the same hardware for distinct application domains or kernel phases within the same workload.
Furthermore, GraphAttack has a nominal area/energy overhead, as it only requires a small number
of hardware queues that confine all modifications to remain independent of the cores and memory
system. These modular, hardware-efficient innovations therefore maintain high programmability
and portability, and leave opportunity for further specializations for other application domains.

In summary, this paper presents GraphAttack, a hardware-software data supply optimization for
graph application execution on in-order multicore architectures. Our key contributions are:

• A characterization of widespread graph applications running on in-order processors; our
results show that the long latencies from neighbor memory accesses (NMAs) are the prominent
performance bottleneck and thus, offer an opportunity for significant optimization (Sec. 2).
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Fig. 2. LHS: Compressed Sparse Row (CSR) format efficiently represents a graph structure 𝐺 with three
arrays that store neighbor locations. Indexing into these arrays to update the vertex property array incurs
pointer indirect memory accesses (red). RHS: GraphAttack performs compiler analysis of the dependency
graph (left) of the SSSP kernel to identify the NMA (red) and create a Producer/Consumer program slicing
(right) such that the Producer can asynchronously issue the NMA and run ahead to exploit MLP.

• The GraphAttack compiler (Sec. 3), which given a graph application kernel (1) automatically
identifies the bottleneck NMAs and (2) slices the program into Producer/Consumer instruction
streams, where the Producer asynchronously issues the NMAs, and the Consumer performs
all computation dependent on these accesses.

• The GraphAttackmodular hardware components (Sec. 4), which consist of simple core-to-core
communication queues that allow the Producer to efficiently provide data for the Consumer.
Asynchronous access buffers allow the Producer to asynchronously issue NMA memory
requests (loads or RMWs) whose data can later be dequeued and used by the Consumer.

• An experimental evaluation (Sec. 6), which shows:
– GraphAttack realizes significant performance improvements over existing approaches, i.e.
a 2.87× geomean speedup and 8.61× geomean improvement in energy efficiency over OoO
cores under the same area budget.

– Scalable performance gains, as GraphAttack achieves a 3× speedup over traditional paral-
lelism in a 64-core system.

– The reconfigurable design of GraphAttack allows it to support a range of applications, even
when the entire application cannot be efficiently decoupled. We present a case study where
GraphAttack achieves a 2.21× speedup over OoO cores on direction-optimizing breadth-
first search (BFS), an implementation that alternates between decoupled push-based phases,
and traditional do-all pull-based phases.

While the lean and modular design of our innovations allows GraphAttack to be applied to OoO
cores, it yields the most energy and area efficiency while harnessing the simplicity of in-order
cores. This demonstrates that minimal, yet precise hardware and software tailoring can result in
significant performance gains in simple multicore systems that have active open-source support.

2 BACKGROUND ANDMOTIVATION
2.1 Key Bottlenecks in Graph Processing
Many graph kernels are characterized by irregular memory access patterns that occur in a data-
parallel manner over vertices when their neighbors are accessed. This results in a specific class
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Fig. 3. LHS: Runtime analysis of an in-order core running benchmark graph/sparse applications and inputs
demonstrates that NMAs can significantly increase runtime if not effectively mitigated. RHS: NMAs have
severe LLC miss rates, often times > 50%.

of long-latency memory accesses, which we refer to as Neighbor Memory Accesses (NMAs). These
memory accesses are pointer indirect accesses of the form A[B[i]] to read the vertex property
data of neighbors. While many other application domains involve pointer indirect accesses of
this form, graph applications characteristically exhibit control flow dependent on these accesses,
which makes this domain particularly challenging to accelerate. Figure 1(c) presents pseudocode
for the pull-based Single-Source Shortest Paths (SSSP) kernel, as generated by the graph processing
framework: GraphIt [66]. Line 5 highlights the frequently occurring NMA, which queries the
distance to each neighbor neib_idx along edge e of vertex v. The distance to v is conditionally
updated if a shorter path (sum of edge values) to v is discovered through its neighbor neib_idx
and the connecting edge between them with weight e_val.
Graph applications commonly use the Compressed-Sparse-Column (CSC) and Compressed-

Sparse-Row (CSR) formats to store graph data in compact arrays that allow accessing neighbor
indices and edge weights in a streaming manner. Figure 2 (left) illustrates a graph and its efficient
representation with three arrays G.num_neibs, G.neibs, and G.edge_vals. Accessing these arrays
to determine neighbor locations as well as the vertex property array (red), i.e. the distance array in
SSSP, to read and update neighbor data, however, involves pointer indirection. The vertex property
array is accessed in the innermost kernel loop, giving rise to NMAs. Moreover, parallel push-based
implementations, which perform neighbor updates on different threads, require an atomic RMW to
ensure correct updates, as different vertices (threads) can conflict on a common neighbor.
To measure the performance impact of NMAs on overall performance, we gather classic graph

algorithms—Breadth-First Search (BFS), Single-Source Shortest Path (SSSP), and PageRank (PR)—as
well as emerging kernels used in recommendation systems and sparse neural networks—Graph
Projections (GP), and Sparse-Dense Hadamard Product (SDHP). These implementations are further
detailed in Tab. 6, and all come from competitive frameworks [55, 58, 66]. We measure the contri-
bution of memory access latency to total runtime while running these kernels across four different
datasets (Tab. 6) on an in-order core model (see Sec. 5). The left-hand side of Fig. 3 shows that NMA
latencies take up on average ∼ 5× as much as the compute times in these graph applications. The
computation in these applications comprises a small percentage, i.e. less than 20% on average, of
the total runtime, highlighting the low arithmetic intensity of this domain and motivating the need
for efficient data supply. The right-hand side of Fig. 3 shows that on average, the NMAs miss in the
LLC over 50% of the time, frequently requiring long-latency accesses to main memory. Given the
high frequency of these DRAM accesses, there is opportunity to overlap them and exploit MLP.
Despite their latency tolerance mechanisms, OoO cores see similar trends where their runtimes
are dominated by NMA latencies. Prior works have attributed this to load-load dependency chains
that inhibit these cores from exploiting significant MLP [11, 54]. These characterizations highlight
that graph applications are problematic for modern commercial processors. However, these results
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suggest that precise targeting of NMAs can significantly improve the performance and scalability
of these kernels.

2.2 Shortcomings in Existing Hardware/Sofware Solutions
Specialized Graph Processing Hardware. Fixed-function graph analytic accelerator designs and
processing-in-memory trade general-purpose flexibility for high performance through specializa-
tion. These designs are area and energy efficient for specific kernels. However, they are severely
limited by the applications they support. Many accelerator pipelines and memory technologies
are tailored to a vertex-centric programming model [5, 21, 38, 43, 65, 69] and thus not amenable to
several important graph algorithms, e.g. edge-centric kernels in graph neural networks, recommen-
dation systems, and sparse neural networks [15, 62, 68]. Their hardware additions are therefore a
low return investment in chip designs that target multi-kernel/-phase applications [12, 15, 62].

