
Imperial College London

Department of Computing

Inter-workgroup Barrier Synchronisation

on Graphics Processing Units

Tyler Rey Sorensen

May 2018

Submitted in part fulfilment of the requirements for the degree of

Doctor of Philosophy in Computing of Imperial College London

and the Diploma of Imperial College London

Declaration

This thesis and the work it presents are my own except where otherwise acknowledged.

Tyler Rey Sorensen

The copyright of this thesis rests with the author and is made available under a Creative

Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to

copy, distribute or transmit the thesis on the condition that they attribute it, that they

do not use it for commercial purposes and that they do not alter, transform or build upon

it. For any reuse or redistribution, researchers must make clear to others the licence terms

of this work.

2

Abstract

GPUs are parallel devices that are able to run thousands of independent threads concur-

rently. Traditional GPU programs are data-parallel, requiring little to no communication,

i.e. synchronisation, between threads. However, classical concurrency in the context of

CPUs often exploits synchronisation idioms that are not supported on GPUs. By studying

such idioms on GPUs, with an aim to facilitate them in a portable way, a wider and more

generic space of GPU applications can be made possible.

While the breadth of this thesis extends to many aspects of GPU systems, the common

thread throughout is the global barrier : an execution barrier that synchronises all threads

executing a GPU application. The idea of such a barrier might seem straightforward,

however this investigation reveals many challenges and insights. In particular, this thesis

includes the following studies:

• Execution models: while a general global barrier can deadlock due to starvation on

GPUs, it is shown that the scheduling guarantees of current GPUs can be used to

dynamically create an execution environment that allows for a safe and portable

global barrier across a subset of the GPU threads.

• Application optimisations: a set GPU optimisations are examined that are tailored

for graph applications, including one optimisation enabled by the global barrier. It is

shown that these optimisations can provided substantial performance improvements,

e.g. the barrier optimisation achieves over a 10× speedup on AMD and Intel GPUs.

The performance portability of these optimisations is investigated, as their utility

varies across input, application, and architecture.

• Multitasking : because many GPUs do not support preemption, long-running GPU

compute tasks (e.g. applications that use the global barrier) may block other GPU

functions, including graphics. A simple cooperative multitasking scheme is proposed

that allows graphics tasks to meet their deadlines with reasonable overheads.

3

Acknowledgements

First and foremost I thank my adviser, Ally Donaldson. These four years have shaped me

not only as a researcher, but also as a person. Research is difficult mentally, emotionally

and socially. I could not have learned from a better mentor than Ally in all of these

aspects. I am thankful that Ally trusted me and gave me the freedom to work on the

ideas that eventually turned into this thesis. My favourite emails to write to Ally would

start with “I have an idea...”. In a few weeks, Ally would patiently help turn my rough

thoughts into an actionable plan. He always pushed to do my best possible work, while

also allowing me to develop my own creative voice. I will always look up to his scientific

integrity, driven by genuine curiosity and an aim to better the wider scientific community.

Although the programme was extremely difficult, working with Ally has been one of the

most fulfilling experiences of my life.

I thank all my wonderful collaborators and mentors who have taught me so much about

science and have been excellent examples of how to navigate this journey. In particular,

I thank John Wickerson, Hugues Evrard, Nathan Chong, Mark Batty, and Sreepathi

Pai. I thank my internship mentors who gave me valuable industrial experience: Vinod

Grover, Todd Mytkowicz, and Madan Musuvathi. I thank Margaret Martonosi for allowing

me to join her group; our short time working together has already been full of amazing

opportunities and support.

I thank Ganesh Gopalakrishnan for patiently introducing me to research while I was an

undergraduate at University of Utah. He is a role model not only as a scientist, but as a

mentor and a human. He is a moral lighthouse that I constantly look to. I am especially

grateful to him and Zvonimir Rakamarić for allowing me to spend a few months recharging

at University of Utah during my PhD.

I thank the new friends I made during my my time at Imperial College. In particular,

I thank Kareem Khazem for being a constant and reliable source of support, advice, and

fun. I’m sure East Acton is happy to be rid of us! I thank Carsten Fuhs for making

Friday pub night academic enough for me to justify attending. I thank Heidy Khlaaf for

paving a way for me. I thank Marija Selakovic (and Jovan) for immediately making me

4

feel like family. I thank everyone else that I was able to interact with in the Department

of Computing and especially the Multicore and Software Reliability groups.

I thank Richard Bornat, James Brotherston and David Pym. They selflessly helped

me during an extremely difficult time and helped me find my footing at Imperial College.

This thesis would not have been finished without their support during that time.

I thank my parents, Ken and Valerie Sorensen, for the principles they instilled in me

and for all their support and patience. I wasn’t the most cooperative teenager growing

up, but the one thing I knew they wouldn’t tolerate was poor performance in school.

Since the first time I had homework in grade school, my parents would ensure that it was

completed to the best of my ability. I still carry these expectations with me, along with

the confidence that has grown out of them. This journey has been full of rash decisions on

my end, but their support gave me the courage to dive in head first. Finally, I will always

look up to them for their integrity and work ethic.

I thank the rest of my family: my brothers, Jason and Adam, and my sister, Annalynn.

It wasn’t easy being so far away for so long. Although I couldn’t be there for all the

birthdays and camping trips, I love you guys.

I thank my oldest and dearest friends, with whom I grew up with and still am lucky

enough to see occasionally. Something about small town central Utah creates some of the

kindest and most genuine people I have ever met. No matter how much time or distance

separates us, we can always pick up like it was yesterday. In particular, I thank: Scott

and Mardi McDonald for making their spare bedroom my home away from home; Dallin

Brown for always being up for an adventure; Clay and Stephanie Nielsen for holding down

the hometown; and Jordan Peterson for hanging out in the deep end.

I thank Tony Field and Albert Cohen for providing an engaging final examination. Their

feedback and discussions provided a wider context for me to see this work in. For the same

reasons I thank all the anonymous reviewers that provided feedback for my submissions.

I know reviewing can feel like a thankless task, but it has always improved my work.

I thank all the universities that have supported me and gave me a place to call home:

Snow College, University of Utah, Imperial College London, and Princeton University.

We can always do better. I’m going to keep trying if you guys keep trying.

Let’s keep rockin’ and rollin’, man. [And97]

5

Contents

1 Introduction 14

1.1 A short story . 15

1.1.1 Classic concurrency on GPUs? . 15

1.1.2 A GPU global barrier . 15

1.1.3 Using the GPU barrier . 17

1.1.4 Barriers freezing graphics . 18

1.1.5 Looking forward . 18

1.2 Contributions . 19

1.3 Publications . 21

1.4 Formal acknowledgements . 22

2 Background 24

2.1 A brief history . 24

2.2 GPU hardware . 26

2.3 GPU programming: OpenCL . 28

2.3.1 OpenCL feature classes . 33

2.3.2 OpenCL 2.0 memory consistency model 35

2.4 GPUs used in this work . 35

2.5 Summary . 37

3 A Portable Global Barrier 38

3.1 Personal context . 38

3.2 Motivation . 38

3.2.1 Chapter contributions . 41

3.3 Occupancy-bound execution model . 43

3.4 Occupancy discovery . 45

3.4.1 Implementation . 46

3.4.2 Properties and correctness . 49

3.5 Inter-workgroup barrier . 50

3.5.1 The XF barrier . 51

6

3.5.2 OpenCL 2.0 memory model primer 52

3.5.3 Implementation . 54

3.5.4 Barrier specification . 54

3.5.5 Correctness of the inter-workgroup barrier 55

3.6 Empirical evaluation . 58

3.6.1 Recall of discovery protocol . 58

3.6.2 Comparison with the multi-kernel approach 64

3.6.3 Portability vs. specialisation . 66

3.6.4 OpenCL on CPUs . 71

3.7 Related work . 72

3.8 Summary . 73

4 Functional and Performance Portability for GPU Graph Applications 76

4.1 Personal context . 76

4.2 Motivation . 77

4.2.1 Chapter contributions . 79

4.3 Generalising optimisations to OpenCL . 80

4.3.1 Cooperative conversion . 80

4.3.2 Nested parallelism . 82

4.3.3 Iteration outlining . 83

4.3.4 Workgroup size . 84

4.3.5 The optimisation space . 85

4.4 Experimental methodology . 85

4.4.1 Terminology . 85

4.4.2 Creating optimisation strategies by specialisation 86

4.4.3 GPU platforms tested . 89

4.4.4 Benchmarks . 91

4.4.5 Gathering data . 92

4.5 Results and discussion . 93

4.5.1 Top speedups across architectures 93

4.5.2 Top speedups for feature classes . 95

4.5.3 Applying optimisations universally 96

4.5.4 Optimisations in top speedups . 97

4.5.5 Portable optimisations . 98

4.5.6 Optimisations and features of chips, applications and inputs 100

4.5.7 Optimisation policies . 107

7

4.6 Revisiting results from Chapter 3 . 109

4.6.1 Multi-kernel vs. oitergb . 109

4.6.2 Cost of portability . 110

4.7 Related work . 111

4.8 Summary . 112

5 Cooperative GPU Multitasking 114

5.1 Personal context . 114

5.2 Motivation . 114

5.2.1 Chapter contributions . 118

5.3 Two blocking GPU idioms . 119

5.3.1 Work stealing . 119

5.3.2 Graph traversal . 120

5.4 Cooperative kernels . 121

5.4.1 Semantics of cooperative kernels . 122

5.4.2 Programming with cooperative kernels 125

5.4.3 Non-functional requirements . 128

5.5 Prototype implementation . 129

5.5.1 The megakernel mock up . 129

5.5.2 Scheduler design . 130

5.5.3 Alternative semantic choices . 132

5.6 Evaluation applications and GPUs . 134

5.6.1 Cooperative applications . 134

5.6.2 GPUs used in evaluation . 135

5.6.3 Developing non-cooperative kernels 136

5.7 Evaluation . 137

5.7.1 Overhead of cooperative kernels . 137

5.7.2 Multitasking via cooperative scheduling 138

5.7.3 Comparison with kernel-level preemption 144

5.8 Related Work . 145

5.9 Summary . 146

6 A Formalisation of GPU Fairness Properties 148

6.1 Personal context . 148

6.2 Motivation . 148

6.2.1 Schedulers . 149

8

6.2.2 Semi-fair schedulers . 151

6.2.3 Chapter contributions . 153

6.3 GPU program assumptions . 155

6.4 Formal program reasoning . 155

6.5 Formalising semi-fairness . 160

6.6 Inter-workgroup synchronisation in the wild 164

6.7 Unified GPU semi-fairness . 165

6.7.1 LOBE discovery protocol . 167

6.8 Summary . 171

7 Conclusion 173

7.1 Contributions . 173

7.2 Future work . 175

7.2.1 Immediate future work . 175

7.2.2 Fundamental future work . 178

7.3 Summary . 179

Bibliography 179

9

List of Tables

2.1 OpenCL execution environment functions. 31

2.2 The GPUs considered in this work, a short name used throughout the thesis

(Short name), the number of compute units (#CUs), the subgroup size (SG

size), the supported OpenCL version (OCL), and the chapter(s) where each

GPU is used for empirical studies (Chapter). 36

3.1 Occupancy discovery execution environment functions. 48

3.2 Occupancy for each chip and microbenchmark for occupancy bound (OB),

and the average discovered occupancy using the ticket-lock (TL) and spin-

lock (SL). 61

3.3 Occupancy for two CPU chips; the occupancy bound (OB), and the average

discovered occupancy (out of 50 runs) using the ticket-lock with different

amounts of delay between the polling and closing phases. 70

3.4 Pannotia application speedups using the inter-workgroup barrier vs. multi-

kernel (higher is better), and Lonestar-GPU application slowdowns for using

a portable vs. non-portable barrier (lower is better). 75

4.1 List of optimisations, the OpenCL features they exploit and the architec-

tural parameters that influence performance. Feature class refers to the

OpenCL feature classes described in Section 2.3. 81

4.2 The applications considered along with their available optimisations. Ap-

plication variants considered state-of-the-art are noted with a (*). Appli-

cations with no variants have only one implementation. 90

4.3 The maximum speedup and slowdown per chip and associated application.

The input for each is usa.ny. 94

4.4 The top and bottom five universal optimisation strategies ranked according

to the number of tests slowed down. 96

4.5 The optimisations enabled by the analysis for the following levels of porta-

bility: global, per-chip, per-app, and per-input. 102

10

4.6 Microbenchmark results for subgroup atomic combining and workgroup

memory divergence. 104

4.7 Kernel launches and worklist sizes for different inputs when running BFSwl. 105

4.8 Average worklist sizes for three variants of BFS across different inputs. . . 106

4.9 Number of kernel launches and average time (ms) per kernel for Hd5500. . 107

4.10 Average runtime (ms) over 20 iterations of the discovery protocol and the

portability overhead of the BFS application of Section 3.6.3 using two mutex

strategies. 110

5.1 Overview of new cooperative kernel constructs. 122

5.2 Blocking GPU applications investigated: the number of global barriers con-

verted into resizing barriers, the number of cooperative constructs added,

the lines of code (LoC) and the number of inputs. 135

5.3 Period and execution time for each rendering task. 137

5.4 Cooperative kernel slowdown without multitasking. 138

5.5 The number of resizing barriers for the barrier applications of Figure 5.6b

and 5.6c, along with their execution time (on Hd5500) and average fre-

quency of resizing barrier calls. 142

5.6 Application overhead of multitasking three graphics workloads using kernel-

level preemption and using cooperative kernels. 143

6.1 Blocking synchronisation idioms considered in this work. 151

6.2 Blocking synchronisation idioms guaranteed starvation-freedom under var-

ious schedulers. 151

11

List of Figures

2.1 A vector addition OpenCL kernel using local memory and workgroup syn-

chronisation. 32

3.1 A non-portable kernel that potentially deadlocks. 39

3.2 Illustration of code transformation required when going from (a) the native

OpenCL programming style to the (b) persistent thread programming style

where kernels are parameterised by N , the number of executing workgroups . 44

3.3 Occupancy discovery protocol, executed by a single representative thread

per workgroup. 46

3.4 XF inter-workgroup execution barrier, one master workgroup executes (a),

while all other workgroups execute (b). 51

3.5 Two OpenCL synchronisation patterns used by the XF inter-workgroup

barrier. 53

3.6 Idiomatic execution of XF barrier. 57

3.7 Discovered occupancy and number of compute units compared to the occu-

pancy bound. 60

3.8 Protocol timing for K5200 and Mali-2. 63

3.9 Runtime comparison of multi-kernel paradigm vs. inter-workgroup barrier. 65

3.10 Portability slowdown for inter-workgroup barriers. 68

3.11 Portability overhead as runtime increases. 69

4.1 Summary of optimisations used per-chip to obtain the top speedups. . . . 93

4.2 Summary of top speedups for all benchmarks, split by chip. 93

4.3 Summary of top speedups over all tests, grouped by feature class. 95

4.4 Percent of tests for which each optimisation is beneficial, benign, or harmful. 97

4.5 The percentage of tests for each optimisation strategy that provided a

speedup, no difference or slowdown. Concrete test counts are given on

the bars. 99

4.6 The geomean slowdown compared to the oracle across all tests for different

optimisation strategies. Concrete test counts are given on the bars. 99

12

4.7 Results of the kernel launch frequency microbenchmark per chip. 103

4.8 Heatmap of the geomean slowdown compared to the oracle of executing an

optimisation configuration tuned for one chip on all other chips. 108

5.1 Cooperative kernels can flexibly resize to allow other tasks, e.g. graphics,

run concurrently. 115

5.2 An excerpt of a work stealing algorithm in OpenCL. 119

5.3 An outline of an OpenCL graph traversal. 120

5.4 Cooperative kernel version of the work stealing kernel of Figure 5.4. Changes

to correctly use cooperative features are highlighted 126

5.5 Cooperative kernel version of the graph traversal kernel of Figure 5.3.

Changes to correctly use cooperative features are highlighted 127

5.6 Gather time and non-cooperative task time results for three cases: (a) OC-

TREE on Iris; (b) MIS[eco] on Hd520; and (c) BFS[rmat22] on Hd5500. 140

5.7 (a) slowdown of cooperative kernel when multitasking various non-cooperative

workloads, and (b) the period with which non-cooperative kernels are able

to execute. 142

6.1 The semi-fair schedulers defined in this work from strongest to weakest. . . 154

6.2 Two threaded mutex idiom (a) program code and (b) corresponding LTS. . 156

6.3 Two threaded PC idiom (a) program code and (b) corresponding LTS.

Omitting (a) lines in gray and (b) states and transitions in gray and dashed

lines yields the one-way variant of this idiom. 162

6.4 Sub-LTS of a barrier, with an optional discovery protocol preamble. 170

13

1 Introduction

This thesis covers a range of topics related to GPU computing, namely: GPU execution

models, optimisations for GPU applications, and multitasking on GPUs. However, the

motivation behind the work has always had a simple foundation: explore uncharted ter-

ritories of concurrent interactions on GPUs to gain the understanding required to build

synchronisation constructs that, in turn, enable new ways for applications to take advan-

tage of GPU acceleration.

The synchronisation construct that this thesis focuses on is a global barrier, which aligns

the computation of all threads executing a program. Such a construct is widely available as

a primitive in other parallel programming frameworks, yet it is not provided as a portable

primitive on GPUs. Given this, It is only natural for developers to (1) desire a GPU

global barrier in order to leverage intuitions and applications from other common parallel

frameworks, and (2) wonder for what reasons such a barrier is not provided.

As this thesis shows, the implementation, application use cases, and multitasking conse-

quences of a global barrier on GPUs present many interesting problems and yield insights

that we believe are fundamental to parallel programming. Although the global barrier

is the unifying thread of this thesis, the studies presented have a wider breadth, with

interesting results in many areas of GPU computing.

The outline of this this chapter is as follows: first, the issues investigated in this thesis

are illustrated using a short story about two curious undergraduate students attempting

to write GPU programs (Section 1.1). Afterwards, the thesis contributions are more

formally presented, organised by chapter (Section 1.2). Following this, a list of publications

by the author is given, including both publications directly included in this thesis and

other publications, the involvment in which has had a substantial influence on the works

presented here (Section 1.3). The chapter concludes with formal acknowledgments of

contributions that have directly influenced the work in this thesis (Section 1.4).

14

1.1 A short story

Inspired by the introduction of Marino et al.’s paper about the difficulties of weak memory

consistency models [MMM+15] as they might appear to an undergraduate computer science

student.

1.1.1 Classic concurrency on GPUs?

Scott has just finished his second year as a computer science undergraduate student.

His favourite course this term was a module on concurrency where he learned about

Pthreads [NBF96], OpenMP [Ope15], and Java threads [PGB+05]. He was intrigued

by the fantastic speedups that parallelism could offer on today’s machines, but he also

understood that parallel programming is difficult, having spent many late nights debugging

his coursework.