Furthermore, different variants of vertex-centric kernels can have optimal performance depending
on the algorithm and dataset. Pull-based variants are communication-efficient, as vertices only
update their local values, while push-based implementations, where vertices push updates to
neighbors, are more work-efficient at the cost of more communication often via atomic RMWs [13,
60]. In fact, for some workloads, e.g. BFS, it is beneficial to switch strategies during computation [12,
66], requiring a flexible programming model that accelerator designs lack.
Flexible Latency Tolerance. In contrast, many latency tolerance approaches build upon general-

purpose cores. Decoupled Access/Execute (DAE) architectures [19, 20, 49] aim to overlap memory
accesses and computation by slicing programs such that one thread, the Access, exclusively handles
memory accesses, while the other, the Execute, performs value computation. Ideally, the Access
runs ahead of the Execute, asynchronously issuing requests and enqueuing data without predicting
access patterns. This has been successful for sparse linear algebra routines, where pointer indirect
accesses have no memory dependencies and there exists sufficient compute to overlap with memory
accesses. However, many graph applications suffer from loss of decoupling [14] events, where control
flow dependencies and small compute to memory ratios limit data supply. Given this, DeSC explicitly
states that it cannot feasibly accelerate graph applications [19].
The other alternative on this front is prefetching, which faces two key issues: (1) imperfect

accuracy and timeliness increases cache pollution and memory bandwidth pressure and (2) adding
specialized units to fetch data, e.g. long-latency pointer indirect accesses, often adds energy and
area consumption. Such units can require significantly more area than an entire in-order core. Prior
work has used up to 12 in-order cores [8] as prefetchers for one OoO core. While these in-order
cores may comprise a small area overhead relative to the OoO core, judicious hardware-software
co-design can enable these simple in-order cores to be utilized as full general-purpose cores instead
of solely as prefetching units. Moreover, the OoO core can be replaced with several in-order cores
to unlock significant parallelism and energy/area savings. We describe this in more detail next.

In-Order vs. Out-of-Order Cores. Out-of-order cores have been the staple of commercial multicore
systems as they perform exceptionally well for many application domains. However, graph work-
loads exhibit complex load-load dependency chains whose latencies cannot be hidden by traditional
OoO mechanisms, leading to poor core utilization [11, 36]. On the other hand, in-order (InO) cores
can be up to 5× more energy efficient per-cycle than OoO cores [31], and 30× smaller than OoO
cores [8]. In light of these comparisons, our real-system, energy- and area-constrained, multicore
chip design favors in-order cores to harness their simplicity and energy efficiency for acceleration
of graph analytics. By augmenting a simple, in-order multicore system with minimal additions, our
approach achieves high performance and scalability without sacrificing general-purpose flexibility.
A Taxonomy for Data Orchestration. In summary, prior approaches for latency tolerance and

graph applications as well as their pitfalls can be broken down into four categories: (1) Decoupled
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Table 1. GraphAttack handles NMAs with more efficiency and programmability compared to prior latency
tolerance techniques

Approach Sufficient Latency Tolerance Core Model Memory Overhead Hardware Additions/Specializations

DSWP [42] No, partition heuristic not
suitable Any None Minimal (synchronization array)

DeSC [19] No, does not identify terminal
RMWs Out-of-Order None Moderate (CAMs for out-of-order data

supply)

IMP [63] No, inaccurate prefetches for
low-degree vertices Any Extra energy and traffic

(inaccurate prefetches)
Moderate (prefetching engine, can be
triggered in regular workloads)

DROPLET [11] No, inaccurate prefetches for
low-degree vertices Out-of-Order Extra energy and traffic

(inaccurate prefetches)
Moderate (property prefetcher, data in
page table and L2 req queue)

Software
Prefetching [7]

No, compiler pass struggles
with complicated control flow Any Extra energy and traffic

(late prefetches) None

Event-Triggered
Prefetching [8]

No, compiler pass struggles
with complicated control flow Out-of-Order Extra energy and traffic

(late prefetches)
High (several in-order cores as
prefetching units)

Tesseract [5] Yes, only for VP apps Out-of-Order Utilization of multiple
DRAM units

High (specialized 3D-stacked memory
tech.)

Graphi-
cionado [21]

Yes, only for VP apps with
small datasets

Specialized
pipeline

Reduced energy and traffic
(on-chip scratchpad)

High (specialized modules and large
scratchpad, for VP apps only)

HATS [32] Yes, for datasets with sufficient
locality Any Reduced energy and traffic

(locality scheduling)
Moderate (specialized engine for each
per-core cache)

GraphAttack Yes, through Producer
runahead

Any (pref.
in-order) None Minimal (small queues)

and Runahead Architectures are limited in the runahead they can achieve due to complex load-
load dependency chains that inhibit efficient program slicing for decoupling. Our approach offers
tailored compiler techniques that leverage knowledge about graph application behavior to split
these dependency chains. (2) Prefetchers for irregular accesses tend to be inaccurate for graph
analytics due to complex control flow dependencies. Our approach avoids speculation to guarantee
no data fetch inaccuracy. (3) In-/Near- Memory and (4) Accelerator designs propose invasive
hardware modifications that severely limit portability and programmability. We strive for modest
hardware additions that precisely target application bottlenecks in order to achieve performance
on par with accelerators, yet can support a wide variety of algorithm implementations. Table 1
presents a summary of these works in comparison to GraphAttack.

2.3 GraphAttack Overview
GraphAttack overcomes the inefficiencies of prior latency tolerance approaches for graph applica-
tions without overspecializing hardware components. At a high level, our data supply approach
utilizes compiler techniques to map irregular memory accesses and graph computations onto a
multicore architecture augmented with modest hardware capable of performing select memory
accesses asynchronously. The goal of asynchronous memory accesses is to minimize the apparent
cost of each individual access by overlapping the long-latency costs of several DRAM accesses
and exploiting MLP. By slicing programs such that NMAs are decoupled from their dependent
instructions and issued asynchronously, GraphAttack mitigates their latency effects and specifically
addresses the control flow dependencies of graph applications that challenge prior works.

The compiler first performs an analysis of a kernel’s dependency graph to automatically identify
where the NMAs occur. It then slices the programs into two kernels: the Producer and the Consumer.
The Producer kernel is transformed to perform all necessary instructions to issue NMA memory
requests. Such instructions determine NMA addresses (and arguments for RMWs). Meanwhile, the
Consumer kernel is transformed to perform all instructions dependent on the data returned by
the NMAs. The compiler then replaces the NMA with a special ISSUE instruction on the Producer
and CONSUME instruction on the Consumer, thereby allowing for asynchronous communication
between these two decoupled kernels. The ISSUE instruction is a compiler API call to the AAB that
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issues the loads and produces the loaded values to a queue to be then consumed by the consumer
through the CONSUME compiler API call to the AAB.
Figure 2 presents an example of the compiler’s dependency graph analysis for the pull-based

SSSP kernel (Fig. 1c) whose NMA is highlighted. Slicing the program along the NMA results in
Producer/Consumer threads such that the Producer does not perform any instructions dependent
on the NMA. For example, in SSSP, the Consumer is responsible for the computation to update
a vertex’s data if a new shortest path to the vertex is discovered. This slicing must be performed
carefully to ensure correct memory consistency behavior, i.e. the sliced program must guarantee
the same behavior as the non-sliced program. Prior approaches (e.g. [19]) used complex hardware
structures, e.g. CAMs, to check for and resolve memory conflicts between Producer and Consumer
streams. Rather than require heavy-weight and invasive hardware components, we instead require
that the Producer, Consumer, and the NMA all operate on disjoint addresses within a single loop
iteration so that memory conflicts will not occur. This can be automatically checked with a standard
alias analysis in the compiler. If the compiler is unable to verify disjoint addresses across these
three components, it notifies the user and falls back to a do-all parallel compilation model. While
this condition may seem strict, we found that all graph applications we evaluated satisfied this
condition, with the exception of SSSP (discussed in Sec. 3.1).
In hardware, GraphAttack tracks outstanding asynchronous NMA requests via a small buffer,

the Asynchronous Access Buffer (AAB), between each Producer/Consumer pair. When the Producer
executes an ISSUE instruction, it sends thememory request to the AAB, which the Consumer queries
when executing a CONSUME instruction. The AAB is agnostic to the core and memory subsystem; it
operates independently with no changes to internal core state or structure and performs accesses
through the memory hierarchy with no changes to coherence protocols or caching policies. Despite
its flexibility, GraphAttack advocates for in-order cores because its precise targeting of memory
latency bottlenecks yields significant speedups and even greater energy efficiency gains without
complex OoO hardware. Similar to GPUs, in-order cores offer simplicity that makes them ideal
building blocks when designing programmable accelerators in a heterogeneous system.