Over the summer holiday, Scott wanted to practice parallel programming. Being a

curious student, Scott wanted to try programming a GPU. While GPUs weren’t covered in

the module, Scott was very aware of these devices as they were popular in high-profile areas

of computing such as machine-learning, crypto-currency, and video games (of course!).

Additionally, he had read that GPUs could be programmed in a manner similar to that

which he had learned in his module, using languages such as OpenCL [Khr15]. Scott was

excited to find that his laptop had an Intel HD5500 GPU equipped with OpenCL-capable

drivers.

1.1.2 A GPU global barrier

After working through the usual GPU tutorials of reductions and matrix multiplication,

Scott wanted to try applying material he had learned in his course. He was particularly

fond of barrier synchronisation, which aligned the computation of all the threads running

the program. By helping to tame the large amount of scheduling non-determinism of con-

current programs, applications that used this bulk synchronisation construct were easier

for him to reason about. Most of the languages he had studied in his course provided

barriers as primitives, but OpenCL did not, at least not a global barrier across all the

threads executing the program. He knew however, from his favourite textbook [HS08, ch.

17], that he could implement his own barrier using atomic read-modify-write instructions,

which were provided in OpenCL.

Before long, Scott had a barrier implementation in OpenCL and a short driver program

to test the barrier. However, his excitement was short-lived; every time he tried to execute

15

the barrier program, his computer froze and he had to restart it! Frustrated, but not

defeated, Scott started searching the internet to understand what was happening. He

quickly found a reference to a research paper discussing barriers on GPUs [XF10], where

he learned that he should only run his barrier program with as many workgroups (OpenCL

thread groups) as the GPU had processors, or compute units.

This solution seemed simple enough. Using the OpenCL device query functions [Khr15,

ch. 4.2], Scott learned that his HD5500 had 24 compute units. However, even when the

program was restricted to only run with this number of workgroups, the barrier program

still froze the computer! Scott’s frustration turned into determination and he continued

debugging, trying everything he could think of. Eventually, late into the night, Scott

found that the barrier program would work if executed with up to three workgroups.

However, executing the program with four or more workgroups caused the computer to

freeze. Exhausted, but feeling triumphant, Scott wanted to tell someone about his success.

He knew that his concurrency classmate, Mardi, had a machine built for gaming with a

high-end AMD R9 Fury GPU. He sent her the OpenCL barrier program to try.

The next morning, Scott saw a message from Mardi. She had successfully run the

barrier program on her AMD GPU! However, in his exhausted state, he had forgotten to

tell her to limit the workgroup count, and yet, somehow the barrier driver program still

ran without issue for her using the full number of compute units on her AMD GPU.

I Key idea: A standard barrier implementation may deadlock due to starvation on

current GPUs. Prior work [XF10, GSO12] has shown that such barriers can execute

successfully if the number of workgroups that synchronise is limited to the number of

workgroups that can run in parallel on the GPU. However, this number is difficult to

determine statically. Depending on the architecture, it may or may not correspond

to the number of documented processors (compute units) on the GPU. To complicate

matters further, the number of parallel executing workgroups is also affected by the

shared memory and register usage of the program.

Scott found this experience disconcerting. None of the other parallel programming

models that he had studied before limited the number of threads that he could synchronise

successfully with a barrier. Even more strange was that his GPU behaved differently from

Mardi’s in terms of the relation to the reported number of processors and how many

workgroups could synchronise using the barrier. However, these concerns could be put

aside for now: he was excited to find a GPU application that he could accelerate using

this barrier.

16

1.1.3 Using the GPU barrier

Scott began looking for GPU applications in which his barrier might be useful. He noticed

that many common GPU applications, like matrix multiplication, were embarrassingly

parallel, i.e. there was little to no communication between threads. Because of this, it

wasn’t a clear that a barrier could be useful in such applications. After some searching,

Scott found several recent works describing graph computations on GPUs [CBRS13, PP16,

BNP12], e.g. breadth first search (BFS). He had learned about these algorithms in his early

courses and decided to investigate.

While looking at a GPU implementation of BFS [BNP12], Scott noticed that the pro-

gram as a whole was not just a single GPU program, but rather it was a series of small

GPU programs launched iteratively from the CPU. The reason for this, Scott learned, was

that global synchronisation was required between each iteration of the GPU program, and

this was achieved via repeat GPU program launches [Khr15, ch. 3.2.4]. He was excited

to realise that his global barrier could provide the same global synchronisation without

having to repeatedly relaunch the GPU program. If the barrier overhead was less than

the overhead of repeat program launches, then there could be some performance benefits!

It wasn’t difficult to apply the barrier optimisation to the BFS application, and soon

Scott was able to do some timing experiments. He was able to find the road-network of

New York in a graph representation, which he used as an input to his application. He

was thrilled when he saw that his barrier-optimised BFS application outperformed the

original iterative application by 3.5×! Again, wanting to share his success, he sent his

barrier-optimised application to Mardi. He knew Mardi was working on analysing social

networks, which can be represented as graphs similar to his road-networks, so perhaps the

application would be useful for her.

The next day he had a new message from Mardi, this one not as positive as her last. The

barrier-optimised BFS application on her social network graphs was not any faster than

iterative application on her AMD GPU! Again, Scott found this disconcerting: even after

all the work to get a functional barrier, it did not provide a performance improvement for

a different GPU and use case.

17

I Key idea: Performance portability is known to be difficult (e.g. see [SRD17]) and

graph applications on GPUs are no exception. Due to the irregular parallelism of such

applications, the utility of optimisations depends not only on architectural features,

but also application input. A global barrier optimisation that achieves impressive

speedups in one instance may not have a performance effect in a different instance;

and, in fact, can even cause a slowdown.

1.1.4 Barriers freezing graphics

In addition to the barrier-optimised BFS application not speeding up Mardi’s social net-

work graph computation, she also complained that her entire computer would have short

periods of temporary freezes when running the application. These freezes were intru-

sive enough that she could not work on her computer while the application ran in the

background, as she was used to doing with the original iterative application. Scott hadn’t

noticed the temporary freezes: he had been too focused on the task at hand that he wasn’t

trying to use his computer for anything else while running the timing experiments.

When he started programming again he noticed that Mardi was right; his computer

would temporarily freeze during the barrier-optimised BFS application. Even though the

analysis only took about a second to run, the UI disruption was absolutely noticeable. This

GPU barrier, which started as an innocent exploration of core ideas from his concurrency

course, was having issues at every point!

I Key idea: Many current GPUs do not support preemptive multi-tasking. If long-

running compute tasks (e.g. a barrier-optimised BFS) are run on a GPU that is also

responsible for graphical UI, then the UI may become unresponsive until the compute

task finishes executing.

1.1.5 Looking forward

It was now almost the end of summer holiday and the term would starting soon. Scott and

Mardi felt refreshed and prepared from their extracurricular programming exercises. They

spent the next day planning their fall term schedules. In particular, Scott noticed a course

titled “Formal Programming Reasoning”, in which maths and logic were used to describe

the behaviours of programs. He thought back to the strange differences of behaviour

18

between his Intel GPU and Mardi’s AMD GPU when executing the global barrier. Could

there be any sort of maths to describe what they observed? He couldn’t resist signing up!

I Key idea: The problematic barrier behaviours that cause machine freezes can be

formally reasoned about using temporal logic. These freezes occur because current

GPUs do not provide fair scheduling guarantees. However, because limited variants

of the barrier do execute successfully, GPU schedulers are not completely unfair. For-

malising the exact fairness guarantees provided (or assumed) on GPUs allows precise

program reasoning not just for barriers, but other important blocking synchronisation

idioms, such as mutexes.

After finalising their course schedule, Scott and Mardi talked about their future plans

after they graduated. Scott said he wanted a tech job where he got free food and massages!

While that all sounded very nice, Mardi wasn’t so sure. She was considering applying for

grad school...

1.2 Contributions

The contributions of this thesis correspond to investigations of the issues faced by Scott,

Mardi, and likely many other GPU developers1 when experimenting with a GPU global

barrier. While these barriers are not supported officially by any major GPU programming

model, it is hoped that the contributions in this thesis will be useful as these programming

models evolve. The original contributions of this thesis are as follows:

• Chapter 3 presents the occupancy-bound execution (OBE) model: an abstract de-

scription of GPU scheduling, providing fair execution to any thread that has previ-

ously executed an instruction. These guarantees can be used to dynamically create

an environment where it is safe to execute a barrier across a subset of the threads.

An experimental campaign shows that a wide range of GPUs from different vendors

(7 GPUs across 4 vendors) honour OBE guarantees.

Using insights from this chapter, Scott and Mardi could implement a global barrier

that worked on both of their GPUs, without considering architectural details.

1see:
https://stackoverflow.com/questions/7703443/inter-block-barrier-on-cuda
and
https://stackoverflow.com/questions/34476631/opencl-and-gpu-global-
synchronization

19

• Chapter 4 examines a domain-specific language (DSL) and an optimising compiler

for GPU graph applications. The work explores the functional generalisation of these

optimisations to target a wide range GPUs. In particular, the OBE guarantees (as

defined in Chapter 3) are used to enable an optimisation that requires a global

barrier in a portable way. Experimental results show that performance profiles

(across 6 GPUs spanning 4 vendors) can be achieved that resemble the original

Nvidia results. The performance portability of the optimisations is investigated as

the runtime effect of optimisations varies across GPUs, applications, and inputs.

Using insights from this chapter, Scott and Mardi could understand that the perfor-

mance effect of the global barrier optimisation is highly sensitive to different appli-

cation graph inputs, but not as much to different GPUs. If Mardi would have tried

the same input on her AMD GPU, she would have seen similar speedups as the Intel

GPU. The DSL compiler presented in this chapter would allow Scott and Mardi to

automatically and rapidly try many different optimisation settings on their respective

GPUs.

• Chapter 5 is motivated by the observation that long-running GPU compute ap-

plications cause graphical applications to become temporarily unresponsive if both

applications leverage the same GPU. To address this, a cooperative multi-tasking

framework is presented where GPU compute applications and interactive tasks, e.g.

graphics, can efficiently share resources. The primary primitive in this framework is

a new global barrier, called a resizing barrier, in which applications surrender and

reclaim compute resources at barrier calls. A prototype scheduler is presented and

it is shown that synthetic graphics tasks are able to meet their interactive deadlines

while multi-tasking with long-running GPU compute applications.

Using insights from this chapter, Scott and Mardi could understand why their ma-

chines would temporarily freeze when executing a barrier-optimised application and

understand how researchers are thinking about addressing the problem.

• Chapter 6 presents the notion of semi-fairness: a theoretical basis to reason about

scheduling guarantees, such as the ones provided by OBE. Semi-fairness formally

defines fairness properties through a temporal logic formula, based on weak fairness,

that is parameterised by a thread fairness criterion, a predicate that enables fairness

per-thread at certain points of an execution. Using this framework, the fairness

properties of several GPU schedulers are formally defined and the behaviours of

common synchronisation idioms are analysed under each scheduler.

20

Using insights from this chapter, Scott and Mardi could apply the material from

their formal reasoning course to understand precisely the scheduling guarantees that

are officially provided, or commonly assumed, for GPUs. This would allow them

to formally reason about the next blocking synchronisation idiom that they wish to

execute on a GPU.

1.3 Publications

The material presented in this thesis has either been published in conference articles or is

currently under submission. Organised by chapter, these publications are as follows:

• The description of occupancy-bound execution and the discovery protocol, presented

in Chapter 3, is based on material originally published in the 2016 ACM SIGPLAN

Conference on Object-Oriented Programming, Systems, Languages, and Applica-

tions (OOPSLA’16) [SDB+16]. The work has an associated approved artifact, which

can be found at:

https://github.com/mc-imperial/gpu discovery barrier

A companion experience-report, detailing the difficulties of running the associated

experimental campaign across 7 GPUs, was published in the 4th International Work-

shop on OpenCL (IWOCL’16) [SD16b].

• The portable GPU graph application framework, presented in Chapter 4, is currently

under submission. The citation references the current draft [SPD18].

• The GPU cooperative multi-tasking scheme, presented in Chapter 5, is based on ma-

terial originally published in the 11th ACM SIGSOFT Symposium on the Founda-

tions of Software Engineering (FSE’17) [SED17a]. The work received a distinguished

paper award.

• The formal description of scheduler fairness guarantees, presented in Chapter 6,

is based on material originally published in the 29th International Conference on

Concurrency Theory (CONCUR’18) [SED18].

The author has additionally been involved in several other published works, all with a

common theme of testing or specifying fine-grained interactions of threads in concurrent

systems. These additional works have helped shape the research direction of this thesis:

21

• The Semantics of Transactions and Weak Memory in x86, Power, ARMv8, and

C++: this work specifies the semantics of programs that use transactional memory

on systems that have relaxed memory models; published in the 39th ACM SIGPLAN

Conference on Programming Language Design and Implementation, (PLDI’18) [CSW18].

The work received a distinguished paper award.

• Automatically Comparing Memory Consistency Models: this work presents a frame-

work that given two different memory consistency models, can synthesise programs

that have different behaviours under the provided memory models; published in

the 44th ACM SIGPLAN Symposium on Principles of Programming Languages

(POPL’17) [WBSC17].

• Exposing Errors Related to Weak Memory in GPU Applications: this work presents a

black-box testing methodology that is able to effectively reveal bugs related to weak

memory in GPU applications; published in the 37th ACM SIGPLAN Conference on

Programming Language Design and Implementation, (PLDI’16) [SD16a].

• GPU Concurrency: Weak Behaviours and Programming Assumptions: this work

describes the synthesis of weak memory unit tests and a testing framework that

is able to effectively run such tests on GPUs. The results show that many GPUs

applications assumed an unsound memory consistency model; published in the 20th

Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS’15) [ABD+15].

1.4 Formal acknowledgements

I gratefully acknowledge and thank my collaborators throughout my PhD. While the

majority of the work presented here was done by me, each co-author of the publications

discussed in this thesis helped to develop the scientific narrative (this includes the prose

in some cases) that will be presented. Specifically: Alastair F. Donaldson, Mark Batty,

Ganesh Gopalakrishnan and Zvonimir Rakamarić contributed to the work presented in

Chapter 3. Alastair F. Donaldson and Sreepathi Pai contributed to material presented in

Chapter 4. Alastair F. Donaldson and Hugues Evrard contributed to material presented

in Chapters 5 and 6.

In terms of technical contributions, I acknowledge and thank Sreepathi Pai for doing

substantial work in modifying the irgl compiler to generate OpenCL code, discussed in

Chapter 4. I acknowledge and thank Alastair F. Donaldson for developing the kernel

22

merge tool described in Chapter 5, which combines two GPU kernels into one megakernel

and also adds hooks to to interact with the prototype scheduler. I acknowledge and thank

Hugues Evrard for (1) adapting the two work-stealing applications discussed in Chapter 5

to use cooperative kernels and for producing Figure 5.1 in Chapter 5; and (2) generating

labelled transition systems which influenced Figures 6.2b, 6.3b and 6.4 in Chapter 6.

While not directly appearing in this thesis, I thank and acknowledge: Mark Batty for

producing a library abstraction proof for the memory consistency properties of the global

barrier shown in Chapter 3 (as seen in [SDB+16]); Alastair F. Donaldson for writing oper-

ational semantics for the cooperative kernel extensions in Chapter 5 (as seen in [SED17b]);

and Hugues Evrard for leading model-checking efforts in the early stages of the work pre-

sented in Chapter 6. These three contributions substantially improved their respective

publications.

23

2 Background

In this chapter, an overview of GPU hardware and programming models is given along

with some related context. Section 2.1 provides a brief history of GPUs, from their be-

ginnings being used exclusively to accelerate graphics rendering in video games, to their

current status as programmable accelerators used in many domains. Next, details about

GPU hardware and the programming models used to write programs that execute on

such hardware are given in Sections 2.2 and 2.3, respectively. Finally, the GPUs used

throughout this thesis and their technical profiles are presented in Section 2.4.

2.1 A brief history

A brief history of GPUs is presented here, with an emphasis on the development of gen-

eral purpose computing on GPUs and some examples of their current usages. Unless

otherwise mentioned, this history is derived from Chapter 1 of the textbook CUDA by

Example [SK10] and the TechSpot article The History of the Modern Graphics Proces-

sor [Sin13].

The idea of using special-purpose hardware to accelerate graphics rendering has been

around since the early 1950s. It is believed that a flight simulator developed by MIT in 1951

was the first successful instantiation of this idea. Through the next 30 years, specialised

hardware was developed to render 2D graphics, including the Television Interface Adaptor

in 1977, which was a special purpose chip designed for video and audio output of the Atari

video game system. In the early 1990s, GUI driven operating systems, e.g. Microsoft

Windows, imposed the requirement that home computers must be equipped with a 2D

graphics card. Along with these operating systems, APIs for programming such graphics

cards were developed, most notably a cross-vendor collaboration called OpenGL in 1992

and Microsoft’s DirectX in 1994.

In 1996, 3Dfx released the Voodoo GPU, the first consumer GPU to accelerate 3D

graphics. Other companies, such as Nvidia and ATI (now a part of AMD), began devel-

oping such cards in fierce competition. In 1999, Nvidia officially used the term graphics

processing unit for the first time with the release of the GeForce 256, stating [NVI99]:

24

The technical definition of a GPU is “a single chip processor with integrated

transform, lighting, triangle setup/clipping, and rendering engines that is ca-

pable of processing a minimum of 10 million polygons per second.”

while also humbly adding:

The GPU changes everything you have ever seen or experienced on your PC.

The next breakthrough came in 2001. Version 8.0 of the DirectX standard required

hardware that allowed programmable vertex and pixel shaders. The first GPUs to satisfy

this requirment were the Nvidia GeForce 3 series. Now graphics developers had the ability

to customise the computations on the GPU. Given the high throughput potential of GPUs,

this new flexibility also attracted developers from other domains. Using graphics APIs,

developers could execute general applications in a roundabout way by (1) presenting their

application as a graphics application and then (2)interpreting the GPU graphical output

as general output.

Nvidia then moved to accommodate more general purpose programming on their GPUs.

The GeForce 8800 GTX GPU, released in 2006, supported the new CUDA programming

model. CUDA allowed for C-like programs to be developed and executed on Nvidia GPU

hardware. To support this new programming model, the new GPU hardware was designed

to conform to the IEEE floating point standard, and featured a unified shader core that

combined the vertex and pixel shaders. However, other vendors, e.g. AMD, Intel, and

Qualcomm, were also interested in developing a framework for general purpose computa-

tions on their respective GPUs. These vendors organised through the Khronos Group, a

non-profit organisation whose aim is the development of open APIs for acceleration across

a range of devices. In 2008, Apple began a Khronos working group for a new and portable

GPU compute language, which would eventually became OpenCL. The Mac OS X Snow

Leopard operating system supported the first version of OpenCL in 2009 [Wik18]. Inter-

estingly, Apple deprecated support of OpenCL and OpenGL in 2018 to support their new

GPU language, Metal.1

These general purpose languages and frameworks continue to evolve. CUDA is currently

on version 9.1 (January 2018) [Nvi18a], and OpenCL is on version 2.2 (May 2017) [Khr17].