With its tightly coupled compiler slicing and small hardware components, GraphAttack optimizes
the performance of graph analytic kernels, as illustrated in Fig. 1. Specifically, it creates an efficient
program slicing where the Producer asynchronously issues NMAs and the Consumer performs
dependent memory accesses. This targeting of the AAB enables overlapping of long NMA latencies,
as seen in Fig. 1b. GraphAttack differs from prior decoupling approaches [19, 49] by allowing the
Consumer to access memory, which enables a strict one-way dependence such that the Producer
never depends on the Consumer. This is key to performance; removing control flow dependencies
on the long-latency NMAs frees the Producer from stalling, so it can run ahead and issue multiple
NMAs to be overlapped. Overall, GraphAttack builds on top of general-purpose in-order cores
with minimal hardware additions and precise compiler techniques to improve energy efficiency
and leverage scalability to manycore systems that can exploit large amounts of parallelism in
graph analytic workloads. These design choices offer flexible support for both push- and pull-based
implementations of vertex-centric applications and multi-phase data analytic workloads.

3 A COMPILER FOR PRODUCE/CONSUMER SLICING OF GRAPH APPLICATIONS
The GraphAttack compiler performs hardware-efficient program slicing to target NMAs in graph
applications while preserving the original program semantics. This slicing approach is inspired by
decoupled software pipelining [48], but (1) focuses on graph applications using domain-specific
insights about their access patterns; and (2) utilizes a specialized buffer to perform asynchronous
accesses that are key for Producer runahead in this application domain. For practical reasons, our
compiler operates on C++ programs and it is implemented as a series of LLVM compiler passes.
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Table 2. The three RMW operations supported in GraphAttack.

Operation Description

COMPARE_EXCH(addr,cmp,val) Compares cmp to the value stored at addr; if they are equal, stores val at addr;
returns the comparison result

MIN(addr,to_min) If to_min is less than the value stored at addr, then to_min is stored at addr; returns
the comparison result

ADD(addr,to_add) Adds to_add to the value stored at addr; returns the previous value

Our approach is not tied to any particular aspect of either, other than the input being an imperative
programming language with constructs such as for loops and the ability to operate (load, store,
RMW) on memory locations.

3.1 Data Parallel Loops
The GraphAttack compiler takes as input: a data parallel for loop, similar to OpenMP’s for loop
pragma [41]. In graph applications, the outermost loop (over vertices) is often parallelized (line 1 in
Fig. 1c). As is common in do-all parallel loops, these loops must be free of data-races. That is, if two
loop iterations access the same memory location, then neither access can be a write. In other words,
loop iterations must be independent, i.e. able to be executed in any interleaving. However, some
graph applications iteratively update vertex data, e.g. distances to vertices. Thus, GraphAttack
extends the data race free (DRF) model to these applications by utilizing two rules with explicit
use-cases:
Read-Modify-Write (RMW) Operations. Push-based implementations require atomic updates to

neighbors as multiple vertices can simultaneously update a common neighbor’s data. Thus, the
programming model resolves inter-loop write conflicts through a set of standard RMW operations
(shown in Tab. 2). Note that RMWs in GraphAttack guarantee atomicity, but not synchronization
and can only be used for associative and commutative reduction operations over neighbor updates.

Asynchronous Updates. By default, the compiler terminates the slicing procedure if any memory
conflict across loop iterations is found. This allows simple hardware implementations, e.g. those
that do not need to track memory conflicts, to maintain the semantics of the original program.
However, one relaxation is beneficial for certain graph applications. The user must explicitly enable
this relaxation and ensure their program remains correct under the relaxed semantics.
A loop iteration may write to a memory location that another iteration reads. However, the

written value is not guaranteed to be visible until the implicit barrier at the end of the parallel
for loop. We refer to this behavior as an asynchronous update and it is crucial for competitive
performance in some pull-based graph kernels. This exception is required because some parallel
implementations of graph applications contain potentially redundant work, as it is more scalable
for multiple threads update data simultaneously, and compute on the same (potentially) stale data,
rather than sequentializing updates Because graph applications are iterative, they will continue
computing until a convergence criteria is met, e.g. there are no further updates because the global
best result has been discovered. Updates based on stale data will not affect the correctness of these
algorithms. For example, a loop iteration in the SSSP kernel of Fig. 1c can update its vertex many
times (line 9). However, other iterations (operating in parallel) may read a stale value for this vertex
when pulling neighbor updates (line 5). This will not affect the global minimum distance that has
been discovered so far. Eventually, the updated values will be discovered by other threads. Because
the algorithm iterates until it finds a global minimum, early updates are not required for correctness,
but can speed up convergence. For example, SSSP on the Twitter dataset traverses roughly 2× fewer
edges when allowed to asynchronously update.
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Fig. 4. The GraphAttack compiler flow.

3.2 Program Slicing Conditions and Procedure
The program slicing procedure is split into three steps, outlined in Fig. 4. First, the compiler finds
the NMA(s) by examining loop nestings and address origins. Next, the program is sliced into
Producer/Consumer streams. Finally, the memory safety is verified through pointer analysis. If the
compiler fails at any of these steps, the user is given a diagnostic message and the compiler falls
back to a traditional do-all parallel compilation mode.
Finding NMAs. The compiler first aims to find the NMA(s) in the graph kernel. Heuristically, it

searches for loads (and RMWs) in the innermost loop for which the addresses originates from an
earlier load. Our approach specifically targets single pointer indirect accesses of the form A[B[i]],
which is most common in graph applications, the focus of this work. The GraphAttack compiler
and architecture design have the flexibility to be extended to support different irregular memory
access patterns, e.g. A[B[C[i]]], that may occur in other workloads; we leave this to future work.
For example, examining accesses in the innermost loop of the SSSP kernel (Fig. 1c) locates the NMA
as the load on line 5 because its address originates from the prior load on line 4. If the compiler
cannot find an NMA, then the slicing fails.

Producer/Consumer Slicing. Once the compiler has found the NMA(s), it slices the program into
two streams to be mapped onto the Producer and Consumer. In terms of a dependency graph,
the Producer slice is a backwards slice, i.e. instructions collected on a reverse traversal of the
dependency graph, starting from the NMA argument values. For loads, this argument is simply
the memory address. For RMWs, the arguments are the address and the other arguments listed in
Tab. 2. On the Producer, NMA(s) are replaced with an API call ISSUE, which issues the NMA. This
instruction takes in all required arguments for the original NMA, including the address and any
required values (for RMWs). Additionally, a distinct opcode indicates the type of access, i.e. load or
RMW. The Producer issues the memory request through the AAB, which tracks the request and
enqueues the returned value. Because the result of the request is tracked through the queues, the
ISSUE instruction has no return value itself. The Consumer slice is created in four parts:
(1) The NMA(s) are replaced with an API call to CONSUME. This call takes no arguments and

simply returns the value that the memory operation would have normally returned.
(2) A backwards slice of the control flow dependencies on the NMA(s). This pass ensures that

every ISSUE performed by the Producer will match with a CONSUME on the Producer. The
backwards slice needs only consider control-dependencies, as the CONSUME instruction has
no arguments, and thus does not have any data-dependencies.

(3) A forward slice on the data returned by the CONSUME instructions, which allows the Consumer
to perform any computation dependent on the NMA(s). All instructions identified in this
slice must have access to all their original operands; thus an additional backwards slice from
each instruction is performed.

(4) A backwards slice, including both data and control dependencies, on all store instructions.
We have validated this compilation scheme works across our benchmark suite (see Sec. 5).

However, we assume that the only output from the kernel occurs through memory, e.g. memory
stores. Step 4 ensures that all outputs are performed on the consumer, regardless on their dependency
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on the NMA. However, if the kernel can have output through other mechanisms, e.g. a syscall, then
the slicing mechanism will need to be updated, e.g. by putting the syscall on the consumer.

Duplicate Instructions. Similar to prior decoupling approaches, this slicing may result in duplicate
instructions appearing on the Producer and Consumer, e.g. for loop overheads. Because the
bottleneck of graph applications is clearly the latency from the NMA, there is flexibility in how
duplicate instructions are handled, so long as they preserve the semantics of the original program.
Here we detail how different types of duplicated instructions are handled.
If a duplicated instruction performs logic or arithmetic, then it is performed on both slices

(e.g. node 3 in Fig. 2). For duplicated load instructions, we opt to perform the load only on the
Producer, and then communicate the value to the Consumer through the AAB, which feeds into
the Communication Queue (described in Sec. 4), which buffers data in issue order similar to
DAE architectures [19, 49]. The Producer first loads the value using a normal memory access
operation, and then sends the value to the Consumer via an API call PRODUCE. The Consumer
uses the same API call to retrieve produced values from the Communication Queue as it does
for the asynchronously issued values, i.e. using CONSUME. Having only one processor perform the
load alleviates bandwidth pressure, which is important, especially for graph applications. RMW
instructions are sliced similarly; they are performed entirely on the Producer, and the result is sent
to the Consumer through the communication queue.
We note that the Consumer handles all store operations, as they typically do not appear in

the Producer backward slices of the NMA(s) in graph applications. This is similar to prior DAE
approaches, where the Consumer (or Execute) is responsible for the computation required for the
stored values. The difference in GraphAttack is that the Consumer also computes the address and
stores data directly to memory rather than sending the value back to the Producer. This simplifies
our design, as the Producer and Consumer do not have to synchronize or use invasive and costly
components, e.g. CAMs, for store operations. However, this comes at the expense of a memory
aliasing check (described next) to ensure the sliced program maintains the original semantics.
Fig. 2 shows an example of dependency graph slicing with SSSP. The NMA (instruction 5) is

decoupled into an ISSUE/CONSUME pair. Instruction 3 is duplicated; the remaining instructions are
sliced based on the forward/backward slicing criteria described above. If the compiler is given
a program where the slicing is not possible, e.g. if issuing an NMA depends on the result from
another NMA, then the slicing procedure is terminated.

Memory Safety. To ensure the sliced programmaintains the same behavior as the original program,
the compiler performs a safety check to ensure that the Producer, Consumer, and the NMA(s) do not
have any memory conflicts. Specifically, the set of written addresses performed by different actors,
i.e. the Producer, Consumer, and NMAs, must be disjoint. This is different from the parallel for loop
notion of data-race freedom discussed earlier, as this check analyzes intra-loop iteration memory
accesses. This check is required because decoupled architectures do not guarantee coherence among
the actors, as the Producer and Consumer operate in different temporal planes in order for the
Producer to gain runahead. Thus, a Producer could read a stale value if it has run far enough ahead
of an NMA, or the Consumer, even on the same loop iteration. To implement this check, we use
alias analysis, which can be aided by compiler annotations, e.g. restrict. Graph applications
typically contain non-aliasing data-structures and do not perform complex pointer arithmetic, thus,
in our experience, we did not find any applications that violate this check.

Since alias analysis is fundamentally imprecise, the GraphAttack compiler throws an exception
that can be overwritten by the programmer if an address region can have overlapping accesses
by the Producer and Consumer. In the dependency graph of the sliced SSSP kernel in Fig. 2, the
Consumer writes to dist[v] (node 10), and the NMA reads from dist[neib_idx] (node 5). The
compiler is unable to validate that v != neib_idx and throws an exception. However, a programmer
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Fig. 5. GraphAttack augments parallel in-order Producer/Consumer cores with modest hardware additions:
the AAB, its ALU, and the communication queue. Gray arrows highlight the datapath for asynchronous
accesses, e.g. RMWs.

can overwrite this exception knowing that a vertex is disjoint from its neighbors to proceed with
slicing. This is a common pattern in graph applications, but it is difficult to reliably resolve in a
C-like front-end language. However, GraphAttack could be implemented as a backend to a graph
DSL, e.g. GraphIt [66], in which case these access patterns are known to be safe.
Compilation Soundness. A successful GraphAttack program slicing efficiently maps to in-order

cores while preserving the DRF-inspired semantics presented in Sec. 3.1. Because all loop iterations
must be independent, the Producer can run ahead to another iteration while the Consumer continues
to compute a prior iteration. Thememory safety validation in the compiler ensures that the Producer,
Consumer, and AAB access disjoint memory, avoiding the need for coherence between these
components. Finally, the asynchronous update relaxed semantics occur when the Consumer writes
a value, but the Producer has potentially run ahead and issued loads to the same address. Thus,
read-after-write dependencies are not always guaranteed. The implicit barrier at the end of the
parallel loop waits for both the Producer and Consumer to arrive, providing synchronization.
We note that the GraphAttack compiler chain implements heuristics and is not guaranteed to

detect NMAs or efficiently slice all graph applications. However, we found these heuristics sufficient
for all graph applications we studied. Future work may aim to build a GraphAttack slicing backend
into a graph DSL (e.g. [44, 58, 66]) that directly exposes graph vertices and neighbors.

4 GRAPHATTACK HARDWARE SUPPORT
GraphAttack augments pairs of simple in-order cores with small buffers to retain the flexibility of a
general-purpose multicore architecture while offering specialized data supply for graph kernels.
Cores can be configured to perform do-all parallelism or decoupling as Producer/Consumer pairs.
Each pair is equipped with novel hardware support for asynchronous atomic RMW instructions
(discussed in Sec. 3), as well as asynchronous loads. Because only modest hardware additions are
necessary for GraphAttack optimizations, in-order cores are a practical and more hardware-efficient
choice for data supply, enabling significant energy efficiency compared to prior latency tolerance
approaches and greater flexibility compared to graph analytic accelerator designs.