Each version adds new features, allowing more ways for applications to take advantage

of GPU acceleration. These frameworks enjoy significant usage both in research and in

1See:
https://appleinsider.com/articles/18/06/04/opengl-opencl-deprecated-in-
favor-of-metal-2-in-macos-1014-mojave

25

industry. For example, the website https://hgpu.org/, an aggregate site for GPU

research, reports that as of 2017 more than 14,000 and 63,000 academic papers have been

published using OpenCL and CUDA, respectively. In an industrial setting, clusters of

GPUs are widely used for machine-learning applications. For example, Facebook reports

90% scaling efficiency using a cluster of 256 GPUs [GDG+17]. Consumers are also using

general purpose GPU computation: the online tech publication Tom’s Hardware reported

in February of 2018 that there was a shortage of consumer GPUs, and as such, the prices

had doubled or tripled. The high demand is attributed to GPU acceleration for cryptocur-

rency applications.2

GPUs architectures, their programming models, and the applications accelerated by

GPUs continue to grow and evolve. This thesis explores ways in which the program-

ming model might evolve, and shows that there is potential for new types of application

acceleration using the proposed extensions.

2.2 GPU hardware

Many vendors currently produce GPUs, including Nvidia, AMD, Intel, ARM, and Qual-

comm. Because GPUs from different vendors have varying architectural features, describ-

ing a generic common GPU architecture is difficult. However, several common charac-

teristics pertinent to this thesis are described now and concrete details for three different

GPU architectures will be given when possible. Specifically, the three architectures ex-

plored are: (1) the Nvidia Volta architecture [NVI17], as it is the most recent Nvidia

architecture; (2) the AMD GNC architecture [AMD12], as it is the architecture of the

two AMD chips explored in this thesis (see Section 2.4); and (3) the Intel Gen9 archi-

tecture [Int15a], as two of the Intel GPUs used in this thesis belong to this architecture,

Iris and Hd5500. Additionally, two ARM GPUs are used in this thesis, but authoritative

architecture specifications for either Midgard (the architecture of the ARM GPUs used

in this work) or Bifost (the most current ARM archtecture) could not be found. Because

OpenCL is a portable GPU programming framework, terminology from OpenCL will be

used when possible.

2See:
https://www.tomshardware.com/news/ethereum-effect-graphics-card-
prices,34928.html

26

Execution hierarchy The base unit of execution on a GPU is called a processing unit

(PU), a scalar processor capable of executing an instruction set, including integer and

floating-point computations.

Groups of processing units are partitioned into same-sized disjoint SIMD execution

groups (SEGs).3 Different architectures have different sizes and architectural names for

SEGs. AMD calls such groups wavefronts and they have a fixed size of 64. Nvidia calls

such groups warps and they have a fixed size of 32. SEG sizes on Intel GPUs vary between

8 and 16, adapted to the resource requirements of a program.

SEGs are partitioned into same-sized disjoint compute units (CUs). AMD architectures

have 4 SEGs per CU. Nvidia uses the terminology streaming multiprocessor (SM) to refer

to CUs and each SM contains 4 SEGs. Intel uses the term execution units (EUs) to

refer to a compute unit; because Intel SEGs are variable sized, it is unclear from the

documentation how many SEGs each EU contains.

Memory hierarchy The base memory unit of a GPU is a register, which exists in a

register file. A register file is either local to an SEG or a CU. On AMD, each SEG has a

register file 64 KB. On Intel, each CU has a register file of 28 KB. On Nvidia, each CU

has a register file of 256 KB.

Each CU has a two caches: one for CU-local memory and another as an L1 cache for an

inter-CU region of main memory. On AMD, the CU-local memory is 64 KB and the L1

cache is 16 KB. On Intel, there are not CU-local caches, but instead, eight CUs are grouped

into a slice, which has a cache of 512 KB. The slice cache is automatically partitioned

between CU-local memory and L1 cache depending on the resource requirements of a

program. On Nvidia, the CU-local memory and L1 cache is a shared memory unit, as

such the partition can be manually configured, sharing 96 KB.

Finally, a GPU has a main memory shared across all CUs. AMD has an L2 cache,

whose size various across GPU models, shared across CUs to accelerate accesses to main

memory. Intel shares main memory with the CPU main memory and does not document

an L2 cache. Nvidia has an L2 cache of size 6144 KB. The main memory size is typically

large, being the primary storage location for large amounts of data to compute. For

example, the AMD R9 Fury GPU has 4 GB and the Nvidia Volta V100 GPU has up to

32 GB of main memory.

3This terminology is specific to this thesis, as there does not appear to be unified name for such hardware
components.

27

2.3 GPU programming: OpenCL

GPU programming models enable development of programs that are accelerated on GPU

hardware. There are several GPU programming models that exist today, each with benefits

and drawbacks. CUDA [Nvi18a] is the Nvidia proprietary programming model. The bene-

fits of CUDA are that it is well supported by Nvidia and quick to evolve. The drawback of

CUDA is that it is only supported on Nvidia GPUs. OpenCL [Khr16a] is a portable GPU

programming model similar to CUDA and developed by a Khronos working group with

members across many hardware and software vendors (e.g. Nvidia, Intel, AMD). The ben-

efits of OpenCL are that it is portable across vendors and is reasonably well supported.4

The drawbacks of OpenCL is that it is slow to evolve, perhaps to accommodate the wide

range of target devices that may be required to implement it. OpenCL often seems to

adopt CUDA features, but lags behind by several years, especially for availability on con-

sumer devices. Heterogeneous System Architecture (HSA) [HSA17] aims to be a portable

programming model and framework, but has not appeared to pick up much practical sup-

port outside of AMD. All of these models exist at a low-level of abstraction, providing the

opportunity for hand-written, detailed architectural optimisations. However, this low-level

also means that program development may be difficult, requiring domain expertise and

being vulnerable to C-like bugs (e.g. out-of-bounds memory errors).

The different GPU programming models generally share common characteristics, i.e.

programming constructs to exploit the GPU hardware hierarchy. The high-level ideas

presented in this thesis are not tied to any particular GPU programming model and gen-

erally use only the common features. However, for cohesion and to provide portable ex-

perimental artifacts, this thesis largely uses OpenCL throughout. Specifically, version 2.0

of OpenCL is used, as it provides most of the features required by the constructs explored

in this thesis, and enjoys support from current Intel and AMD GPUs (see Section 2.4).

An OpenCL GPU program consists of two parts:

• a host program, written in C/++ and executed on the CPU. The host program in-

terfaces with the GPU, e.g. initialising GPU memory and launching GPU programs,

through the OpenCL API.

4OpenCL is not limited to GPUs, and can be executed on CPUs and FPGAs. However, GPUs are the
main target of this thesis, and thus the focus will be limited to OpenCL execution on GPUs.

28

• a device program, often called a kernel, and executed on the GPU. This program is

written in OpenCL C, which is based on C99. It is executed in a single instruction,

multiple threaded (SIMT) manner, whereby all threads execute the same program

but may query unique thread identifiers to access distinct data and follow varying

control paths.

OpenCL C supports a hierarchical programming abstraction with components that map

naturally to GPU architectural features. At the base level there are threads,5 which execute

on a GPU’s PUs. Threads are organised into disjoint, equal-sized, subgroups. Threads

in the same subgroup are often executed on the same SEG. Subgroups are organised into

disjoint, equal-sized, workgroups. Typically subgroups in the same workgroup are executed

on the same CU, which can execute several subgroups concurrently. A kernel is executed

by one or more workgroups. The number of threads per workgroup, and the number of

workgroups executing a kernel are specified by the host upon kernel launch. Most GPU

vendors support a maximum workgroup size of 256, with the exception of Nvidia, which

supports a maximum workgroup size of 1024. The maximum number of workgroups

that can execute a kernel is not practically constrained, as threads across workgroups

do not enjoy the same locality exploiting primitives that intra-workgroup threads have.

Additionally, because there are no requirements for workgroups to execute concurrently,

if the device is oversubscribed, workgroups can simply execute in waves.

The relative location of threads in the hierarchy dictates the extent to which they

can exploit locality of resource when communicating, or otherwise interacting, with one

another. Threads in the same subgroup enjoy the most locality and threads in different

workgroups enjoy the least.

Memory spaces OpenCL exposes four memory spaces, each with varying locality, and

hence performance, properties:

• Private Memory. This is the most localised memory, being thread-local. Private

memory is provided in the register file, or an overflow memory region. Accesses to

private memory are typically very fast due to its spacial locality to the PU, however,

it is not useful for inter-thread interactions due to its limited scope. Recall that

register files are typically local to SEGs; thus, subgroup primitives (as provided in

OpenCL 2.1) may allow intra-subgroup threads to efficiently share memory in this

region. Private memory does not persist across kernel invocations.

5In strict OpenCL terminology, threads are called workitems this thesis opts to use threads due to the
conceptual similarities and historical prevalence of the word.

29

• Local memory.6 This memory is local to a workgroup and typically implemented in

the CU-local cache. Local memory is considered efficient to use for intra-workgroup

interactions, but is not shared across workgroups. Like private memory, local mem-

ory does not persist across kernel invocations.

• Global memory. This memory is shared across all the threads on the device and

typically implemented on the GPUs main memory. Compared to private and local

memory, accesses to globally memory are considered to be slow, but it is large and

can facilitate inter-workgroup interactions. Unlike private and local memory, global

memory does persist across kernel invocations.

• Shared virtual memory (SVM). This memory is shared between host and de-

vice and can be used for fine-grained GPU-CPU interactions. SVM is not yet well

supported on current GPUs; in the cases where support is provided, accesses to this

memory region are considered to be very slow. In this thesis, SVM is used only in

Chapter 5 and was only reliably provided on the Intel GPUs (see Section 2.4).

Workgroup barrier GPU programming models typically provide an intra-workgroup

barrier instruction, which aligns the computation of threads within a workgroup and

ensures up-to-date memory values can be read across these threads. For OpenCL, this

construct is provided through the barrier instruction [Khr16a, p. 99].7 This instruction

must be called in a workgroup-uniform location; that is, the barrier instruction must be

encountered by all threads within a workgroup or none of them. This constraint applies to

to loop iterations as well: all threads within a workgroup must encounter the same barrier

instance on the same loop iteration.

A thread that executes an instance of a barrier instruction must wait at the barrier in-

struction until all other threads in the workgroup have reached the same barrier instance.

At that point, often called the barrier release, all threads can continue execution. Further-

more, all memory writes in workgroup-shared locations (i.e. local, global and shared virtual

memory) will be visible to all other intra-workgroup threads after the barrier release.8 This

provides a simple execution and memory model for intra-workgroup cooperation and com-

6A potentially confusing name given that local is not qualified. The situation is not improved in CUDA,
in which this memory region is referred to as shared.

7This instruction was officially renamed to work group barrier in OpenCL 2.0, but barrier remains
supported; the latter is used in this thesis for brevity.

8In OpenCL, the barrier instruction takes additional arguments denoting which memory regions to
synchronise, local or global (or both). In this thesis, it is assumed both memory regions are synchro-
nised.

30

Table 2.1: OpenCL execution environment functions.

Function Description

get local id a workgroup local id, unique and contiguous within workgroup
get group id a workgroup id, the same value for all threads in a workgroup
get global id a global id, unique and contiguous for all threads
get local size the number of threads per workgroup
get num groups the number of workgroups executing the kernel
get global size the number of threads, across all workgroups

munication. A similar instruction, sub group barrier, aligns intra-subgroup threads

in a similar manner.

There currently does not exist native way to barrier-synchronise threads across work-

groups during kernel execution. Current methods for such synchronisation either involve:

(1) ending and relaunching the kernel, which invalidates non-persistent memory and re-

quires interaction with the host, or (2) using ad hoc and non-standardised software inter-

workgroup barrier implementations. Both of these methods are discussed in Section 3.2.

This thesis explores the semantic requirements to implement such a barrier in a safe and

portable way.

Execution environment The OpenCL execution environment provides information

about the ids and number of threads executing a kernel, accessed through the functions

detailed in Table 2.1 (called workitem built-in functions in OpenCL [Khr16a, pp. 69-70]).

The execution environment is static: the number of threads and workgroups is fixed on

kernel launch. Threads can query the execution environment to access contiguous unique

data in a data-parallel program. Other GPU programming models, e.g. CUDA and HSA,

provide similar execution environment functions. Chapters 3 and 5 propose new execution

environment functions that return information about a subset of OpenCL threads for which

relative forward progress is guaranteed.

OpenCL kernels may be launched with multi-dimensional workgroup and NDrange (the

number of workgroups to execute a kernel) sizes. The execution environment functions

would then take an integer argument to specify the dimension of the id to be returned.

Similar to multi-dimensional arrays, multi-dimensional workgroups and NDranges can

conceptually be thought of a re-organisation of a large single dimensional structure. Thus,

in this thesis only single dimensional workgroup and NDranges are considered.

31

1 kernel void vector_add(global float *A,
2 global float *B,
3 global float *C) {
4
5 local float scratchpad_A[256];
6
7 if (get_local_id() == 0) {
8 for (int local_index = 0;
9 local_index < get_local_size();

10 local_index++) {
11 int global_index = get_global_id() + local_index;
12 scratchpad_A[local_index] = A[global_index];
13 }
14 }
15
16 barrier();
17
18 C[get_global_id()] = scratchpad_A[get_local_id()]
19 + B[get_global_id()];
20
21 }

Figure 2.1: A vector addition OpenCL kernel using local memory and workgroup
synchronisation.

An example To illustrate how an OpenCL kernel is written, Figure 2.1 shows an exam-

ple of a vector addition OpenCL kernel. This example uses local memory and workgroup

synchronisation in a contrived way to illustrate their uses. An actual implementation

would likely only use global memory, as vector elements are not used in a way that justi-

fies the movement to local memory.

A kernel is a void function annotated with the kernel keyword, as seen in line 1. This

kernel function is executed by a number of threads and workgroups specified by the host

at kernel launch time. Threads can then branch to different code paths, or access different

memory locations, based on the execution environment functions, as will be discussed

below.

The host is responsible for allocating and initialising global memory in buffers through

the OpenCL API. The host can then set the buffers as kernel arguments; global memory

arguments are annotated with the global keyword. In this example, the host must

provide three global float arrays, A, B, and C (lines 1, 2, and 3). The kernel will then

compute A plus B element-wise and store the result in C. One element of the array will be

32

processed per thread. After kernel computation, the host will be able to copy C back to

host memory and obtain the result.

This kernel uses a local memory region to cache the A array, declared on line 5 using

the local keyword. The local memory array has only 256 elements, one per workgroup

thread. Thus, host is responsible for not launching more than 256 threads per workgroup.

In practice, such numbers are often defined via macros, or through a variable-sized local

array that can be specified at kernel launch. Additionally, because the size of the arrays

are not passed in or checked, the host is responsible for launching the kernel with a number

of threads equal to the number of items in the float arrays.

On line 7, one representative thread per workgroup (with local id of 0) will branch to

cache a subset of the A array into the local memory scratchpad. The for-loop of line 8

copies one element for each thread of the workgroup into local memory. Because local

memory s workgroup-local, the scratchpad is indexed from 0 to the workgroup size (255).

The global array is shared across workgroup so its index is computed as an offset of the

representative’s global id. Threads in the same workgroup wait for the representative to

populate the local memory cache at the barrier instruction of line 16. Recall that the

barrier instruction synchronises all threads in the same workgroup.

Finally, lines 18 and 19 compute the vector addition. The C and B array are accessed by

each thread using their unique global ids. The A array, cached in local memory, is indexed

using the workgroup local id.

2.3.1 OpenCL feature classes

OpenCL has evolved rapidly: since the announcement of version 1.0 in October 2009, there

have been five major versions of OpenCL, the most recent, version 2.2, was announced in

May 2017. Each new version introduces a variety of new features that enable new ways

for threads to interact, possibly exploiting the architectural features at different levels of

the GPU hierarchy. Additionally, there are features that are not officially supported by

OpenCL but that have been shown empirically to be supported by a range of current

GPUs.

Because the version of OpenCL supported by current GPUs varies across vendors (see

Section 2.4 for examples), an OpenCL application that uses cutting-edge features intro-

duced in recent versions will not be able to run directly on platforms whose version support

is lagging. To account for this, in this thesis OpenCL features are described via a series

of backward-compatible feature classes, essentially corresponding to different versions of

OpenCL. These feature classes are used in Section 4.3 to describe the level of support

33

required for the different optimisations required by a graph application DSL. The feature

classes are as follows:

OCL 1.x (support for OpenCL 1.0–1.2) This lowest-common-denominator class

assumes only the concurrency support provided by OpenCL 1.0, which remains unchanged

in versions 1.1 and 1.2. All threads executing a kernel can access the device’s global

memory. Threads can perform vanilla reads and writes from this memory along with a

variety of read-modify-write instructions (e.g. compare-and-swap). Threads in the same

workgroup can communicate through the faster local memory. Additionally, threads in

the same workgroup can synchronise locally via the barrier instruction.

OCL 2.0 (support for OpenCL 2.0) OpenCL 2.0 provides a detailed memory consis-

tency model, similar to that of C++, which allows fine-grained inter-thread communication

in a well-defined manner through special atomic instructions and variables. Atomic in-

structions can be syntactically annotated with the level of the OpenCL hierarchy that the

interacting threads share; this allows implementations to take advantage of architectural

locality [Khr15, pp. 45-53]. Such a memory consistency model requires hardware support

for cache flushing and invalidation to implement synchronisation semantics. More details

about the OpenCL memory model are provided in Section 2.3.2.

OCL 2.1 (support for OpenCL 2.1) OpenCL 2.1 allows programs to exploit the

SIMD execution groups through subgroups. New primitive functions are provided that en-

able threads in the same subgroup to efficiently synchronise, share thread-local variables

(through the register file), and perform higher-level functions across subgroups, such as

reductions and prefix sums. Additionally, there are primitives that allow thread-local pred-

icates to be evaluated across a subgroup, either as a disjunction or conjunction [Khr16b,

pp. 133-140].9

OCL FP (assumption of forward progress) The OpenCL standard does not pro-

vide any independent forward progress guarantees between threads in different workgroups.

This means that in principle, implementation of common synchronisation primitives, such

as inter-workgroup execution barriers, are prone to unfair executions where threads are

blocked indefinitely. However, Chapter 3, as well as prior work [GSO12, XF10], shows

that many current GPUs empirically provide forward progress under the occupancy-bound

9The documentation exists as a 2.0 extension that was made core in 2.1.

34

execution model, which states: concurrently executing threads will continue to be con-

currently executed. Such guarantees require that the OpenCL framework, e.g. through

the driver, continues to schedule workgroups in a fair way after they have been scheduled

initially. This feature class assumes support for the occupancy-bound execution model.

2.3.2 OpenCL 2.0 memory consistency model

The OpenCL 2.0 memory model, based on that of C++11 [ISO12], employs a catch-fire

semantics, where races on regular variables lead to undefined behaviour. Atomic variables,

and corresponding memory accesses, are provided to give semantics to code that would

otherwise be racy. Synchronisation between threads can be achieved by associating a

memory order with each atomic variable access. The memory orders relevant to this work

are release (applied to store operations) and acquire (applied to load operations). An

acquire load that reads a value written by a release store in a different thread creates a

happens-before edge from the store operation to the load operation, i.e. the operations

synchronise. The formal synchronisation properties required for this work are provided in

Section 3.5.2. The final memory order relevant to this work is relaxed (applied to store or

load operations), which allows concurrent accesses, but provides no synchronisation.

In OpenCL (and unlike C++11), an atomic access has an associated memory scope

annotation, specifying a level of the OpenCL execution hierarchy. This declares the intent

to concurrently access the variable only within this level of the hierarchy, so that syn-

chronisation is only provided within the given scope. The scope annotations relevant to

this work are workgroup and device, allowing synchronisation between threads only in the

same workgroup, and between arbitrary threads executing a kernel, respectively.

2.4 GPUs used in this work

Table 2.2 lists the GPUs used in empirical investigations throughout this thesis. A total of

11 GPUs spanning four major vendors, Nvidia, AMD, Intel and ARM, were used. While

the number of CUs is reported to give an idea of the amount of parallelism of the GPU,

Chapter 3 shows that compute units are not a completely reliable measure of this. All

ARM and Intel GPUs are integrated; all Nvidia GPUs are discrete; for AMD, the R9 is

discrete and the R7 is integrated. The two ARM GPUs are the same model, differing only

by the number of compute units. Two Intel GPUs (Iris and Hd5500) have subgroup

sizes that change depending on the amount of resources used by a compiled kernel; sizes

of 8 and 16 have been observed. The other Intel chip (Hd520) was not used in any study

35

Table 2.2: The GPUs considered in this work, a short name used throughout the thesis
(Short name), the number of compute units (#CUs), the subgroup size (SG
size), the supported OpenCL version (OCL), and the chapter(s) where each
GPU is used for empirical studies (Chapter).

Vendor Chip Short name #CUs SG size OCL Chapter

Nvidia

Quadro M4000 M4000 13 32 1.2 4
GTX 1080 Gtx1080 20 32 1.2 4
GTX 980 Gtx980 16 32 1.2 3
Quadro K5200 K5200 12 32 1.2 3
HD520 Hd520 24 ? 2.0 5
HD5500 Hd5500 27 8,16 2.0 3,4,5Intel
Iris 6100 Iris 47 8,16 2.0 3,4,5

AMD
Radeon R9 Fury R9 28 64 2.0 3
Radeon R7 R7 8 64 2.0 3,4
Mali-T628 Mali-4 4 1 1.2 3,4

ARM
Mali-T628 Mali-2 2 1 1.2 3

requiring subgroups and thus the subgroup size was never queried. The ARM GPUs do

not have SIMD execution groups, but it is semantically sound to model their subgroup

size as one.

The justification for why particular GPUs are used in the different chapters of this thesis

is as follows:

• Chapter 3 excludes M4000 and Gtx1080 (Kepler and Maxwell architectures, re-

spectively) because these GPUs were provided by Sreepathi Pai at UT Austin and

were not available at the time of this work. Chapter 3 Additionally excludes Hd520

because it was in Alastair F. Donaldson’s personal laptop and two other Intel GPUs

were available.

• Chapter 4 excludes K5200 and Gtx980 as two newer Nvidia GPUs were provided

by Sreepathi Pai. R7 was excluded because it started showing unpredictable be-

haviour shortly after the work of Chapter 3 and was deemed to be unreliable; e.g.,

execution times of the same kernel varied by several orders of magnitude. Mali-2

was excluded due to its similarity to Mali-4 and the extremely long execution time

of the experimental campaign on ARM (97 hours).

36

• Chapter 5 uses only Intel GPUs as they provided the only reliable support of shared

virtual memory needed by the prototype scheduler. Alastair Donaldson kindly al-

lowed the use of his personal laptop, with Hd520, so that one more GPU could be

used in this study.

• Chapter 6 is entirely theoretical without an experimental study.

Memory model implementation The chips considered (Table 2.2) all support the

OpenCL 2.0 memory model with the exception of Nvidia and ARM chips. Because all

experimental studies in this thesis require memory consistency guarantees, custom imple-

mentations of the OpenCL 2.0 atomic operations were developed for these chips. The

Nvidia implementation is based on previous empirical testing of these chips from pre-

vious publications [ABD+15] and [WBSC17], both of which include the thesis author

as a publication author. Specifically, inline PTX (Nvidia’s low level intermediate lan-

guage) is used to provide Nvidia specific memory fences. The ARM implementation uses

OpenCL 1.1 memory fence instructions. While the ARM implementations come with no

proof of correctness or rigorous testing, the fence placement is conservative and no issues

were encountered. These implementations should be seen as temporary until OpenCL 2.0

is more widely supported.

2.5 Summary

GPUs began as dedicated hardware to enable graphics rendering. Through the years,

their features and computational flexibility increased to the point of being able to exe-

cute general massively parallel C-like programs. Although GPUs from different vendors

have different architectural parameters, programming models such as OpenCL allow GPU

programs to be written in a portable manner. These programming models evolve and

adapt to support new features; this thesis explores a currently unsupported idiom: the

inter-workgroup barrier.

37

3 A Portable Global Barrier

3.1 Personal context

I undertook this work at the beginning of my PhD. The original aim was to continue

the work of my master’s thesis about testing weak memory models on GPUs [Sor14]. In

these memory model tests, a kernel consisted of a set-up phase, where memory locations

were distributed to threads in various ways, followed by the actual memory model test (or

litmus test). One of the heuristics that made the tests more effective was using a global

barrier between the set-up phase and the litmus test; this temporally aligned the threads,

causing more interesting behaviours to be observed.

In the earlier work, our focus was restricted to Nvidia GPUs. I was interested in making

this work portable across GPUs from different vendors. The immediate difficulty was

making the global barrier work on different GPUs. While Nvidia provides a convenient

occupancy calculator, this is not available for any other vendor. After fighting with many

deadlocks and seeing no clear path to a simple and portable occupancy calculator, it

became clear that a portable GPU global barrier was interesting in its own right. This

chapter presents a solution to providing a portable global barrier for GPUs.

3.2 Motivation

Execution barrier synchronisation, where a thread waits at a barrier until all threads reach

the barrier, is a popular method for inter-thread communication because (1) it simulta-

neously aligns the computations of threads, and (2) it makes pre-barrier memory updates

available to all threads, implementing a well-specified and simple memory consistency

model.

Unfortunately, existing GPUs and their associated programming models do not support

inter-workgroup barriers. This is because a GPU kernel can be configured with many

more workgroups than the underlying hardware can execute concurrently. Execution of

large numbers of workgroups is achieved in an “occupancy-bound” fashion, by delaying the

scheduling of some workgroups until others have executed to completion. This is pragmatic

38

design decision made by vendors, as traditional GPU kernels have not contained blocking

synchronisation idioms, and preemption at the workgroup level would be difficult to achieve

efficiently. Namely, the large local memory and register files would need to rapidly be

stashed and restored. As a consequence, traditional fair scheduling guarantees associated

with CPU threads are not provided between workgroups executing a kernel [GSO12].

As an example, consider the kernel in Figure 3.1 executed with one thread per work-

group. This kernel accepts a pointer to a global variable, flag (initialised to 0), and

two (not equal) integers, A and B. The thread with workgroup id B writes 1 to flag,

while the thread with workgroup id A spins waiting for workgroup B to write to flag.

However, the GPU execution model is licensed to postpone execution of workgroup B until

execution of workgroup A has completed. In this scenario, the kernel will deadlock due to

starvation.

This idiom of one workgroup waiting on another is at the heart of an inter-workgroup

barrier. When executing a barrier instance, each workgroup will wait on all other work-

groups to reach the same barrier instance. If a single workgroup is blocked by the

occupancy-bound execution model, then the barrier execution will deadlock.

This behaviour is easy to observe on current GPUs. A traditional CPU software bar-

rier [HS08, ch. 17], ported to synchronise across workgroups in OpenCL, leads to deadlock

on an AMD Radeon R7 GPU when used in a kernel launched with more than 4096 threads

(with 256 threads per workgroup). The deadlock occurs because the number of threads

exceeds the occupancy of the GPU for the kernel realisation, i.e. the number of workgroups

that can concurrently execute the binary version of the kernel on the GPU.

Current approaches Existing GPU applications that require inter-workgroup barrier

synchronisation rely on either the multi-kernel or the occupancy assumption method.

In the multi-kernel method, an application is manually split into multiple kernels, with

a transition from one kernel to another each time an inter-workgroup barrier is required.

1 kernel void unsafe(global int *flag, int A, int B) {
2 if (get_group_id(0) == A)
3 while(*flag != 1);
4
5 if (get_group_id(0) == B)
6 *flag = 1;
7 }

Figure 3.1: A non-portable kernel that potentially deadlocks.

39

The transfer of control from the GPU to the CPU host between kernels provides the barrier

semantics implicitly [Khr15, ch. 3.2.4]. This method is portable, making no assumptions

about concurrent execution of workgroups. However, there are three immediate drawbacks

to this method:

1. interaction between the GPU and CPU can be expensive, due to the overhead asso-

ciated with kernel launches. Indeed, Chapter 4 measures the kernel launch overhead

for many of the chips of Table 2.2 and shows that it is a significant bottleneck in

many applications;

2. because the contents of registers and local memory do not persist across kernel calls,

in the multi-kernel method these local resources cannot be reused across kernel calls;

3. from a software engineering standpoint, requiring multiple kernel launches may not

be the most natural or maintainable structure for the code.

The alternative occupancy assumption approach (studied in related work [GSO12, XF10]),

employs a traditional software execution barrier. Starvation, and hence deadlock, is

avoided through a priori knowledge about the number of workgroups that can be scheduled

concurrently for a particular kernel and GPU. This avoids the efficiency problems of the

multi-kernel approach, but is non-portable, since workgroup occupancy varies dramatically

between (1) GPU architectures, depending on hardware resources, e.g. the number of com-

pute units, and (2) GPU kernels, depending on the resources that a workgroup requires to

execute the kernel, e.g. registers and local memory. The kernel resources requirements are

in part determined by the compiler, and thus may vary even between compiler versions.

In a similar vein, OpenCL provides nested parallelism [Khr15, pp. 32–33] (or dynamic

parallelism in CUDA [Nvi18a, app. D]) where GPU threads can themselves launch a

new kernel. While this feature may be useful for applications with irregular parallelism

examined in this work, the high level idiom of nested parallelism, i.e. fork and join, is

different enough from barrier synchronisation, i.e. synchronisation of executing threads,

that it is not considered further in this chapter.

I Remark (Performance of nested parallelism). In addition to the different concur-

rency models of nested parallelism and global synchronisation, prior work by Pai and

Pingali showed that the performance of nested parallelism on modern Nvidia GPUs is

significantly lower than global synchronisation. Thus, global synchronisation appears

to be the more pragmatic direction of research [PP16, Table 1].

40

Memory consistency An inter-workgroup barrier must also provide memory ordering

properties: threads must observe up-to-date memory values during post barrier execution,

and data-races between accesses separated by the barrier must be forbidden. The barrier

must be implemented using sufficient synchronisation constructs, such as atomic operations

and memory fences, to ensure these properties.

3.2.1 Chapter contributions

The overall contribution of this chapter is to show that portable inter-workgroup barrier

synchronisation can be successfully achieved, if both the execution model and the memory

consistency model are considered.

The heart of the contribution is an occupancy discovery protocol that provides a (safe)

estimate of the number of occupant workgroups dynamically at the beginning of a kernel

execution. The protocol can then be used to set up an execution environment such that

the remainder of the kernel is only executed by the workgroups found to be occupant.

Because the number of workgroups that execute the kernel is dynamic, depending on the

discovered occupancy, this execution environment requires that kernels are agnostic to the

number of executing workgroups. This is discussed further in Section 3.4.

Because occupant workgroups exhibit traditional fair scheduling guarantees, they can

reliably participate in an inter-workgroup barrier. In this context, Section 3.5 describes

the extension of an existing GPU barrier implementation from [XF10] to use the atomic

operations of OpenCL 2.0. The memory ordering properties of these instructions are

well-defined and allow for the barrier implementation to be formally reasoned about. In

particular, the analysis includes (1) a formal specification of the memory ordering prop-

erties to be provided by an abstract inter-workgroup barrier, and (2) an illustration that

the concrete barrier implementation honours the specification.

To assess portability, the discovery protocol and global barrier are evaluated across eight

GPUs spanning four vendors (discussed in Section 2.4). First, the recall (i.e. the percent-

age of instances found) of the occupancy estimate returned by the discovery protocol is

assessed. Using heuristics, it is shown that the recall is almost 100%, i.e. the occupancy

estimate almost perfectly matches the occupancy bound. The Pannotia [CBRS13] and

Lonestar-GPU [BNP12] benchmarks are then examined in Sections 3.6.2 and 3.6.3. These

benchmarks currently achieve inter-workgroup synchronisation using the multi-kernel and

occupancy assumption methods, respectively. All relevant applications from each suite

are adapted to use the protocol/barrier combination and the runtimes from the adapted

41

applications are compared with the original implementations. In all cases, the discovery

protocol barrier combination enables portable execution as expected.

The performance effect of moving from multi-kernel to global barrier synchronisation

varies between GPU and application. However, a reliable speedup is observed in some

cases (e.g. a geomean speedup of 1.36× is observed on Iris). On the other hand, the

slowdown associated with moving from an occupancy assumption barrier to a portable

barrier is shown to be reasonable. This allows portable versions of the Lonestar-GPU

applications to run (for the first time) on GPUs produced by vendors other than Nvidia.

To summarise, the main contributions of this chapter are:

• The presentation of the occupancy discovery protocol, which dynamically computes a

safe estimate of the workgroup occupancy for a given GPU and kernel (Section 3.4).

• The adaptation of an existing inter-workgroup barrier [XF10] to exploit the dy-

namic workgroup occupancy discovered by the discovery protocol. Using OpenCL

2.0 atomic operations, it is shown that the barrier meets its intuitive memory order-

ing specification (Section 3.5).

• An evaluation of the discovery protocol on eight GPUs spanning four vendors (Ta-

ble 2.2) showing that the approach is able to achieve near-perfect occupancy esti-

mates (Section 3.6.1).

• An evaluation of the performance benefits of using the protocol/barrier combination

against the multi-kernel and occupancy assumption methods for inter-workgroup

synchronisation. Results vary across GPUs and applications, but in some cases the

protocol/barrier application variants provide a substantial speedup, up to 2.34×
(Sections 3.6.2 and 3.6.3).

Related publications The material presented in this chapter is based on work pub-

lished in the 2016 ACM SIGPLAN Conference on Object-Oriented Programming, Sys-

tems, Languages, and Applications (OOPSLA’16) [SDB+16]. The work has an associated

approved artifact, which can be found at:

https://github.com/mc-imperial/gpu discovery barrier

A companion experience-report, detailing the difficulties of running the experimental

campaign, was published in the International Workshop on OpenCL (IWOCL’16) [SD16b].

42

3.3 Occupancy-bound execution model

OpenCL does not currently specify a formal execution model for inter-workgroup inter-

actions, and the behaviour of programs with such interactions is cautioned against in

the standard [Khr15, p. 31]: “A conforming implementation may choose to serialize the

workgroups so a correct algorithm cannot assume that workgroups will execute in paral-

lel. There is no safe and portable way to synchronize across the independent execution of

workgroups since once in the work-pool, they can execute in any order.”

In previous work [GSO12, XF10], it is suggested, and supported by empirical evidence,

that GPUs provide an occupancy-bound execution model for inter-workgroup interactions.

Here, a more formal definition of the occupancy-bound execution model is given. This

definition is limited to the execution of a single kernel and also assumes that non-compute

functionality, e.g. graphics, is disabled by kernel execution. This assumption is consistent

with empirical observations during this work, e.g. the OS graphics layer became unrespon-

sive during kernel execution.

I Looking forward: In Chapter 5, co-scheduling between interactive tasks, e.g.

graphics, and compute tasks on the same GPU is explored through a small set of new

programming primitives for OpenCL.

A workgroup is occupant if (1) it has executed at least one instruction using the GPU’s

resources, and (2) it has not yet completed kernel execution. The occupancy-bound exe-

cution model requires the following conditions, related to occupant workgroups, to hold:

• No indefinite preemption: An occupant workgroup is guaranteed to eventually

be scheduled for further execution on the GPU, regardless of the behaviour of other

workgroups. Consequently, two workgroups that are simultaneously occupant can

participate in blocking communications with each other that require fair scheduling,

e.g. spin-locks.

• Utilisation: There is a constant N > 0, the occupancy bound, such that if m < N

workgroups are occupant, and there exist k > 0 workgroups that have not yet com-

menced execution, then one of these k workgroups will eventually become occupant.

Additionally, no more than N workgroups can be occupant. Consequently, a block-

ing communication that requires up to N workgroups to be simultaneously occupant

(but makes no assumptions about the order in which they become occupant) can be

used without fear of starvation-induced deadlock.

43

1 kernel void native_openCL(...) {
2 // A thread will do at most one element of work based on global id
3 int id = get_global_id();
4 if (id < data_size) {
5 do_work(id)
6 }
7 }

(a)

1 kernel void persistent_thread(...) {
2 // A thread may do multiple elements of work based on the
3 // number of participating groups
4 for (int id = get_global_id(); id < data_size;
5 id += get_global_size()) {
6 do_work(id)
7 }
8 }

(b)

Figure 3.2: Illustration of code transformation required when going from (a) the native
OpenCL programming style to the (b) persistent thread programming style
where kernels are parameterised by N , the number of executing workgroups
.

The occupancy bound N depends on the available hardware resources. This clearly

depends on the GPU architecture, but also the resource requirements of the target kernel.

A kernel that uses a large amount of local memory or registers will have a high resource

requirement, which may lower N . Because the resources used by a kernel may depend on

details of compilation, e.g. register allocation, N also depends on the OpenCL compiler

version.

The persistent thread model The persistent thread model is a GPU programming

model that allows kernels to exploit fair scheduling guarantees provided by the occupancy-

bound execution model. To use the persistent thread model, programmers must ensure

that they launch kernels with at most N workgroups, sometimes referred to as the maximal

launch [GSO12]. Under this restriction, all workgroups will eventually be occupant, so

idioms that require fair scheduling across workgroups, e.g. inter-workgroup barriers, can

be used. Applications that use the persistent thread programming model currently use

occupancy assumption methods to determine N . A main contribution of this chapter is a

method for programmatically determining a safe estimate for N .