4.1 Augmenting Multicore Architectures
Figure 5 presents GraphAttack hardware support that revisits and simplifies traditional DAE
architectures [49]. Each Producer/Consumer pair uses two FIFO queues.

The Asynchronous Access Buffer (AAB). This buffer is responsible for tracking outstanding requests
as they are served by thememory system. This is inspired by the DeSC [19] Terminal Load Buffer that
supports terminal loads, whose values are used only on the Compute. The AAB enables significant
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performance improvements; the compiler splits the dependency chains in graph applications by
mapping an ISSUE instruction onto the Producer core to target the AAB and asynchronously issue
an NMA (the dependent load or RMW). When the Producer encounters this instruction, it issues a
memory request and reserves an entry in the AAB for the returned data. The Producer does not
have to wait for the memory hierarchy to return this data because the AAB tracks it, so it continues
with its next instruction, eliminating the stall that would typically occur in an in-order core.

If the NMA misses in the cache, an MSHR is assigned for it, as normal. However, unlike a
conventional core, this MSHR records the NMA’s position in the AAB instead of a destination
register to indicate where to place the data in the AAB once it returns from the memory hierarchy.
Thus, the maximum number of outstanding asynchronous memory requests is the number of MSHR
entries. When the Producer encounters a PRODUCE instruction that is preceded by a normal load, it
enqueues the returned data in the AAB without issuing any asynchronous accesses.

The Communication Queue. This queue holds values of all completed memory accesses performed
(normal loads), or issued (asynchronous), by the Producer to be retrieved by the Consumer in pro-
gram order. To guarantee that asynchronous accesses maintain program order, the Communication
Queue does not interface with the Producer, but only with the AAB as it is populated with data.
For all accesses, when the head of the AAB contains data, it is passed over to the Communication
Queue for the Consumer to use (via CONSUME).
A Modular Design. These queues have simple interfaces disjoint from the core model, as they

are simply targeted via API calls. While minimizing core modifications, these modest hardware
additions support data communication within each pair and can be implemented on a scratchpad,
as seen in many accelerator-oriented systems [4, 21].

4.2 Hardware-Efficient Asynchronous RMWs
Our work innovates over prior decoupled architectures by introducing novel hardware support for
decoupled asynchronous RMWs, that is, an RMW that can be issued asynchronously on one core and
the result can be retrieved in another core at a later time. Fig. 5 illustrates GraphAttack’s proposed
hardware additions. Specifically, the AAB is equipped with an ALU to perform arithmetic for atomic
RMW operations. Unlike the Terminal Load Buffer in DeSC [19], the AAB supports asynchronous
RMWs in addition to loads. This support is key to unlocking significant performance and energy-
efficiency gains for parallel push-based implementations of graph processing algorithms.

Similar to asynchronous loads, the compiler statically determines asynchronous RMWs to have
no dependents on the Producer slice. These correspond to the NMA(s) in graph applications. When
these accesses reach the memory stage, the AAB issues a request to the memory hierarchy for
data and exclusive permissions to the cacheline accessed 1 . The addresses for these asynchronous
access requests are then stored in the AAB 2 . As is typical of atomic operations, the memory
system guarantees that the asynchronous RMW eventually acquires exclusive permissions to the
data’s cacheline. Upon receiving the permissions and data 3 , the L1 cache memory controller sends
the data to the AAB. A dedicated ALU on the AAB performs arithmetic necessary for the atomic
operation 4 . The result of the operation (e.g. a success indicator or a data value, depending on the
semantics of the RMW operation) is simultaneously enqueued in the Communication Queue in
issue order 5 (to be retrieved by a corresponding CONSUME instruction 6 ). Meanwhile, the atomic
write of the newly computed data is performed to the memory hierarchy 7 . The RMW then gives
up exclusive access to its cacheline. While this description uses an exclusive access mechanism to
implement the RMW, we imagine that the RMWs could also be implemented using a simple logic
unit that implement a loop over load-link/store-conditional operations, especially because these
operations are supported open-source standards, e.g. RISC-V.
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Table 3. Core model parameters.

Parameter Out-of-Order In-Order

Issue Width 4 1
Instr. Window / ROB / LSQ 128 / 128 / 128 -
Branch Prediction Gshare Gshare
Frequency / Tech. Node 2GHz / 22nm 2GHz / 22nm
Core Area (mm2) 8.44 1.01

Table 4. Memory and queue (shaded) parameters.

L1 32KB / private / 8-way / 4-cycle latency
MSHR 32 entries per L1 cache
L2 256KB / private / 8-way / 11-cycle latency
L3 2MB / shared / 16-way / 34-cycle latency
DRAM DDR3L / 68GB/s BW / 100ns latency
Comm Queue 512 entries
Async. Acc. Buffer 128 entries
Queue Acc. Latency 3 cycles

Unlike previous DAE approaches, e.g. [19], the Consumer may access memory, e.g. from compu-
tation dependent on the result of an NMA. Recall from Sec. 3 that the compiler ensures that there
are no memory conflicts between the Producer, Consumer, and NMAs. Thus, Consumer memory
accesses can be performed through the Consumer core’s pipeline 8 . This requires no additional
hardware or logic because they leverage the Consumer’s private caches. Furthermore, because
there are no memory conflicts between the Producer, Consumer, and NMAs (with the exception of
asynchronous updates), there are no performance impacts due to cache coherence. For push-based
graph algorithms, vertex property updates are entirely encapsulated by RMWs.

5 EVALUATION METHODOLOGY
Our compiler and hardware code as well as our benchmarks and simulator configurations are
open-source 1 2 3 and are being developed as part of our full-system chip design project.
Compiler. We implement GraphAttack compilation techniques through Clang/LLVM passes.

These passes have two different modes: 1) GraphAttack slicing or 2) traditional parallelism. Paral-
lelism is provided via OpenMP and Producer/Consumer streams are mapped to pairs of OpenMP
threads. An LLVM pass performs the slicing by searching for instructions of interest (NMAs) to use
as anchors and for creating Producer/Consumer slices. The slices are further refined with LLVM’s
dead-code elimination pass, which identifies unneeded instructions after slicing.
Simulation Infrastructure. To evaluate GraphAttack, we use MosaicSim [30], a cycle-driven

simulator designed for hardware-software co-design exploration and heterogeneous systems. The
simulator is able to accurately model many performance bottlenecks of modern systems, including
memory contention, e.g. cache invalidation costs when multiple threads access the same data.
The simulator has been validated against an Intel Xeon processor and has demonstrated agile
performance evaluation capabilities for early-stage design of heterogeneous systems [50]. To
demonstrate GraphAttack hardware efficiency and flexibility, we employ a single-issue in-order
core modeled after Ariane, an open-source, in-order CPU that is the base core model of emerging
manycore chip designs [1, 64], as well as a quad-issue OoO Haswell-like core model. Table 3
compares their microarchitectural features. Each core has private L1 and L2 caches, and all cores
share an LLC. The L1 cache also has a simple streaming prefetcher and 32 corresponding MSHR
entries, which limits the maximum number of outstanding memory requests.

Producer/Consumer pairs are modeled with in-order cores, while the AAB and communication
queue are modeled as FIFO queues with configurable sizes. Table 4 summarizes these memory
hierarchy and queue configurations. Wemodel core area and energy consumption usingMcPAT [27]
and find the OoO core model to be approximately 8× larger than the simpler, in-order Ariane

1https://github.com/amanocha/GraphAttack_Applications
2https://github.com/PrincetonUniversity/GraphAttack
3https://github.com/PrincetonUniversity/MosaicSim
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Table 5. Application inputs and properties.