44

One property of the persistent thread programming model is that programs are written

in a way that is agnostic to the number of executing workgroups. This is because N can

vary across chips or even compiler settings, and persistent thread programs aim to be

portable as long as N is provided. The transformation of traditional OpenCL programs

into a persistent thread style program is typically straightforward. An example is illus-

trated in Figure 3.2. The code of Figure 3.2a illustrates the native OpenCL programming

model, where threads compute at most one item of work depending on their id. The code

of Figure 3.2b shows how the code of Figure 3.2a is adapted to use the persistent thread

programming style. That is, each thread performs a dynamic amount of computation

based on the number of the global size, which is determined by N . Throughout the rest of

this chapter, it is assumed that programs are given in the persistent thread programming

style, and thus are agnostic to the number of executing workgroups.

Occupancy bound One empirical validation of the occupancy-bound execution model

is the existence of an occupancy bound N such that an inter-workgroup barrier succeeds

when executed with N workgroups but deadlocks when executed with N + 1 workgroups.

Such occupancy bounds are found across a range of GPUs in Section 3.6.1. Many in-

stances of previous work, which exploit the persistent thread model, also acknowledge

this bound [WCL+15, GSO12, TPO10, CT08, XF10, HHB+14, OCY+15, MZ16, MYB16,

BNP12], adding to the empirical evidence that this execution model is supported on cur-

rent GPUs.

3.4 Occupancy discovery

Here, the occupancy discovery protocol for dynamically determining a safe estimate of the

occupancy bound for a given GPU and kernel is presented. Recall that the occupancy-

bound execution model guarantees existence of an occupancy bound N for a given GPU

and kernel such that N workgroups can be simultaneously occupant during execution, and

are guaranteed to be fairly scheduled. Given that N is unknown, the aim is to dynamically

discover an estimate n with 0 < n ≤ N , i.e. a lower bound for N . The n discovered

workgroups may then proceed to successfully complete computation that requires forward

progress between workgroups using a persistent thread style programming model.

To achieve this, all workgroups execute the discovery protocol at the start of the kernel,

prior to any other computation. In the protocol, each workgroup executes a routine that

returns a value indicating whether the calling workgroup is participating. A workgroup is

participating if and only if the workgroup commences execution of the protocol before any

45

1 lock(mutex);
2 if (poll_open){
3 M[get_group_id()] = count;
4 count++;
5 unlock(mutex);

polling phase

6 } else {
7 unlock(mutex);
8 return NON_PARTICIPATING;
9 }

10
11 lock(mutex);
12 if (poll_open) {
13 poll_open = false;

closing phase

14 }
15 unlock(mutex);
16 return PARTICIPATING;

Figure 3.3: Occupancy discovery protocol, executed by a single representative thread
per workgroup.

workgroup has finished executing the protocol. By definition, participating workgroups

are simultaneously occupant. The occupancy-bound execution model thus guarantees

that participating workgroups are fairly scheduled, and the total number of participating

workgroups is a lower bound for N .

Workgroups found to be non-participating immediately exit; workgroups found to be

participating continue the kernel computation. Thus computation occurring after the

discovery protocol, called the main kernel computation, can assume fair scheduling of

workgroups.

Under this scheme, the native workitem built-in functions (see Section 2.3) may no

longer provide contiguous unique values for threads executing the main kernel compu-

tation. For example, if the discovered participating workgroups do not have contiguous

native ids then they cannot easily partition data in data-parallel programs. To overcome

this, the occupancy discovery protocol constructs a new, dynamically determined, execu-

tion environment with replacements for the workitem built-in functions that do satisfy the

contiguous unique property for participating workgroups.

3.4.1 Implementation

Figure 3.3 shows the discovery protocol implementation. There are four variables located

in the global memory region: count, an integer to record the number of participating

groups (initially 0); poll open, a boolean recording whether the poll is open (initially

46

true); mutex, an object that provides mutual exclusion through lock and unlock

functions (initially unlocked); and M, an array that records intermediate values of count

(initial values irrelevant). All protocol variables are required to be initialised prior to the

protocol execution, e.g. by a separate kernel or via OpenCL host-to-device memory copies.

The protocol is split into two phases, a polling phase (lines 1-8) and closing phase

(lines 11-16). Both phases are protected using mutex. For now, the implementation of

mutex along with the corresponding locking functions are left abstract, only supplying

mutual exclusion in locked regions. Concrete mutex implementations are discussed in

Section 3.6.1. The protocol is executed by only one representative thread per workgroup.

In the polling phase, a thread checks whether the poll is open (line 2). If so, the thread

marks its workgroup as participating by recording the current value of count in array M,

at an index according to the thread’s workgroup id, and incrementing count (lines 3-4);

the thread then moves on to the closing phase. On the other hand, if the poll is closed, the

thread simply exits the protocol, returning a flag value to indicate that the its workgroup

is non-participating (line 8).

A thread that successfully completes the polling phase, i.e. observed an open poll, con-

tinues to the closing phase (line 11). If the poll is still open, the thread closes the poll

(lines 12-13). Only the first thread to enter the closing phase performs this action; future

threads observe a closed poll. Either way, the thread returns a participating flag (line 16).

Because thread scheduling is non-deterministic, a single thread might execute the polling

phase and closing phase prior to any other thread commencing execution of the protocol.

This would lead to an estimated occupancy bound of 1. Clearly it would be preferable

to discover a tighter lower bound, especially if the true occupancy bound N is large.

Experimentally it is shown that a suitable choice of mutex implementation leads to tight

estimates of N in practice (Section 5.6).

It may be possible to add heuristics to this protocol to improve the recall of discovered

workgroups. For example, it seems natural that a pause inserted between the polling and

closing phase may increase the recall as this would provide occupant threads more time

to poll before the poll is closed. In this work, such heuristics are not considered for two

reasons: (1) it is shown that with the right mutex implementation, a very high recall is

achieved without any additional heuristics (Section 5.6), and (2) because OpenCL does

not provide any portable pause or sleep function, the pause would have to be implemented

as some kind of busy spin. The busy spin would have to be tuned per GPU in order to

minimise overhead while maximising recall. In Section 3.6.4, pilot experiments applying

the occupancy discovery protocol to CPU implementations of OpenCL are discussed, in

which this spinning heuristic is employed.

47

Table 3.1: Occupancy discovery execution environment functions.

Function Derivation

p get num groups() count
p get group id() M[get group id()]

p get global id()
(p get group id() * get local size())
+ get local id()

p get global size() count * get local size()

Execution environment construction The variables M and count are used to con-

struct a new execution environment in which only participating workgroups take part in

computation. Because count is initialised to zero and incremented once by each partici-

pating workgroup, after the protocol execution count contains the number of participat-

ing workgroups. Additionally, the value of count observed by a participating workgroup

prior to incrementing (line 3) is recorded in array M at an index corresponding to the id

of the workgroup, providing a unique participating workgroup id, such that the sequence

of participating workgroup ids is contiguous and unique.

Table 3.1 defines the new execution environment functions. A thread can query: the

number of participating workgroups (p get num groups), its participating workgroup id

(p get group id), a contiguous unique id for participating threads (p get global id),

and the total number of participating threads (p get global size). Each function is

analogous to a native OpenCL function (the function without the p prefix), but the new

functions consider only participating workgroups.

Execution environment constraints As participating workgroups are determined dy-

namically, the main kernel computation must be agnostic to the number of executing

workgroups at launch time (i.e. as in the persistent thread programming model). This is

in contrast to the native OpenCL execution environment, where the number of executing

workgroups is fixed on kernel launch.

In the native OpenCL execution environment a kernel can be launched with enough

workgroups such that each thread computes at most one piece of data. A kernel that uses

the occupancy discovery execution environment must be able to dynamically adapt the

per-thread computation based on the number of participating groups, which can be queried

during kernel execution. The kernels adapted to use occupancy discovery in the experi-

ments (Section 5.6) required only simple transformations to satisfy this constraint, which is

similar to the program transformations required for the persistent thread model [GSO12].

48

In fact, the persistent thread program of Figure 3.2b is easily adapted to the participating

thread model by: (1) executing the discovery protocol before any kernel computation;

and (2) replacing get global id() and get global size() with their participating

group mirrors: p get global id() and p get global size(), respectively.

3.4.2 Properties and correctness

Here, it is argued that the occupancy discovery protocol satisfies certain key properties

required by client applications. Line numbers refer to Figure 3.3.

At least one participating workgroup To ensure that main kernel computation

occurs, at least one workgroup must be identified as participating.

The protocol satisfies this requirement because the poll is initialised to open. This means

that at least the first thread to enter the polling phase will mark itself as participating

and go on to finish the protocol, returning PARTICIPATING at line 16.

Consistent participating count To provide participating threads with valid execution

environment values, the protocol must ensure that, upon completion, all threads view the

same value in count and that this value is equal to the number of workgroups that return

PARTICIPATING.

Every thread returning PARTICIPATING increments count exactly once (in a crit-

ical section), as there are no loops in the protocol and the only path to returning

PARTICIPATING (line 16) requires incrementing count (line 4). Furthermore, the value

in count does not change once any thread returns from the protocol. There are two

possible return points: participating (line 16) and non-participating (line 8). At both

return points, the poll must be closed. In the case of a participating return, the poll has

either been closed by the returning thread or by an earlier thread (lines 12 and 13). In

the non-participating case, the poll was observed to be closed (line 2). Once the poll is

closed, it remains closed (there is no place in the protocol that re-opens the poll). If the

poll is closed, count cannot be modified.

Because all threads that return PARTICIPATING increment count once, and

count does not change after a thread returns, all threads that return PARTICIPATING

must observe count to contain the total number of threads that ultimately return

PARTICIPATING.

49

Participating workgroups are simultaneously occupant The main purpose of the

protocol is to create an execution environment that guarantees fair scheduling between

workgroups, under the assumption of the occupancy-bound execution model. It is now

argued that workgroups identified as participating are indeed simultaneously occupant.

This property is shown by counterexample. Let P be the set of workgroups that re-

turn PARTICIPATING. Because simultaneous occupancy concerns multiple workgroups,

suppose that P contains at least two workgroups. Assume that there exist workgroups

w, v ∈ P that are not simultaneously occupant. Without loss of generality, assume that w

finishes execution before v starts execution.

In order for w to finish execution, w must have executed the discovery protocol, returning

PARTICIPATING (line 16). In order for w to have reached this line, the poll must be

closed, either by w or a different participating workgroup (lines 12 and 13). Now v

eventually starts execution and begins executing the discovery protocol. However, because

w has finished execution (and consequently the poll is closed), v must observe a closed

poll at line 2. Thus, v must return NON PARTICIPATING (line 8). Therefore v is not a

participating group, a contradiction.

I Looking forward: Notice that the definition of the occupancy-bound execution

model does not consider thread or workgroup ids. In Chapter 6, a variant of the

occupancy-bound execution model is explored where thread ids are considered. In

particular, workgroups are scheduled in their id order. This new execution model en-

ables an optimised version of the discovery protocol which allows the native workgroup

id and global id functions to be used.

3.5 Inter-workgroup barrier

In this section, a global barrier that can be used to synchronise participating workgroups

is described. First, an overview of the global barrier presented by Xiao and Feng [XF10]

is given (abbreviated as the XF barrier from here on), as this barrier is used as a basis

for the implementation in this work. Then, two changes to the XF barrier are presented,

which allow the barrier to claim additional portability and correctness properties: (1) the

addition of atomic instructions necessary for formal memory ordering properties and data

race freedom, and (2) using an execution environment that ensures fair scheduling between

workgroups.

50

1 if (get_local_id() + 1 < get_num_groups()) {
2 while (!flag[get_local_id() + 1]);
3 }
4
5 barrier();
6
7 if (get_local_id() + 1 < get_num_groups()) {
8 flag[get_local_id() + 1] = 0;
9 }

(a)

1 barrier();
2
3 if (get_local_id() == 0) {
4 flag[get_group_id()] = 1;
5 while (flag[get_group_id()] == 1);
6 }
7
8 barrier();

(b)

Figure 3.4: XF inter-workgroup execution barrier, one master workgroup executes (a),
while all other workgroups execute (b).

3.5.1 The XF barrier

Figure 3.4 illustrates a variant of the XF software execution barrier [XF10], a GPU inter-

workgroup barrier provided in the CUB CUDA library [Nvi]. Originally implemented

in Nvidia’s CUDA language, the XF barrier has been shown to offer high performance,

exhibiting a low level of memory contention and avoiding read-modify-write instructions.

The variant shown is ported to OpenCL and removes a redundant intra-workgroup barrier.

The XF barrier uses a master/slave model, where one workgroup is selected to be

the master, executing the code of Figure 3.4a, and the remaining workgroups are slaves,

executing the code of Figure 3.4b. Function barrier() denotes an intra-workgroup

barrier operation.

The slave workgroups start with an intra-workgroup barrier, to ensure that all threads

in the local workgroup have arrived at the inter-workgroup barrier (slave line 1). A

representative thread in the workgroup (with local id 0) writes 1 to the workgroup’s index

in flag, an array of flags at least as large as get num groups(), to indicate that the

workgroup has arrived at the inter-workgroup barrier (slave line 4). The representative

thread then spins (slave line 5), waiting for the master workgroup to release the barrier.

51

The remaining threads in the workgroup wait at the final workgroup barrier instruction

(slave line 8) for the representative.

Each thread in the master workgroup takes responsibility for managing one slave work-

group: the workgroup with group id equal to the thread’s local id plus one; one is added to

the local id because the group with id 0 is the master workgroup and does not need to be

managed. Each master thread spins until the workgroup it is managing has arrived at the

barrier (master line 2). The master workgroup then performs a workgroup barrier (master

line 5). Given that master threads manage all other (slave) workgroups, the completion of

this workgroup barrier denotes that all threads across all workgroups have arrived at the

barrier. Each master thread now releases the workgroup it is managing by setting that

workgroup’s flag to 0 (line 8).

The code of Figure 3.4 assumes that there are at least as many threads per workgroup

as there are workgroups, but is easily adapted to cater for a larger number of workgroups

by having each thread in the master workgroup manipulate the flags of more than one

workgroup.

The XF barrier fails to directly provide portable inter-workgroup synchronisation for

two reasons. First, because progress between workgroups is not guaranteed, the barrier is

prone to deadlock due to starvation. Running the XF barrier on the Chapter 3 chips of

Table 2.2 with 1024 workgroups (each with 256 threads) causes deadlock for every GPU

studied in this chapter. Reducing the number of workgroups to 128 results in deadlock for

all chips except Gtx980 and R9. Reducing the workgroup count to 2 avoids deadlock in all

cases. The XF barrier was originally evaluated on GPUs where the number of concurrently

executing workgroups was known a priori so that deadlock could be avoided [XF10].

Secondly, as shown in prior work by the thesis author, some GPUs have been shown to

have relaxed memory models, in which memory operations may appear to execute out

of order [SD16a, ABD+15]. The original XF barrier implementation, presented in CUDA

(which lacks a rigorous memory model) does not formally take account of memory ordering

properties.

3.5.2 OpenCL 2.0 memory model primer

To ensure that the barrier induces sufficient synchronisation, the memory consistency

model must be considered. OpenCL 2.0 provides a formal memory model that allows

rigorous reasoning about inter-thread communication guarantees. Because this is a lan-

guage level memory model, any device that correctly supports the OpenCL 2.0 memory

52

a: Bentry c: Bentry

d: Bexit
b: Bexit

T0 T1

(a)

a: Wna x = 1 c: Racq y=1

d: Rna x=1b: Wrel y = 1

T0 T1

(b)

Figure 3.5: Two OpenCL synchronisation patterns used by the XF inter-workgroup
barrier.

model (i.e. by compiling the language constructs to assembly level fences) will enjoy the

synchronisation properties shown here.

The OpenCL memory model defines the behaviour of concurrent memory accesses, in-

cluding the atomic accesses and workgroup barriers used in the inter-workgroup barrier.

The memory model is axiomatic: program behaviours are represented as sets of executions,

each a graph of the memory events of one path of control flow with relations representing

ordering in the execution.

The memory model has two phases. The first finds consistent executions by filtering

prospective program executions: imposing a set of constraints on happens-before, hb, a

relation on events that collects together thread-local program order and inter-thread syn-

chronisation. The second looks for data-races in the consistent executions, defined as an

absence of happens-before between conflicting non-atomic accesses to a single variable. If

even a single race exists in a single consistent execution, the entire program is given unde-

fined behaviour. Otherwise, the consistent executions represent the program’s behaviour.

The global barrier implementation relies on happens-before edges created between

threads as demonstrated by the dashed arrows in the two consistent execution shapes

of Figure 3.5.

Figure 3.5a presents an execution with intra-workgroup barrier synchronisation. Intu-

itively, a given barrier call gives rise to barrier entry (Bentry) and exit (Bentry) events

that span the threads of a workgroup. A barrier entry and exit event on the same thread

are ordered by program order. Program order induces happens-before between events on

the same thread, drawn as solid vertical arrows. For each intra-workgroup barrier call,

its associated events are collected into a barrier instance, signified by the surrounding

dashed box. Each barrier entry synchronises with every exit in the same instance. These

synchronisation edges are called a barrier web.

53

In the example of Figure 3.5b, called message passing, thread T0 writes to x with a non-

atomic write (Wna) and then writes to y with an atomic write annotated as a release at

the device-scope (Wrel). Thread T1 then reads from y using an atomic read annotated as

an acquire at device-scope (Racq) and then reads from x with a non-atomic read (Rna). In

the absence of synchronisation, the non-atomic accesses to x would form a race. However,

for threads in either the same or different workgroups, a device-scoped acquire read such

as c that reads from a device-scoped release write such as b, results in the creation of a

happens-before edge, drawn as a dashed arrow in Figure 3.5b. Happens-before is transitive,

and the a-to-d edge avoids a data race on x, and forces d to read from a.

3.5.3 Implementation

Recall the original XF barrier implementation shown in Figure 3.4. As discussed in Sec-

tion 3.5.1, the XF barrier has an arrival phase, where the master waits for every slave to

announce its presence at the barrier, and a departure phase where the master releases the

slaves from the barrier. Concurrent non-atomic accesses to the flag array would lead to

data races in OpenCL. As a consequence, the XF barrier, as presented, has undefined be-

haviour. Moreover, the purpose of each phase is to synchronise, first from the slave threads

to the master, and then from the master to the slave threads. Non-atomic accesses do not

provide this sort of synchronisation.

To realise the intended behaviour of the XF barrier in OpenCL 2.0, the original im-

plementation is augmented with atomic instructions. Specifically, flag is declared as

an array of atomic integers and all accesses are annotated as release and acquire device-

scoped atomics, avoiding races and inducing synchronisation. More precisely, slave line 4

and master line 8 become device-scoped release stores, and master line 2 and slave line 5

become device-scoped acquire loads.

Because the barrier covers only participating groups, its thread id functions are replaced

to use the execution environment provided by the discovery protocol (see Table 3.1):

get num groups becomes p get num groups (master lines 1 and 7), returning the

number of participating groups, and get group id becomes p get group id (slave

lines 4 and 5).

3.5.4 Barrier specification

Here, a generic barrier specification, parameterised by an OpenCL scope, is presented and

integrated with the formal OpenCL memory model of Batty et al. [BDW16]. The OpenCL

workgroup barrier primitive behaves according to the specification instantiated with work-

54

group scope, closely following OpenCL [Khr15, p. 53], whereas the inter-workgroup bar-

rier behaves according to the specification instantiated with device scope. This symmetry

suggests that the device-scoped barrier specification should be natural to OpenCL pro-

grammers familiar with the workgroup barrier.

OpenCL programs are required to be free from barrier divergence [Khr16a, p. 99]. Bar-

rier divergence occurs when either (a) two workitems in the same workgroup reach syn-

tactically distinct intra-workgroup barrier statements, or (b) an intra-workgroup barrier

statement appears in a nest of loops, and two workitems reach the barrier statement having

executed different numbers of iterations for at least one enclosing loop. See Collingbourne

et al. for a formal definition [CDKQ13].

Kernels that exhibit barrier divergence have undefined behaviour, thus the focus of

the approach is restricted to kernels that are divergence-free. It is assumed that two

properties follow from barrier divergence-freedom: all barrier instances cover all threads

at the workgroup scope and all participating threads at device scope, and no barrier

instance links barrier events from within the XF barrier to those outside.

The specification updated with the global barrier provides two additions to the formal

model of Batty et al.: new machinery to generate prospective executions with barrier

events from programs, and new happens-before edges in the memory model.

Memory-model barrier specification The execution of a dynamic instance of a bar-

rier gives rise to two program-ordered events on each thread in its scope (workgroup or

device): a barrier entry event (Bentry) followed by a barrier exit event (Bexit). For all

threads executing the barrier instance, the Bentry of one thread happens-before the Bexit

of all other threads. These new hb edges arising from a single barrier instance are pre-

cisely the edges in the barrier web of Figure 3.5a. The dashed box surrounding the web is

called an instance-box — in future drawings, the web is elided and only the box is drawn.

Intuitively, the web ensures that any access preceding a barrier happens-before any access

following any barrier in the same instance, avoiding races between prior and following

accesses.

3.5.5 Correctness of the inter-workgroup barrier

Here it is argued that the global barrier implementation meets its specification in terms of

synchronisation. A more formal proof following the library abstraction method of Batty

et al. [BDG13], is given in the publication corresponding to this chapter [SDB+16].

55

Progress guarantee Correctness of the barrier relies on the progress guarantees as-

sumed from the occupancy-bound execution model and the participating group execution

environment produced by the discovery protocol. Threads in the barrier implementation

use spin loops to wait for writes by other threads (master line 2 and slave line 5 in Fig-

ure 3.4). If they were to repeatedly read from older writes, the barrier would hang. To

avoid this, an infinite sequence of happens-before-ordered reads failing to see a write from

another thread is prohibited.

Abstraction of the inter-workgroup barrier Considering the augmented XF barrier

as the implementation and the abstract device-level barrier, described in Section 3.5.4, as

the specification, it is now argued that the implementation induces the synchronisation

required by the specification.

First, the implementation is shown to be free from data-races. This is straightforward as

the augmented XF barrier contains only device-scoped atomic operations when accessing

inter-workgroup shared memory. By definition, these accesses cannot produce a data-race.

Second, the synchronisation induced by the barrier is shown to match the specification.

The crux of this argument involves looking at a single barrier call across all threads. There

are four cases to be considered for call-return pairs: same-workgroup, master-slave, slave-

master, and slave-slave, where in the latter three cases the master and slave are in different

workgroups. In the specification, the barrier web covers all of the threads belonging to

participating workgroups identified by the discovery protocol, and creates synchronisation

between every pair of threads. For each of the four cases, it must be shown that the

augmented XF barrier replicates this synchronisation.

The axiomatisation of the events that make up an execution of the barrier across three

workgroups (simplified with only two threads each) is shown in Figure 3.6: this event

graphs coincides with the various paths of control flow through the XF barrier. The spin-

loops and intra-workgroup barriers constrain the execution such that there is essentially

only one execution allowed. Other allowed executions would simply include failed read

events at the spin-loop locations.

It is left to show that the implementation produces synchronisation in each of the four

cases. This is argued by identifying synchronisation of the two varieties presented in

Figure 3.5 in the execution of the augmented XF barrier, and recalling that happens-

before is transitive. Thus, showing that there is a hb path from the top of a thread in

Figure 3.6 to the bottom of another thread would establish a barrier-web hb between the

two threads. The four cases are:

56

a: barrier web

b: Wrel x0 = 1

c: Racq x0 = 0

f: barrier web

d: barrier web

e: Racq x0 = 1

g: Wrel x0 = 0

T1 T0

h: Racq x1 = 1

i: Wrel x1 = 0

T0 T1

j: barrier web

k: Wrel x1 = 1

l: Racq x1 = 0

m: barrier web

T0 T1

Master WorkgroupSlave Workgroup 0 Slave Workgroup 1

Figure 3.6: Idiomatic execution of XF barrier.

• same-workgroup: whether the call and return reside on the master workgroup or a

slave, in Figure 3.6 there is an instance box across the workgroup. The happens-

before edge is ensured by the barrier web of a workgroup-scoped barrier as in Fig-

ure 3.5a.

• slave-master : as the master breaks out of its loop, it must read the slave’s write of

the flag array. The device-level release and acquire synchronise as in Figure 3.5b,

creating a happens-before edge from one thread on the slave to one on the master. In

Figure 3.6, the preceding barrier on the slave, and the following one on the master

then complete the happens-before edge between the slave’s call and the master’s

return.

• master-slave: similarly the slave breaks out of its loop by the reading of the master’s

write creating synchronisation that is extended by the barriers on the master and

slave.

• slave-slave: in this case, a slave synchronises with the master, and then the master

synchronises with a slave. The prior, intervening, and following barriers complete

the call-to-return happens-before edge.

57

3.6 Empirical evaluation

Here, an empirical evaluation of the methods described in this chapter is presented across

the Chapter 3 GPUs of Table 2.2. First, the results of microbenchmarks measuring the

recall of the occupancy estimate provided by the discovery protocol with respect to the

occupancy bound are shown (Section 3.6.1). Then several benchmarks that use the multi-

kernel method for inter-workgroup synchronisation are examined and adapted to use the

discovery protocol/barrier combination. The runtime of the two approaches are then

compared (Section 3.6.2). In a similar vein, applications written using the non-portable

occupancy assumption approach are examined and adapted to be portable using the dis-

covery protocol. The overhead caused by the discovery protocol and associated execution

environment are presented (Section 3.6.3). Finally, pilot experiments where the protocol

is tested on CPU implementations of OpenCL are reported on (Section 3.6.4).

To preface these experimental results, it is noted that even though the occupancy-bound

execution model is not officially endorsed by OpenCL, the experiments indicate that the

model is supported by all the GPUs evaluated in this chapter (Table 2.2). Specifically, the

use of the inter-workgroup barrier never led to a deadlock and a concrete value N for the

occupancy bound was always observable. It appears that the occupancy-bound execution

model is a useful de facto property of devices that support OpenCL, so we believe there

is a case for incorporating the model officially in OpenCL, perhaps as an extension.

3.6.1 Recall of discovery protocol

As discussed in Section 3.4, the occupancy discovery protocol identifies a subset estimate

of co-occupant workgroups for a given GPU and kernel. It is desirable for the discovered

occupancy to be as close as possible, and ideally equal, to the occupancy bound for the

GPU and kernel. To assess this, microbenchmarks are used to experimentally evaluate

the recall of the occupancy discovered by the protocol, experimenting with two concrete

mutex implementations and four kernel configurations.

Microbenchmarks The occupancy bound for a given GPU and kernel depends on the

resources used by the kernel. To thoroughly evaluate the recall of the discovery protocol, a

set of kernels with a variety of resource-usage characteristics are required. Two resources

are considered here: local memory, and threads per workgroup. Register pressure can also

affect the occupancy bound of a kernel [PTG13], but register allocation is a function of

the compiler, and as such fine-grained control over this resource is unavailable.

58

The microbenchmarks are based on a kernel that calls the discovery protocol to identify

participating groups, which then execute one inter-workgroup barrier. The single barrier

synchronisation in the microbenchmark can be configured to use participating workgroups,

or all workgroups. This allows for an unsafe search for the occupancy bound. This kernel

is parameterised by (1) the amount of local memory that is allocated, and (2) the number

of threads per workgroup. A single microbenchmark is an instance of the kernel with a

particular choice for these parameters.

Mutex implementations In Section 3.4, the mutex implementation used by the dis-

covery protocol was left abstract. Two mutex implementations are evaluated here: a

spin-lock and a ticket-lock. Both have straightforward implementations using OpenCL 2.0

atomic operations.

The spin-lock [Sol09, p. 269] is implemented via a flag variable that can be locked or

unlocked. To lock the mutex, a thread enters a spin loop that uses an atomic test-and-

set operation to write locked to the flag and obtain the previous flag value. The thread

exits the loop when the previous flag value is unlocked, indicating that the thread has

successfully acquired the lock. A thread unlocks the mutex by writing unlocked to the

flag.

The ticket-lock [Sol09, p. 276] mutex uses two counters: a ticket value and a servicing

value. To lock the mutex, a thread first atomically increments the ticket value, obtaining

the old value as a ticket. The thread then polls the servicing value until it matches the

thread’s ticket, in which case the thread has acquired the lock. A thread unlocks the mutex

by incrementing the servicing value. Unlike the spin-lock, where contending threads may

obtain the mutex in any order, the ticket-lock is fair : threads obtain the mutex in the

order in which they request the mutex.

Experimental setup For a given GPU, The OpenCL framework is used to identify

the maximum number of bytes of local memory that can be allocated (L), and the max-

imum number of threads per workgroup (W); these values vary between devices. Four

microbenchmark instances are then considered for the GPU, with allocated local memory

set to either 1 or L bytes, and either 1 or W threads per work group. These instances cap-

ture extreme points of the resource parameter space. Each microbenchmark is executed

50 times per chip and mutex implementation, recording the mean and standard deviation

of the number of discovered workgroups.

To determine the occupancy bound of a microbenchmark, the discovery protocol is

disabled. The microbenchmark then attempts to execute the inter-workgroup barrier

59

50

 1

 10

 100

 1000

11 L1
Gtx980 (Nvidia)

1W LW 11 L1
K5200 (Nvidia)

1W LW 11 L1
Iris (Intel)

1W LW 11 L1
Hd5500 (Intel)

1W LW 11 L1
R9 (AMD)

1W LW 11 L1
R7 (AMD)

1W LW 11 L1
Mali-4 (ARM)

1W LW 11 L1
Mali-2 (ARM)

1W LW

spin-lock
ticket-lock

CUs

11
L1
1W
LW

- min local memory
- max local memory
- min local memory
- max local memory

, min workgroup size
, min workgroup size
, max workgroup size
, max workgroup size

% of occupancy bound

Figure 3.7: Discovered occupancy and number of compute units compared to the
occupancy bound.

(unsafely) across all workgroups, searching for a value N (the occupancy bound) such

that the unsafe inter-workgroup barrier succeeds for N workgroups, but hangs with N + 1

workgroups.

Recall results Figure 3.7 shows the recall of occupancy discovery for both mutex im-

plementations, as a percentage of the occupancy bound (y-axis, plotted using a log scale

to account for the low recall of the spin-lock). For each GPU results are shown for four

microbenchmarks; label xy (with x ∈ {1, L} and y ∈ {1,W}) indicates the resource pa-

rameters associated with a microbenchmark. Light and dark grey bars show recall for the

spin-lock and ticket-lock mutexes, respectively. Standard deviation whiskers are shown

for the spin-lock results, and omitted for the ticket-lock results, which exhibited negligible

deviation. The black horizontal bars show the number of compute units (CUs) as reported

by the OpenCL framework per chip (as a percentage of the occupancy bound). Table 3.2

shows the average concrete occupancy numbers for each chip, benchmark and mutex.

The results show that with the ticket-lock mutex, the protocol almost always provides

100% recall (discovering the occupancy bound), showing suboptimal recall of still more

than 95% in two cases: R7 and Iris for the 11 microbenchmark. However, the 11 configu-

ration would not likely be used in practice as only using one thread per workgroup would

severely underutilise hardware resources (e.g. SIMD processing elements). In contrast,

the spin-lock performs poorly, both in the mean discovered occupancy (often less than

50% of the occupancy bound) and consistency across runs, as shown by the high standard

deviation.

60

Table 3.2: Occupancy for each chip and microbenchmark for occupancy bound (OB),
and the average discovered occupancy using the ticket-lock (TL) and
spin-lock (SL).

Chip #CUs OB or mutex 11 L1 1W LW

Gtx980 16
OB 512.0 32.0 32.0 32.0
TL 512.0 32.0 32.0 32.0
SL 24.9 4.0 3.3 3.1
OB 192.0 12.0 24.0 12.0
TL 192.0 12.0 24.0 12.0K5200 12
SL 10.1 1.1 3.7 2.3

Iris 47
OB 96.0 6.0 41.0 6.0
TL 94.9 6.0 41.0 6.0
SL 12.4 3.8 8.2 3.5
OB 48.0 3.0 21.0 3.0
TL 48.0 3.0 21.0 3.0Hd5500 24
SL 8.1 2.9 7.2 2.7

R9 28
OB 896.0 48.0 224.0 48.0
TL 896.0 48.0 224.0 48.0
SL 39.9 7.3 19.4 7.7
OB 256.0 16.0 64.0 16.0
TL 250.3 16.0 64.0 16.0R7 8
SL 20.0 3.1 9.2 4.6

Mali-4 4
OB 256.0 256.0 4.0 4.0
TL 256.0 256.0 4.0 4.0
SL 19.6 18.3 3.2 3.1
OB 128.0 128.0 2.0 2.0
TL 128.0 128.0 2.0 2.0Mali-2 2
SL 11.2 9.5 2.0 2.0

The high accuracy of the ticket-lock-based discovery protocol can be attributed to the

fairness provided by this mutex implementation, which provides a high likelihood that

many workgroups will enter the poll before any workgroup closes the poll (see Figure 3.3).

In contrast, with the unfair spin-lock, there is a higher likelihood that a workgroup will

execute the polling and closing phases in quick succession, closing the poll before many

other workgroups enter the polling phase.

The black horizontal bars show that the number of CUs (reported by OpenCL) provide

neither an accurate nor safe estimate of occupancy. For example, on Gtx980, R9 and

R7, the number of CUs is always lower than the occupancy bound, even for the extreme

LW case where the maximum amount of local memory is allocated and the maximum

61

number of threads per workgroup are requested. Thus, using CUs to estimate occupancy

would under-utilise GPU resources. For Mali-4, Mali-2, and K5200, the number of CUs

corresponds to the occupancy bound only with high resource parameters.

It is surprising to see that on Iris and Hd5500 (Intel), the number of CUs can be higher

than the occupancy bound. In these cases, using the number of CUs as an occupancy

estimate would cause an inter-workgroup barrier to deadlock. The reason behind this, as

reported by Mrozek and Zdanowicz [MZ16], is that Intel reports the number of execution

units (EU) as the number of CUs and it may require more than one execution unit to run

a workgroup.

Mrozek and Zdanowicz also provide an Intel-specific formula for computing the thread

occupancy (as opposed to workgroup occupancy) for kernels that (1) do not use any local

memory and (2) are launched with large workgroup sizes. These constraints correspond

to the microbenchmark 1W. The occupancy formula states that the number of occupant

threads is found by multiplying three values together: the number of EUs (the analogue

of CUs in this specific Intel case), the threads per EU (obtained through device documen-

tation [Int15b]), and the SIMD size (queried through the OpenCL API). For example, on

Hd5500 this gives 24× 7× 32 = 5376 as the number of occupant threads. This is exactly

the number of occupant threads found for Hd5500 on microbenchmark 1W; recall that

to get the number of threads, the number of workgroups is multiplied by the number of

threads per workgroup, in this case 256× 21 = 5376.

No formula is given for when a kernel uses local memory or small workgroup sizes,

although a reading of the documentation suggests some formula may exist based on the

amount of local memory allocated per group of EUs. However, such a formula would

(1) be difficult to deduce from the documentation, (2) have no guarantees of safety, and

(3) only be valid until a new graphics architecture is released.

Timing results To measure the runtime cost of the discovery protocol, timing measure-

ments were also performed. That is, protocol timings were measured per chip as a function

of the occupancy bound. To vary the occupancy bound, a series of microbenchmarks were

considered, instantiated with increasing resource usage that leads to a decreasing occu-

pancy bound. The workgroup size was used as the resource and values from one up to the

maximum workgroup size (in multiples of eight) were considered. Each microbenchmark

was run 20 times and both the average discovered occupancy and the average time to run

the discovery protocol was recorded. These microbenchmarks do not contain an execution

of the inter-workgroup barrier as only the protocol time is of interest here.

62

 10

 100

 0 20 40 60 80 100 120 140

Ti
m

e
(m

s)

Occupancy bound

spin-lock (K5200)

33 66 44 55 66 77 77 55 77 66

ticket-lock (K5200)

2424
3636 4848 6060 7272 8484 9696 108108 120120

144144

spin-lock (Mali-2)

22

44
55 77

66

1111ticket-lock (Mali-2)

22
1010 2222 3232 6464

128128

Figure 3.8: Protocol timing for K5200 and Mali-2.

Discovery protocol timing results for two representative chips, K5200 and Mali-2, are

shown in Figure 3.8. For these two chips, K5200 outperforms Mali-2 in all cases; however,

comparing the differing mutex strategies is more interesting here. The data labels are the

average discovered occupancy for each point. There are more data points for the K5200

as it supports a larger maximum workgroup size and hence has more values for resource

parameters.

For chips K5200 (shown in Figure 3.8), Gtx980, R9, and R7 the protocol using the

ticket-lock is less performant than using spin-lock. This is consistent with what is generally

reported for fair vs. unfair mutexes [Sol09, ch. 8]. Conversely, for chips Mali-2 (shown

in Figure 3.8), Mali-4, Iris and Hd5500, the protocol using the ticket-lock is more

performant than using spin-lock. This may be due to inefficient RMW operations inside

the spin-lock loop. For all chips, the protocol runtime increases with the occupancy bound,

although the extent varies across chips.