Application Input Nodes Edges Avg/Max
Deg.

BFS, SSSP, PR
Kronecker (kr) 34M 1B 31/639K
Twitter (tw) 53M 2B 37/780K
Wikipedia (wk) 12M 378M 31/8K
Sd1 Web (wb) 95M 2B 20/1M
Power (po) 7K/21K 63751 9/6K
Dbpedia (db) 46K/89K 144K 3/.2K
Amazon (am) 60K/116K 165K 3/2KGP (bipartite)
YouTube (yt) 30K/94K 300K 10/8K

SDHP
Kronecker (kr) 33K 883K 27/6K
Sinkhorn (sh) 100K 173K 2/4K
Amazon (am) 28K 80K 3/1K
YouTube (yt) 30K 300K 10/8K

Table 6. We evaluate GraphAttack on 5 applications; 3 (BFS,
SSSP, PR) have 2 variants (push, pull), yielding 8 total.

App Description Vertex
Centric

Async
Update RMWs

BFS Given starting vertex, find min. number
of hops to all vertices. Yes No Push

only
SSSP Given starting vertex, find min. distance

(sum of edge weights) to all vertices. Yes Pull
only

Push
only

PR Vertex scores flow to outgoing
neighbors until all scores converge. Yes No Push

only

GP
Relate vertices in a bipartite graph
partition with shared neighbors in the
other partition.

No No No

SDHP Compute elementwise multiplication of
a sparse matrix and dense matrix. No No No

cores. Using this ratio, we perform equal-area comparisons between multicore in-order and OoO
configurations. We use Cacti [34] for area and power modeling of the caches and the FIFO queues
and find that the modest GraphAttack hardware additions add negligible (< 1%) area overhead. We
use the VAMPIRE tool [18] to model DRAM power. These measurements allow us to quantitatively
evaluate energy consumption using a dynamic energy model.
Applications. We evaluate GraphAttack on 8 competitive graph application implementations,

detailed in Tab. 6.We obtain the push- and pull-based variants of BFS, SSSP and PR fromGraphIt [66],
GP as a direct CPU port of the Gunrock [58] GPU implementation, and SDHP from the Theano DNN
framework [55]4. GP and SDHP are used in emerging application domains, e.g. recommendation
systems and sparse neural networks [15, 68]. While SDHP is used in sparse linear algebra rather
than graph analytics, its use of a sparse matrix to filter a dense matrix incurs long-latency accesses
similar to NMAs, making it amenable to GraphAttack innovations.

Push-based BFS, SSSP and PR use the COMPARE_EXCH, MIN, and ADD RMW operations, respectively.
Pull-based SSSP uses the relaxed asynchronous update semantics (discussed in Sec. 3). “Vertex-
centric” describes applications that can be expressed as iterative computations where nodes are
updated based on neighbor data; BFS, SSSP and PR are vertex-centric. For all 8 applications,
GraphAttack compiler techniques successfully perform Producer/Consumer slicing.
Input Datasets. Graph application performance can highly depend on the input dataset [51, 66].

Tab. 5 summarizes the variety of inputs used to capture performance variability. Synthetic inputs
(Kronecker networks [26]), follow a power-law distribution, similar to many real-world datasets.
Social and web networks, e.g. Twitter and Wikipedia data, serve as concrete real-world inputs.
For vertex-centric workloads, we utilize large graphs with millions of nodes to demonstrate that
our technique scales to the modern network sizes. However, such large networks have massive
data footprints (i.e. hundreds of GB) and the number of computations for these applications scales
with the number of nodes in the network. In order to feasibly simulate these programs with such
massive data footprints, we sample each network by simulating 20 million edge traversals within
the densest and most representative epoch of each application/input combination. GP and SDHP
do not require simulation sampling, as their computations scale with the number of edges and
thus we utilize smaller datasets for these two applications. We use bipartite social networks and a
synthetic power-law graph for GP and smaller Kronecker, social, and web networks for SDHP.

Prior Latency Tolerance Approaches. We quantitatively compare GraphAttack to general-purpose
latency tolerance approaches as well as graph-tailored prefetching.

4Other frameworks, e.g. Scipy, densify the sparse matrix. This is not energy efficient as it performs many unneeded
computations, however it has high performance mappings to common vectorized hardware.
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Fig. 6. Speedup comparisons between 2 parallel OoO cores, 16 parallel InO cores, 2 OoO with DROPLET
prefetching, 1 OoO DeSC pair, and 8 InO GraphAttack pairs (ratios that equalize for area). GraphAttack
significantly outperforms do-all parallelism, prefetching, and decoupling techniques on all graph-traversal
apps, while DeSC has comparable performance gains on SDHP.

Out-of-Order (OoO) Cores leverage instruction-level parallelism to overlap computation, e.g.
arithmetic instructions, with memory accesses. Although they are the prominent core model utilized
in modern multicore architectures, they are poorly utilized by graph applications and consequently
incur area and energy overheads, as described in 2.2.

DeSC [19] is a state-of-the-art DAE architecture that leverages decoupled program execution to
hide memory access latency. It utilizes a Supply core to exclusively handle memory accesses and
address computations and a Compute core to perform other, e.g. arithmetic, computations. This
work introduced terminal loads, i.e. loads whose values are used only on the Compute, to allow
the Supply to run ahead and supply data for the Compute. However, because graph applications
exhibit control flow dependent on the NMAs, DeSC cannot slice along these bottleneck memory
accesses. Furthermore, this approach proposes an area-inefficient hardware implementation that
utilizes two OoO cores and CAMs to communicate data between the Supply and Compute.

DROPLET [11] is a state-of-the-art data-aware decoupled prefetcher for graph analytics. This
approach advocates for memory hierarchy tailoring; it utilizes a streaming prefetcher in the L2 cache
to prefetch streaming memory accesses, i.e. neighbor locations, whose data determine the addresses
of NMAs. By prefetching neighbor locations, DROPLET aims to fetch the data for NMAs early and
eliminate demand misses and stalling due to DRAM accesses. This prefetching is speculative, which
can incur memory traffic and energy overheads; Sec. 7 further describes prefetching techniques.

6 RESULTS
This section demonstrates GraphAttack’s ability to meet its performance goals through latency
tolerance, scalability, energy efficiency, programmability, and portability.