Regardless of performance, the low recall of the spin-lock disqualifies it for use in the pro-

tocol (Section 3.6.1). Future work might consider augmenting the spin-lock, e.g. through

busy waiting, to achieve a higher recall. For most chips, the protocol executed in 5–10ms

depending on the occupancy bound. The exceptions are the embedded ARM chips, which

took 20–100ms to execute the protocol (for either mutex).

63

3.6.2 Comparison with the multi-kernel approach

Applications that originally used the multi-kernel paradigm, but which can be naturally

expressed as a single kernel with inter-workgroup barriers, are now considered. In these

applications, several kernels are called from a host-side loop that exits when an application-

specific stopping criterion is met. The kernels compute data that must be copied back to

the host at the end of each loop iteration in order for the stopping criterion to be evaluated.

An inter-workgroup barrier allows the computation to be expressed as one large kernel,

with the host-side loop migrated to run on the GPU. This requires fewer kernel launches

and removes the host/device data movement between the previous kernel launches.

For such applications, The performance of the application expressed in its original multi-

kernel form, vs. as a single kernel using an inter-workgroup barrier is compared.

Multi-kernel applications The Pannotia OpenCL applications benchmark the perfor-

mance of graph algorithms containing irregular parallelism patterns [CBRS13]. Four of the

applications that utilise the multi-kernel idiom are considered: SSSP (single source shortest

path), MIS (maximal independent set), COLOR (graph colouring), and BC (betweenness

centrality). The remaining applications in Pannotia either do not use the multi-kernel

idiom, or use multi-dimensional execution environments, where thread ids are assigned

in multi-dimensional structure rather than a flat, linear structure, which the discovery

protocol does not currently handle. The discovery protocol and inter-workgroup barrier

are used to write a single-kernel version of each application.

The Pannotia applications are reported to have different performance characteristics

depending on the input data sets to which they are applied [CBRS13]. Given this, each

application is benchmarked with all provided data sets. Each application comes with

two data sets, with the exception of SSSP, which has only one. In Chapter 4, similar

applications are explored using more data sets. This discrepancy in the available data-

sets is because the Pannotia applications take an input graph format different from the

applications examined in Chapter 4, and a unifying parser had not been developed at this

point.

Experimental setup Because the number of threads per workgroup can have an impact

on runtime and maximum occupancy [TGEL11], a tuning phase was first run to determine

a good number of threads per workgroup. For each GPU, application, and input data-set,

the application was run repeatedly with power-of-two workgroup sizes, ranging from 32

to the maximum workgroup size supported by the GPU. Preliminary testing suggested

that workgroup sizes below 32 did not perform well. Each combination was executed

64

.125

.25

.5

1.0

2.0

Gtx980 (Nvidia) K5200 (Nvidia) Iris (Intel) Hd5500 (Intel) R9 (AMD) R7 (AMD) Mali-4 (ARM) Mali-2 (ARM)

inter-workgroup barrier speedup

BC [128k]
BC [1M]

COLOR [eco]
COLOR [circ]

MIS [eco]
MIS [circ]

SSSP [usa]

GM: 1.03
Med: 1.02
Max: 1.10
Min: 0.97

GM: 0.96
Med: 0.98
Max: 1.04
Min: 0.85

GM: 1.36
Med: 1.28
Max: 2.13
Min: 1.15

GM: 1.28
Med: 1.22
Max: 1.66
Min: 1.13

GM: 1.29
Med: 1.20
Max: 1.68
Min: 1.05

GM: 0.98
Med: 0.99
Max: 1.51
Min: 0.55

GM: 0.58
Med: 0.51
Max: 2.34
Min: 0.22

GM: 0.64
Med: 0.57
Max: 1.78
Min: 0.33

Figure 3.9: Runtime comparison of multi-kernel paradigm vs. inter-workgroup barrier.

10 times and the workgroup size that provided the fastest average runtime was recorded.

The original multi-kernel application and the adapted discovery protocol applications were

tuned independently.

For both the multi-kernel and discovery protocol implementations, the application/data-

set combinations were then executed 20 times with the workgroup size found during the

tuning phase, and the average runtime (excluding file IO for data-sets) was recorded.

Application runtime was significantly longer for the ARM chips, which are designed to

maximise energy-efficiency; the number of iterations for these chips was thus halved.

Results For each GPU, application and input, Figure 3.9 contains a bar plotting the

average speedup associated with executing the single-kernel version of the application

enabled by the inter-workgroup barrier compared with the original multi-kernel version.

The shade and border of a bar indicate the associated application and input, respectively.

For each GPU, the figure also shows the geometric mean (GM), median, maximum, and

minimum speedups taken over all applications and inputs. All speedup values are given

in Table 3.4.

The results are varied across chips and applications. For Nvidia GPUs (Gtx980 and

K5200), the inter-workgroup barrier and multi-kernel variants have similar runtimes.

For Intel chips (Iris and Hd5500), the inter-workgroup barrier always provides a non-

negligible speedup, with mean speedups of 1.36× and 1.28×, respectively. The AMD

results differ between chips: the inter-workgroup barrier always improves runtime on R9,

while on R7 the following was observed: three speedups, three slowdowns, and one case

where performance is unaffected.

65

On ARM, most results show that using the inter-workgroup barrier worsens runtime

substantially, except for the BC application on the 128k data-set, which shows a large

improvement. This is likely due to the performance trade-offs of kernel launch overhead

and global synchronisation, which is application and input specific. That is, kernels with

long execution times amortise the cost of kernel launch as the kernel execution time be-

comes the bottleneck. The BC application on the 128k data-set has the shortest kernel

execution time and benefits from the barrier (also seen on the Intel and AMD GPUs).

The other applications have longer kernel execution time, and thus the synchronisation

overhead of the global barrier can effect performance.

The performance of the barrier is sensitive to the input for an application. For example,

the inter-workgroup barrier on R7 accelerates the COLOR application for the eco data-

set, but slows this application down for the circ data-set.

I Looking forward: In Chapter 4, a detailed analysis of the performance consid-

erations of moving from multi-kernel to global barrier synchronisation is presented.

It is shown that the runtime consequence of this transformation depends on certain

properties of chips (e.g. kernel launch overhead), and application inputs (e.g. the aver-

age degree of graph nodes). Properties of the Pannotia MIS benchmark are discussed

explicitly in Section 4.6.1.

3.6.3 Portability vs. specialisation

Attention is now turned to the use of the inter-workgroup barrier to create portable versions

of applications that previously relied on a priori knowledge related to occupancy, and the

performance price one pays for deploying a portable version of an application vs. relying

on assumptions about occupancy.

For this purpose, applications from the CUDA Lonestar-GPU benchmark suite are

examined. Originally, these applications were written in CUDA and thus, targeted only

Nvidia GPUs. Like Pannotia, the Lonestar-GPU applications consist of graph algorithms

that exhibit irregular parallelism patterns [BNP12]. Four Lonestar-GPU applications use a

non-portable XF inter-workgroup barrier that (1) relies on assumptions about occupancy,

and (2) does not consider formal memory model issues, in part due to the lack of an

agreed formal memory model for CUDA. The Lonestar-GPU suite provides an occupancy

estimation method that uses a CUDA-specific query function to assess the resources used

by a kernel, but this estimate is not guaranteed to be safe, and is not portable.

66

The relevant Lonestar-GPU applications are: MST (minimum spanning tree), DMR

(delaunay mesh refinement), SSSP (single source shortest path) and BFS (breadth first

search). The Lonestar-GPU and Pannotia SSSP applications are fundamentally different,

the former using task queues to manage the workload, and the latter using using linear

algebra methods. Much like Pannotia, multiple data sets are provided for each application.

The SSSP and BFS applications have three input data-sets, MST and DMR have two.

Portable and specialised OpenCL applications These four applications were ported

to OpenCL, replacing the barrier implementation with the memory model-aware barrier,

and the non-portable occupancy estimation function with the portable occupancy discov-

ery protocol. These versions of the applications should be portable (at least in terms of

their barrier behaviour) across OpenCL-conformant platforms that honour the occupancy-

bound execution model.

However, it is speculated that there may be specific OpenCL platforms for which a de-

veloper might wish to trade portability for performance, using the memory model-aware

barrier, but exploiting a priori knowledge about occupancy to avoid the overhead of run-

ning the discovery protocol. To investigate this trade-off, non-portable specialised variants

of the four applications for each of the GPU platforms were created. These variants store

pre-computed occupancy bound data, and launch kernels with maximum thread counts

derived from this occupancy data. As well as avoiding running the discovery protocol,

these specialised variants can use the native OpenCL thread id functions (see Section 3.4),

which may, for example, allow compilers to make more aggressive optimisations.

Portability constraints and issues Numerous hurdles during the process of porting

the Lonestar-GPU applications to OpenCL were encountered and written up as a separate

experience report [SD16b]. These issues include OpenCL compiler bugs, OpenCL driver

issues, and program bugs that only manifested on certain chips. Many of these issues

were reported and confirmed with industry representatives. In particular, the following

benchmarks are omitted from the study: DMR on non-Nvidia chips due to floating point

issues, SSSP with the usa dataset on Intel due to memory requirements, and SSSP with

the usa dataset on ARM or R7 due to prohibitively long runtimes (over 45 minutes per

execution). These issues are all independent of the inter-workgroup barrier and stem from

portability issues in GPU programming languages.

Additionally, some porting judgement was required in cases where CUDA constructs

have no direct OpenCL analogue; for instance 1D texture memory is not supported for

OpenCL 1.1 (the OpenCL version supported by Nvidia), and warp-aware primitives (e.g.

67

.5

.75

1.0

1.5

2.0

Gtx980 (Nvidia) K5200 (Nvidia) Iris (Intel) Hd5500 (Intel) R9 (AMD) R7 (AMD) Mali-4 (ARM) Mali-2 (ARM)

portability slowdown

BFS [2e23]
BFS [rmat22]

MST [2e20]
MST [usa]

SSSP [2e23]
SSSP [rmat22]

GM: 1.31
Med: 1.31
Max: 1.80
Min: 1.09

GM: 1.29
Med: 1.30
Max: 1.54
Min: 1.08

GM: 1.05
Med: 1.05
Max: 1.11
Min: 1.00

GM: 1.06
Med: 1.05
Max: 1.11
Min: 1.03

GM 1.71
Med: 1.72
Max: 2.53
Min: 1.17

GM: 1.17
Med: 1.20
Max: 1.41
Min: 0.93

GM: 0.83
Med: 0.77
Max: 1.09
Min: 0.61

GM: 0.77
Med: 0.70
Max: 1.05
Min: 0.59

Figure 3.10: Portability slowdown for inter-workgroup barriers.

warp shuffle) are not provided until OpenCL 2.1.1 For these issues, global memory was

used instead of texture memory. Warp-aware idioms were re-written to be use workgroup

locality in place of warps.

Experimental setup The same tuning process described for the Pannotia benchmarks

was used to find a suitable workgroup size per GPU for each application and input data-

set combination. To determine the occupancy bound for the specialised applications,

specialised variants for each chip, application and input combination were created; these

applications have the occupancy bound hard coded inside the application. The occupancy

bound, N , is validated if the application terminates with N workgroups but not N + 1.

Much like in the microbenchmark experiments (Section 3.6.1), N is found through a trial-

and-error binary search.

Each chip, application, input combination was run for 20 iterations using both the

portable and specialised variants. The workgroup size found in the tuning phase for both

variants was used, and the specialised variants use the validated occupancy bound. The

average runtime (excluding file IO for data-sets) was recorded. The runtime of these

applications is such that all iterations were run on the ARM chips, rather than halved as

in Section 3.6.2.

Results Results showing the slowdown caused by portability are shown in Figure 3.10

(concrete slowdown numbers per chip and application are given in Table 3.4). For con-

sistency across chips, only two data-sets on the BFS, MST and SSSP applications are

1Section 4.4 discusses how subgroup support can be provided across several GPUs using chip-specific
features.

68

 1

 1.4

 1.8

 2.2

 2.6

 50 100 200 400 800 1600

P
or

ta
bi

lit
y

sl
ow

do
w

n

Specialised runtime (ms)

Figure 3.11: Portability overhead as runtime increases.

shown. Because this graph measures slowdown, bars that are taller than the 1.0 mark

indicate that the performance was degraded by using the portable constructs. Portability

on Nvidia chips (for the OpenCL application variants) costs a mean of 1.3× slowdown

compared with relying on occupancy assumptions. For Intel chips, the cost of portability

is low, with a slowdown of 1.11× at worst. The results for AMD are split: R9 suffers the

worst slowdowns across all the GPUs considered, with a mean slowdown of 1.71×, while

slowdowns associated with R7 are more modest, with a mean slowdown of 1.17× and even

one speedup (SSSP on 2e23).

Interestingly, portability provides a speedup for the BFS and SSSP applications on the

ARM GPUs. This is because occupancy on the ARM GPUs is extremely sensitive to

register pressure. In the non-portable versions of the applications, native execution envi-

ronment functions are used (e.g. get global id()). The compiler maps these functions

to registers, increasing register pressure and reducing the occupancy. In the portable ver-

sion, the discovery execution environment functions are used and these values are cached

in local memory instead of registers. Thus, the occupancy is increased, allowing more

parallelism and higher performance.

While these numbers suggest that portability may have a high cost, Chapter 4 presents

an optimisation to the discovery protocol in which the mutex only provides mutual ex-

clusion to participating groups. This optimisation significantly reduces the portability

overhead. For example, the highest overhead is seen on R9 with the BFS[2e23] appli-

cation, which suffers a 2.53× slowdown when the portable constructs are used. However,

the optimised discovery protocol reduces the portability overhead to 1.11×. The details

of this optimisation are discussed in Section 4.6.2.

The scatter plot of Figure 3.11 provides an overview over how the slow-down associated

with portability relates to the overall runtime of the specialised application. Each cross

69

Table 3.3: Occupancy for two CPU chips; the occupancy bound (OB), and the average
discovered occupancy (out of 50 runs) using the ticket-lock with different
amounts of delay between the polling and closing phases.

Delay

CPU chip #CUs OB 0 10 100 1000

Intel i7-5600U 4 4 1.0 1.3 3.3 4.0
AMD A10-7850K 4 4 1.0 1.0 1.5 3.8

refers to a particular application, input data set and GPU. The x-coordinate of the cross

indicates the runtime of the specialised version of the application (averaged over 20 runs),

and the y-coordinate shows the slow-down resulting from switching to a portable version

of the application. The results suggest that portability has a constant cost, rather than

a scaling cost: the longer the runtime of the specialised application, generally the smaller

the overhead associated with portability. For example, across all GPUs, applications that

took longer than 400 and 800 ms for computation in their original form showed a maximum

1.6× and 1.2× portability slowdown, respectively.

Overall, these results show that using portable constructs over specialisation can cause

a slowdown, varied between applications and chips. However, understanding these results

should consider that specialised applications may be fragile not only when ported, but also

for the same GPU under compiler upgrades or code modifications. Anything that affects

the resources requirements of the kernel could potentially change the occupancy of the

kernel and introduce deadlocks. Given these considerations, it may be best for developers

to investigate the optimisation of portable constructs rather than taking the specialised

approach.

It may be possible for vendors to modify their OpenCL frameworks to provide native

support for the occupancy-bound execution model. For example, vendors could provide a

way to launch a kernel without specifying the number of workgroups, and instead specify

that only occupant workgroups should execute the kernel. It is possible that the runtime

could determine occupancy bounds efficiently using low-level proprietary knowledge. It is

likely then that the native execution environment functions could be used (allowing for any

compiler or hardware optimisations around these native functions). Such support would

likely reduce the portability slowdown of using the methods presented in this chapter.

70

3.6.4 OpenCL on CPUs

This work exclusively focuses on GPU platforms because today’s implementations of

OpenCL appear to implement a non-traditional execution model, i.e. the occupancy-bound

execution model, which makes implementing a portable execution barrier non-trivial. On

the other hand, execution barriers for CPU systems do not account for such execution

models (e.g. see [HS08, ch. 17]). This is because many CPU concurrency frameworks al-

low for preemption and have a scheduler that, in practice, provides fair scheduling across

all threads.

Because OpenCL can be run on some CPU systems, some pilot experiments were run

using the occupancy benchmarks of Section 3.6.1 to investigate the execution models

associated with CPU implementations. It was hypothesised that an occupancy bound

would not exist; that is, an inter-workgroup barrier would be deadlock-free on CPUs for

any (reasonable) number of workgroups.

It was surprising to observe an occupancy bound of 4 for the two CPU frameworks

tested: the Intel SDK for OpenCL (build 10094, and driver version 5.2.0.10094) and AMD

APP SDK (version 2004.6), running on the Intel and AMD CPUs (respectively) detailed

in Table 3.3. Thus, OpenCL implementations of inter-workgroup barriers can deadlock

even on CPU systems if executed with too many workgroups. Because CPUs do not

natively provide this behaviour, it is hypothesised that the runtime must implement the

occupancy-bound execution model on top of the native CPU scheduler; this would be

straightforward, e.g. by storing workgroups in a queue.

It was also found that the recall of the discovery protocol, even using the ticket-lock,

was poor on CPUs. To increase the recall, a delay between the polling and closing phase of

the protocol (see Section 3.3) was inserted. The delay consists of a loop where the thread

performs a lock and unlock function on the mutex. For the ticket-lock, this allows other

threads to queue in front of the spinning thread to poll. The results (Table 3.3) show that

a delay can increase the recall of the protocol on CPUs. In these experiments, there was

no difference in the occupancy bound when varying the amount of local memory allocated

(unsurprising, since CPU architectures do not feature software-managed memory) nor the

number of threads per workgroup.

These experiments show that synchronisation constructs (in this study, an execution

barrier) must account for the execution model of the framework in which they operate,

not just the hardware on which they will be executed: CPU devices are adept at managing

preemption between threads, yet the CPU OpenCL implementations tested still exhibit an

occupancy-bound execution model. Defining and reasoning about execution models and

71

the synchronisation constructs that they allow promises to be a fruitful area of research

for frameworks with native support for concurrency, e.g. OpenCL, C++, and OpenMP.

I Looking forward: In Chapter 6, a formal framework for describing scheduler fair-

ness properties, i.e. the forward-progress guarantees of the execution model, is given.

Fairness properties for several execution models are given, including the occupancy-

bound execution model, OpenCL, and another GPU programming model: HSA.

3.7 Related work

The basis for the work in this chapter is the persistent thread model [GSO12] and the XF

software execution barrier [XF10]; the formal memory model reasoning follows techniques

for C++11 concurrency abstraction reasoning [BDG13]. The empirical evaluation uses

the Pannotia [CBRS13] and Lonestar-GPU benchmarks [BNP12], which were originally

designed to examine performance characteristics of irregular GPU workloads.