6.1 GraphAttack Performance
A chip-to-chip comparison between in-order and OoO cores would not be appropriate, as OoO cores
have many components that can accelerate executions, e.g. through OoO execution, at the cost of
higher area and energy. Thus, we perform an equal-area evaluation: Tab. 3 shows a conservative
estimate that matches 8 in-order cores to 1 OoO core. We use this as a basis to compare GraphAttack
against various optimizations for latency tolerance and graph analytics on OoO cores. In our first
evaluation, Fig. 6 compares 2 OoO cores, 16 parallel in-order cores, 2 OoO cores with DROPLET
prefetching [11], DeSC (1 OoO pair), and 8 GraphAttack (in-order) pairs for the push-based variants
of vertex-centric applications BFS, SSSP, and PR, as well as GP and SDHP. Due to limited space, we
opt to omit results for the pull-based variants; they have similar latency bottlenecks to push-based
implementations and thus similar performance gains.
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GraphAttack outperforms all prior techniques on vertex-centric applications, achieving up to a
6.16× speedup (BFS on Kron) with geomean 2.87× over 2 parallel OoO cores. It offers the greatest
speedups on vertex-centric graph applications because they exhibit control flow dependent on
the NMAs that troubles existing latency tolerance approaches. These speedups are even more
notable on the synthetic Kronecker network; real-world networks exhibit more locality due to
community structure, helping the performance of the baseline (parallel OoO cores). Despite tailoring
its prefetchers to graph application access patterns, DROPLET faces challenges on many real-world
graphs because they have a large number of low degree vertices (1-2 neighbors), which hurts the
accuracy and timeliness of the L2 streaming prefetcher that aims to prefetch addresses of NMAs.
Consequently, DROPLET offers limited performance gains that range from 0.97 × −1.42×. While
DeSC can identify the NMA and show performance gains in SDHP (no control flow dependency), it
struggles on all vertex-centric applications , where control flow dependencies prevent the NMAs
from being identified as terminal. GraphAttack however, delivers performance gains over the
baseline for all application/input combinations.
To highlight the substantial performance impact of enabling GraphAttack as a data supply

optimization on top of a multicore architecture, we also compare it to do-all parallelism with 16
in-order cores, where GraphAttack achieves up to a 2.71× speedup (geomean 2.16×). With targeted
minimal hardware additions, GraphAttack is able to catapult general-purpose hardware, e.g. a 16
in-order core system, to reap significant gains.

6.2 Exploiting Memory Level Parallelism
GraphAttack relies on MLP to mitigate memory access bottlenecks. MLP stems from Producer
runahead, as long-latency memory requests are issued, overlapped, and completed early. The
Producer and Consumer begin operating on the application at the same time, creating a brief
“warm-up period” where the Consumer waits for the Producer’s initial memory accesses to complete.
As the Producer continues issuing long-latency memory access requests, it quickly runs ahead of the
Consumer. The left-hand side of Fig. 7 presents the average runahead distances of all applications
and inputs. We measure runahead distance as the number of cycles between when a memory
request is issued on the Producer and received on the Consumer. Most runahead distances are
greater than the 200-cycle (or 100ns) DRAM latency, effectively removing the latency of NMA
accesses to the Consumer. In PR, runahead becomes extreme because the Consumer performs
floating point computation but even in this case, the AAB is never filled to capacity.

The right-hand side of Fig. 7 presents the AAB’s max and average queue occupancy (number of
entries) for all applications and inputs. For each application, the max queue occupancy remains
constant across inputs and is at most 9 entries. The size of the AAB can be small because the
Producer only needs to run ahead 200 cycles, which are incurred by 10-15 instructions that only
span a few inner loop iterations. Thus, there are manymore AAB (andMSHR) entries than necessary.
We selected and modeled larger queue sizes as design decisions for future innovations, e.g. batching
of memory requests that more aggressively use queues without incurring significant area overheads.
The size of the Communication Queue does not impact the Consumer; if it is full, the Producer
stalls. While this may lower Producer runahead, the Consumer can continue to read from the queue
and only stalls when the queue is empty (waiting for data).

6.3 Scalability
Fig. 8 demonstrates the scaling trends of two multicore systems: (1) traditional do-all parallelism
and (2) GraphAttack. We measure the performance of each of our 8 applications (normalized to
that of a single in-order core) on the idiomatic Kron (power-law bipartite for GP) input. Since
inner loops have no inter-loop dependencies and this input has a power-law nature, traditional
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Fig. 7. LHS: GraphAttack achieves significant Producer runahead, with average runahead distances far greater
than the DRAM latency of 200 cycles (100 ns). RHS: GraphAttack requires very small (< 10 entries) AABs.
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Fig. 8. Speedup comparisons between GraphAttack and traditional parallelism scaling from 1 to 64 cores on
Kron and power law bipartite networks. GraphAttack performance improvements scale linearly, enabling
scalability for a manycore architecture.
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Fig. 9. Energy efficiency comparisons between 2 parallel OoO cores, 16 parallel InO cores, DROPLET prefetch-
ing (2 OoO), DeSC (1 OoO pair), and 8 GraphAttack (InO) pairs (ratios that equalize for area). With hardware-
efficient innovations, GraphAttack achieves significant energy efficiency gains over all other techniques.

parallelism performance (light blue bars) scales nearly linearly from 1-32 cores. At 64 cores, it
stops scaling on push-based BFS and SSSP due to synchronization overheads and load imbalances.
Meanwhile, GraphAttack (orange bars) performance improvements scale up to 64 cores, with
respect to both a single-core baseline and an equal-area do-all parallelism configuration. Because
atomic operations are handled exclusively by either the Producer or Consumer, GraphAttack
encounters fewer synchronization overheads than the baseline. Furthermore, GraphAttack exhibits
less load imbalance as the data parallelism is halved from the perspective of any core, i.e. the data
is parallelized amongst all Producer cores and amongst all Consumer cores in two separate groups.

In a 32-core system, configuring the cores as GraphAttack (Producer/Consumer) pairs achieves up
to a 7.18× speedup (geomean 2.2×) over do-all parallelism. Compared to a single GraphAttack pair,
32 pairs achieve near linear scaling, up to a 31.56× improvement. GraphAttack begins to saturate
memory bandwidth with 64 cores (32 pairs) with no additional memory traffic. This demonstrates
that our approach effectively transforms the latency bottleneck into a bandwidth bottleneck, which
can be alleviated with advanced memory systems, such as high-bandwidth memory (HBM).

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:20 A. Manocha et al.

6.4 Energy Efficiency
Fig. 9 presents an equal-area energy-efficiency comparison between the same configurations shown
in Fig. 6, measuring the energy efficiency normalized to that of 2 OoO cores. We measure energy
efficiency as energy-delay, a product of energy consumption (described in Sec. 5) and runtime.
GraphAttack achieves greater energy efficiency than all other latency tolerance configurations
for all applications and inputs, with the exception of SDHP on Kron and YouTube. In these two
cases, DeSC achieves significant runtime performance improvements (OoO execution coupled with
efficient program decoupling) that outweigh the energy overheads of using OoO cores. Overall,
GraphAttack achieves up to a 27× improvement (geomean 8.61×) in energy efficiency over 2 parallel
OoO cores due to faster runtime performance and greater hardware efficiency. Given the 2.87×
geomean runtime speedup, 6.3× of the energy savings (geomean) is due to core power savings alone.
These improvements highlight the stark contrast between significant area and energy overheads of
OoO cores and GraphAttack’s modest hardware additions on top of simple, in-order cores.

6.5 Flexible Application Support
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Fig. 10. Speedup comparisons between 1 OoO, 8 paral-
lel InO, and GraphAttack (8 InO) for different direction-
optimized BFS variants. Through its flexibility, GraphAttack
optimizes the performance of all variants.

We demonstrate GraphAttack’s multi-
phase application support on direction-
optimizing (DO) BFS, an optimized imple-
mentation that switches between pull- and
push-based kernels per epoch depending
on how many vertices are active [12]. Push-
based BFS is more efficient in the early
phases of the application when the fron-
tier of active vertices is small, as parallel
memory accesses are less likely to conflict.
The pull-based variant is more performant
once part of the graph has been traversed
as vertex computation can break early if
a visited parent is found. Unlike the tradi-
tional pull-based BFS we studied above, DO BFS applies an early break optimization in its pull
phases to eliminate unneeded neighbor traversals. Unfortunately, this optimization creates a control
flow dependency on the NMA that GraphAttack cannot efficiently decouple. Thus, we configure the
cores to perform do-all parallelism for pull-based phases of DO BFS and enable GraphAttack during
the push-based phases. Unlike specialized hardware tailored to push- or pull-based vertex-centric
kernels, GraphAttack flexibly supports reconfigurability between decoupling and do-all parallelism
on a per-phase basis.

Fig. 10 shows an equal-area speedup comparison between 1 OoO core, 8 parallel in-order cores,
and 4 GraphAttack pairs on DO BFS with varying amounts of pull- and push-based phases. GraphAt-
tack consistently outperforms the OoO core and performs as well as or better than do-all parallelism
due its flexibility. It offers particularly significant speedups, up to 5.78×, for the push-heavy and
push-only variants, where data supply optimizations weigh heavily on the speedup. While an
accelerator, e.g. Graphicionado [21], may excel at a particular configuration, e.g. pull-based, it
simply cannot support other configurations without sacrificing programmability or specialization,
making GraphAttack the most performant option across the board. There are scenarios where
pull-based implementations are useful, e.g. when RMW contention is costly, and where push-based
implementations are better, as they are more work-efficient. Unlike accelerators, GraphAttack
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utilizes the same hardware to handle all of these different implementations without requiring
different custom modules or invasive modifications for each implementation.
GraphAttack’s multi-phase application support can be extended to many other data analytic

workloads, e.g. graph neural networks [67], where both data supply optimizations and traditional
parallelism are key to optimal performance. Furthermore, the portability and space efficiency of
GraphAttack make it a performant and optimal option for heterogeneous systems where it can be
coupled with accelerators on the same chip. In cases where the ratio of accelerator communication
costs to computation rate is high, parallel in-order cores can swap in for accelerators. This flexibility
makes GraphAttack a viable optimization for datacenter chips.

7 RELATEDWORK
We cover the most closely related works in Sec. 2, including hardware prefetchers [6, 8, 11, 54],
rigid accelerators designs [5, 21, 38, 43], and Decoupled Access/Execute [19, 20, 49]. Sec. 3 discusses
decoupled software pipelining [48, 56]. Here, we discuss a wider range of works in the area.

Prefetching Prefetching is a broad technique that now spans the computing stack. Timeliness is
a critical issue; early prefetches may be evicted from the cache before they are used or cause other
useful data to be evicted, while late prefetches may lose latency benefits. Speculative prefetching
also causes increased bandwidth pressure, limiting scalability in a multicore system. Software and
programmable prefetchers [7, 8, 28] employ compiler passes to identify problematic (e.g. pointer
indirect, random) memory accesses and schedule prefetch instructions accordingly. However, these
passes struggle to schedule timely prefetches for graph applications, where control flow statement(s)
lead to variability in execution time. Meanwhile, for appropriate applications, GraphAttack avoids
these issues, as it retrieves the data with perfect precision and holds it in communication queues.
Data-aware hardware prefetchers [11, 63] reduce latency for pointer indirection, e.g. A[B[i]].

By using a streaming prefetcher for the sequential accesses, the addresses of NMAs can be de-
termined early. However, in graph applications, vertices have varying degrees, which results in
a variable number of streaming accesses. This causes inaccurate prefetches that add bandwidth
pressure. Additionally, these prefetches are designed for specific data-structures. GraphAttack
flexibly supports our entire application suite (Tab. 6), which involves different data-structures that
experience irregular accesses: CSC/CSR graphs, adjacency lists, and filtered dense matrixes.
Address-correlation prefetching approaches [59, 61] improve the latency of irregular accesses

by storing correlated addresses using large metadata structures. However, these approaches are
for applications that have repetitiveness in indirect memory accesses (e.g. repeated traversal of a
linked list). These patterns don’t often appear in graph applications, and thus, these approaches
would have limited value in this domain.

Runahead, Slipstream, and Pipelined Architectures Prior work has explored techniques
which rely on runahead execution [16, 35, 40]. These approaches pre-execute application code and
generate cache misses early to hide the long latency cost of future demand requests. However, these
approaches are limited to short runahead intervals due to their speculative nature. In GraphAttack,
Producer runahead is limited only by the size of efficient hardware buffers, and even with small
buffers, it is able to achieve the long runaheads that are required by severely latency-bound graph
applications. Continuous runahead [22] proposes runtime analysis hardware to dynamically identify
dependence chains and pre-execute accordingly. Slipstream and look-ahead architectures [24, 47, 53]
employ two execution streams where one stream skips non-essential computation and thus operates
speculatively. However, graph applications have irregular, unpredictable control flow that impedes
both NMA dependence chain identification and accurate speculation.
Lastly, Pipette [36] aims to improve core utilization for irregular applications by decoupling

threads within a multithreaded core and making use of architecturally visible queues. This work

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:22 A. Manocha et al.

shares the same goal as GraphAttack, but requires manual code transformations in order to split
applications into pipeline stages and targets OoO cores, whereas GraphAttack automatically
decouples graph applications along their NMAs for in-order execution.

Specialized Memory Systems Prior techniques for graph processing aim to improve memory
bandwidth efficiency through specialized engines within the memory hierarchy. [4, 32] leverage the
power-law nature of real-world networks, and cache or rescheduleworklist updates accordingly. [33]
buffers and coalesces updates throughout thememory hierarchy to exploit temporal locality. Because
GraphAttack is flexible and independent of the memory system, its latency improvements synergize
with the bandwidth efficiency of these techniques and combining the different approaches would
yield even greater performance. Buffets [45] is a storage idiom for orchestrating communication
in accelerators, particularly those designed for dense workloads. It provides tools to manage the
synchronization in a decoupled manner, similar to DAE. In contrast, GraphAttack focuses on
accelerating graph applications on modern hardware composed of general-purpose cores.

Processing-in-Memory [5, 65, 69] leverage a processing-in-memory (PIM) distributed archi-
tecture. While PIM has shown great promise, it requires invasive core and memory hierarchy
modifications, which are difficult to implement in today’s open-source hardware ecosystem. Addi-
tionally, they require program adaptation which only specific, e.g vertex-centric kernels can utilize.
GraphAttack, however, requires minimal hardware additions that complement the core models of
existing architectures and flexibly support a rich range of applications.

8 CONCLUSION
This paper presents a flexible hardware-software approach that targets memory latency bottlenecks
in graph applications through compiler techniques and modest hardware additions. GraphAttack
provides significant performance and energy efficiency gains due to its (1) innovative program
slicing approach that automatically identifies and optimizes for long-latency neighbor memory
accesses through data Producer/Consumer pairs and (2) small, shared asynchronous access buffers
that enable simple, in-order multicore architectures to overlap neighbor accesses and exploit MLP.
By precisely targeting the latencies that critically bottleneck graph applications, our approach is
the first to make in-order data supply specialized, practical, and optimal for graph analytics while
offering significant application flexibility. Thus, GraphAttack enables scalability to a manycore
programmable accelerator or efficient graph computations performed at the edge. This is timely
work for the New Golden Age of Computer Architecture [3], where significant efficiency gains are
realized with vertical approaches, exemplified by GraphAttack.
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