Irregular parallelism on GPUs The need for an inter-workgroup barrier arises due to

irregular parallelism on GPUs; this has been examined with various approaches in several

related works. Hower et al. propose a work-stealing programming idiom for irregular

computations using shared concurrent queue data structures [HHB+14]. Orr et al. extend

this work by proposing new primitive GPU synchronisation operations, allowing for more

efficient work stealing [OCY+15]. Other approaches (e.g. [MGG12b, WDP+16]) use the

multi-kernel method, but focus on data representations, and computations exploit low-

level GPU-specifics, e.g. warp-level instructions. None of these works consider portability

across GPUs from multiple vendors.

Much work has been done on accelerating blocking irregular algorithms using GPUs us-

ing the persistent threads programming style for long-running kernels [KVP+16, DBGO14,

HN07, MGG12b, VHPN09, NCKB12, STT10, MBP12, PP16, CT08, TPO10, BNP12].

These approaches rely on the occupancy-bound execution model, flooding available com-

pute units with work, so that the GPU is unavailable for other tasks, and assuming fair

scheduling between occupant workgroups.

72

GPU models The formal memory model reasoning is based on a formalisation of the

OpenCL 2.0 memory model [BDW16]. Other notable models developed in prior work

include several variants of the hierarchical-race-free model [GHH15], and a formal model of

a fragment of PTX, the compiler intermediate representation for Nvidia GPUs [ABD+15].

The occupancy discovery protocol is based on enabling the persistent thread model

for GPUs [GSO12]. Related works studying GPU execution models, e.g. GPUVer-

ify [BCD+15] and GKLEE [LLS+12], do not account for relative scheduling properties

of workgroups. Gaster provides an execution model for intra-workgroup interactions, and

describes how barriers can be implemented at this level [Gas15].

Wu et al. present a persistent thread CU-centric programming model that exploits CU

locality across workgroups [WCL+15]. To prevent over-saturating the hardware, they

present a protocol in which some of the persistent threads immediately exit the kernel

without performing any computation. This is similar to the discovery protocol where

non-occupant workgroups immediately exit. Essentially both protocols circumvent the

proprietary GPU scheduler to enforce a certain mapping between workgroups and CUs.

3.8 Summary

As GPUs and GPU applications grow in variety, so will the need for robust and portable

synchronisation and programming idioms. In this Chapter, building on non-portable pre-

vious work, a GPU inter-workgroup barrier was developed, analysed, and evaluated in a

portable context for the first time. To achieve this, an occupancy discovery protocol was

used to estimate the number of persistent threads, i.e. threads which have traditional

fair scheduling guarantees. The OpenCL 2.0 memory model was then used to create an

inter-workgroup barrier with intuitive memory model properties.

The discovery protocol was evaluated through microbenchmarks, and the runtime effects

of the portable barrier were compared to existing methods for inter-workgroup synchro-

nisation on GPUs. While the experimental results show that the runtime behaviour of

the barrier varies between chips, applications and even inputs, it was shown that the

inter-workgroup barrier is semantically portable across a wide range of GPUs.

The discovery protocol and associated portable inter-workgroup barrier presented in

this chapter form the basis of the rest of the thesis. In particular:

• Chapter 4 discusses how the portable barrier can be used in a compiler for GPU

graph applications;

73

• Chapter 5 discusses a cooperative multitasking scheme for GPUs, in which one of the

new proposed primitives is a special global barrier. The portable barrier presented

here is used as a basis for the prototype scheduler presented;

• Chapter 6 discusses a formal framework, using temporal logic, to reason about block-

ing synchronisation on GPUs, including the discovery protocol and barrier of this

chapter.

74

T
a
b

le
3
.4

:
P

a
n

n
ot

ia
ap

p
li

ca
ti

on
sp

ee
d

u
p

s
u

si
n

g
th

e
in

te
r-

w
or

k
gr

ou
p

b
ar

ri
er

v
s.

m
u

lt
i-

ke
rn

el
(h

ig
h

er
is

b
et

te
r)

,
an

d
L

on
es

ta
r-

G
P

U
ap

p
li

ca
ti

on
sl

ow
d

ow
n

s
fo

r
u

si
n

g
a

p
or

ta
b

le
v
s.

n
on

-p
or

ta
b

le
b

ar
ri

er
(l

ow
er

is
b

et
te

r)
.

C
h

ip

B
a
rr

ie
r

sp
e
e
d

u
p

fo
r

P
a
n

n
o
ti

a
P

o
rt

a
b

il
it

y
sl

o
w

d
o
w

n
fo

r
L

o
n

e
st

a
r-

G
P

U
B

C
C

O
L

O
R

M
IS

S
S

S
P

B
F

S
M

S
T

S
S

S
P

1
2
8
k

1
M

e
c
o

c
i
r
c

e
c
o

c
i
r
c

u
s
a

2
e
2
3

r
m
a
t
2
2

2
e
2
0

u
s
a

2
e
2
3

r
m
a
t
2
2

G
t
x
9
8
0

1.
10

1.
02

1.
07

1.
02

1.
05

0.
97

0.
99

1.
38

1.
29

1.
34

1.
80

1.
09

1.
10

K
5
2
0
0

1.
02

0.
98

1.
04

0.
85

1.
02

0.
93

0.
92

1.
30

1.
43

1.
29

1.
54

1.
08

1.
14

Ir
is

2.
13

1.
31

1.
26

1.
15

1.
41

1.
28

1.
20

1.
08

1.
11

1.
05

1.
06

1.
03

1.
00

H
d
5
5
0
0

1.
66

1.
22

1.
22

1.
13

1.
29

1.
15

1.
34

1.
09

1.
11

1.
03

1.
05

1.
03

1.
04

R
9

1.
62

1.
16

1.
68

1.
08

1.
40

1.
20

1.
05

2.
53

2.
09

1.
43

2.
01

1.
40

1.
17

R
7

1.
51

1.
16

1.
13

0.
55

0.
99

0.
92

0.
85

1.
41

1.
34

1.
05

1.
35

0.
93

1.
00

M
a
l
i-
4

2.
34

1.
12

0.
65

0.
51

0.
38

0.
30

0.
22

0.
78

0.
76

1.
05

1.
09

0.
77

0.
61

M
a
l
i-
2

1.
78

1.
02

0.
63

0.
57

0.
51

0.
43

0.
33

0.
75

0.
66

1.
04

1.
05

0.
65

0.
59

75

4 Functional and Performance Portability

for GPU Graph Applications

4.1 Personal context

While I was pleased with the functional portability of the global barrier, as presented in

Chapter 3, the performance results were underwhelming. I wanted to push for a stronger

case for official support of a GPU global barrier and I felt that the best way forward was to

find GPU applications where a global barrier provided significant speedups across GPUs

spanning many vendors.

Luckily, a perfect opportunity quickly presented itself. When I presented the work of

Chapter 3 at the 2016 OOPSLA conference in Amsterdam, the talk directly after mine

was given by Sreepathi Pai, who presented his work on a GPU graph application DSL and

an associated optimising compiler [PP16]. One of the optimisations of his compiler was

exactly transforming multi-kernel synchronisation into global barrier synchronisation, as

discussed in Sections 3.6.2. His work targeted Nvidia GPUs exclusively, and as such he

was able to use Nvidia’s occupancy calculator to determine the occupancy bound required

for a global barrier. Our work provided a way for this optimisation to become functionally

portable across many GPUs.

This chapter presents the results of a collaboration that followed, in which we com-

bined the two works to develop a portable version of the optimising compiler, of which

the portable global barrier was an essential ingredient. As the results of this chapter

show, we now further understand situations where a global barrier can provide significant

performance improvements across a range of GPUs spanning several vendors. Addition-

ally, the rich set of applications, inputs, and GPUs available allowed for an exploration of

performance portability in the domain of graph algorithms on GPUs.

76

4.2 Motivation

Is a GPU in a mobile device similar to a GPU running in a data center? For certain

attributes, such as the number of compute units, clock frequency and power consumption,

the answer is clearly no. These differences are by design and therefore these GPUs will

continue to differ on these attributes. As a result, it is unrealistic to expect a program that

achieves peak performance on one GPU to achieve similar peak performance on another

GPU unchanged. Additionally, code transformations that provide runtime differences (e.g.

a speedup) on one GPU, may provide different runtime behaviour on another GPU (e.g.

a slowdown). As a concrete example, Figure 3.9 from Chapter 3 shows that the runtime

effects of transforming multi-kernel synchronous code to global barrier synchronous code

varies significantly across different GPUs.

Over the years, programmers have become skilled at capturing differences in machines

as tunable parameters, whose values are determined as late as possible to allow a pro-

gram to adapt to the final machine on which it is being run, i.e. to make it more per-

formance portable. Such parameters were initially machine-linked [WD98], but increas-

ingly sophisticated techniques allow tuning over algorithms [ACW+09], inputs [DAV+15],

and microarchitecture designs [CHR+16] often under control of a generic autotuner or

search strategy [AKV+14, MSH+14]. GPU programs, also, contend with a diverse set

of implementations and have used similar strategies [MGG12a, SRD17, PP16] to achieve

performance portability.

Debugging lack of performance portability is hard. By construction, autotuning spe-

cialises for a particular machine, application and input; thus it provides no guarantees

for performance across these dimensions. Although autotuning has proved to be useful

in many cases, questions remain as to how differences in machines affect performance. In

particular, opportunities to identify and rectify performance issues are missed.

The goal of this chapter is to ask: if exhaustive data on program performance is available,

can issues be identified that impede performance portability and can they be apportioned

to microarchitecture, applications, inputs or a combination of these?

The domain for this study is GPU graph algorithms written in OpenCL. Graph algo-

rithm kernels were studied for three reasons:

1. The irregular nature of these algorithms require global synchronisation in many

cases. The work of Chapter 3 provides a recipe for providing portable global syn-

chronisation using a global barrier, and the performance considerations of such a

barrier have not been rigorously explored across many GPUs.

77

2. As is shown in Section 4.3, high performance graph kernels use many more OpenCL

features than, for example, a high performance matrix multiplication kernel. Thus,

they exercise more of the hardware implementation. For this reason, graph algorithm

kernels are notoriously hard to write in a performance portable way.

3. Recent work [PP16] has produced a compiler that applies GPU optimisations to

graph algorithms written in an intermediate language called irgl and generates

CUDA code. This can be used to generate many different kernel implementations

of the same algorithm in a controlled fashion to explore performance portability.

Retargeting this compiler to generate portable OpenCL code is a natural choice.

I Example 4.1 (Performance and functional portability). On an AMD R9 Fury

GPU, a maximal-independent-set (MIS) algorithm on a road network graph enjoyed

a 1.13× speedup when two optimisations were applied: one involving SIMD atomic

combining and another involving global barrier synchronisation. Running the same

OpenCL code on an Nvidia Quadro M4000 GPU causes a dramatic 1.69× slowdown

(0.59× speedup). The code does not even compile on an ARM Mali-T628 GPU since

it does not provide support for the SIMD primitives required for the optimisations.

The global barrier optimisation relies on a degree of independent forward progress

that is empirically provided by current GPUs (as described in Chapter 3), but is not

mandated by the OpenCL standard. Therefore, it might not be provided by future

architectures. For future-proof portability, this optimisation might be disabled, in

which case the observed speedup drops from 1.13× to 1.06× on the AMD GPU.

In general, writing performance-portable code for GPU architectures is difficult for three

principal reasons:

1. Architectural differences between platforms mean that optimisations that benefit

one platform may have little impact, or a negative impact, on another platform;

2. Differences in supported language features between platforms may harm per-

formance if one opts to exploit only those language features that are supported by

all implementations, and may harm portability if support for the latest language

features is assumed;

3. Data set diversity can make it hard to choose good optimisation settings for

irregular applications that work well across a range of interesting data sets, even if

the target platform is fixed.

78

These challenges are not limited to GPUs, but are particularly relevant in this domain

for the following reasons: (1) multiple vendors offer competing chips with significant ar-

chitectural differences; (2) version support OpenCL varies widely in practice; and (3) it

has been shown that the utility of optimisations for existing irregular GPU algorithms

varies significantly based on the input data set [PP16].

4.2.1 Chapter contributions

This chapter presents a large experimental study that explores the 95 optimisation combi-

nations (all possible configurations for the optimisations considered) applied to 49 (graph

application, input) combinations, across 6 GPUs from 4 vendors (see Table 2.2). The rich

set of performance data is queried, investigating the following seven research questions; for

each research question, the associated subsection of the chapter in which it is addressed

is given:

1. Are optimisations for GPU graph applications, developed in previous work and tar-

geted to Nvidia GPUs, beneficial for GPUs from other vendors? How do the top

speedups and slowdowns compare across GPUs and how does the distribution of

optimisations required for top speedups vary across GPUs (Section 4.5.1)?

2. How do top speedups fare when functional portability is reduced? That is, how

much performance do newer, less supported, features enable across benchmarks and

chips (Section 4.5.2)?

3. Are there “portable optimisations”; that is, optimisation settings that provide better

than baseline performance across the board (Section 4.5.3)?

4. Are certain optimisations always, or commonly, required for top speedups across the

board? If not, what is the distribution of optimisations required for top speedups

(Section 4.5.4)?

5. What are the performance consequences of abandoning portability by degrees and

specialising to chips, applications or inputs across benchmarks in this domain (Sec-

tion 4.5.5)?

6. Can optimisation strategies specialised per chip deliver insights into performance-

critical architectural, application, or input features (Section 4.5.6)?

7. How does an optimisation policy guided by tuning on single GPU platform fare when

used to make optimisation decisions for other GPU platforms (Section 4.5.7)?

79

Outline First, descriptions of the GPU graph algorithm optimisations that were con-

sidered in this chapter are given, including the required OpenCL features for each and,

thus, the architectural features that each optimisation is sensitive to (Section 4.3). The

experimental methodology is described in Section 4.4, containing a description of an anal-

ysis that creates optimisation strategies for various levels of specialisation (Section 4.4.2),

and a description of the GPUs and applications used in the empirical study (Section 4.4.3

and Section 4.4.4). The results of the empirical study, organised by the above research

questions are given in Section 4.5. In Section 4.6, several results from Chapter 3 are re-

visited given the new findings of this chapter. The chapter concludes with related work

in Section 4.7.

Related publications The material presented in this chapter is based on work currently

under submission. The citation references the current draft [SPD18].

4.3 Generalising optimisations to OpenCL

Recent work on GPU acceleration of graph algorithms presented four key architecture-

independent graph algorithm optimisations. These were shown, via their embedding in an

optimising compiler generating CUDA code, to achieve state-of-the-art performance for a

number of applications running on Nvidia GPUs [PP16]. To study performance portability,

this compiler, originally generating only CUDA, is retargeted to generate OpenCL.

The four optimisations are discussed in Section 4.3.1—4.3.4, in each case providing: (1) a

high-level description of the optimisation; details of challenges associated with generalis-

ing the optimisation to OpenCL, and (2) details of the GPU architectural features that

govern the performance potential of the optimisation. The optimisations are summarised

in Table 4.1.

4.3.1 Cooperative conversion

The OpenCL execution hierarchy (see Section 2.3) can be exploited to reduce the cost of ex-

pensive, serialising operations such as atomic read-modify-write (RMW) instructions. For

example, many graph algorithms track the dynamic workload through a global worklist.

Each push of a thread ordinarily requires one RMW. However, threads can communicate

at the subgroup or workgroup levels to combine individual pushes into a single push of

multiple results that uses only one RMW. This cooperative conversion optimisation is

abbreviated to coop-cv.

80

Table 4.1: List of optimisations, the OpenCL features they exploit and the
architectural parameters that influence performance. Feature class refers to
the OpenCL feature classes described in Section 2.3.

Optimisation OCL features
Feature
class

Architecture
parameters

cooperative
conversion
(coop-cv)

Local memory,
sub group any,
sub group reduce, barrier,
atomic fetch and add,
popcount

OCL 2.1

workgroup size, subgroup
size, atomic
read–modify–write
throughput, subgroup
collectives throughput

fine-grained
nested
parallelism
(fg)

Local memory, barrier OCL 1.x
local memory size, barrier
throughput

subgroup
nested
parallelism
(sg)

Local memory,
sub group barrier,
sub group any,
atomic store, atomic load

OCL 2.1
subgroup size, subgroup
barrier throughput, local
memory size

workgroup
nested
parallelism
(wg)

Local memory, atomic store,
atomic load, barrier

OCL 2.0

workgroup size, local
memory size, barrier
throughput, atomic
load/store throughput

iteration
outlining
(oitergb)

atomic load, atomic store OCL FP

overheads for kernel
launch and memory
transfers, global memory
fence throughput,
workgroup scheduler
behaviour

workgroup size
of 256 (sz256)

clEnqueueNDRangeKernel OCL 1.x occupancy, resource limits

OpenCL generalisation Unlike in CUDA, subgroup operations must be uniform, i.e.

they must be executed by all or none of the threads in the subgroup. Thus, subgroup-

uniform branches must be generated (for example, by equalising loop trip counts across

threads), and predication is used to prevent execution of code that would originally have

not executed. Subgroup primitives can then be executed uniformly, performing a subgroup

reduction on the predicate that caused the non-uniform branch in the original optimisation.

Cooperative conversion requires fine-grained subgroup communication, thus falling into

the OCL 2.1 feature class.

81

Performance considerations The number of atomic RMW operations that can be

avoided depends on workgroup size and subgroup size. Communication uses local mem-

ory and the appropriate barriers (workgroup/subgroup). Note that on architectures that

implement subgroups with lockstep execution, subgroup barriers are free. The perfor-

mance impact of this optimisation depends on the overhead of the orchestration (i.e.

synchronisation and communication) vs. the cost of the global RMW operations.

4.3.2 Nested parallelism

Not to be confused with OpenCL nested parallelism (which mimics CUDA’s dynamic

parallelism), the nested parallelism optimisation tackles the classic problem of parallelising

nested loops, the inner of which is usually irregular in graph algorithms. Specifically, it

generates inspectors and executors that inspect the inner loop iteration space at runtime

and redistribute work among the threads. The specific schemes for distributing work are

based on proposals by [MGG12b] and redistribute work among threads of the workgroup

(wg) or threads of the subgroup (sg). When redistributing to threads of the workgroup,

the executor can choose between serialising the outer loop or linearising the iteration space

(fine-grained or fg). Often, all three strategies wg, sg or fg must be used in combination,

with wg handling high-degree nodes, sg handling medium degree nodes and fg handling

the rest.

The fg variant can also be parameterised by the number of edges processed per iteration.

Two possibilities were considered in this work: a single edge (denoted fg1) and eight edges

(denoted fg8). The entire class of nested parallelism optimisations is abbreviated to np.

OpenCL generalisation The fg scheme of this optimisation is straightforwardly ported

to OpenCL, and thus is placed in the OCL 1.x class.

The wg scheme has two OpenCL considerations: first, the work distribution requires

several specialized workgroup scan operations. In CUDA, these are provided via a high-

performance library, for which there is not an OpenCL equivalent. In this work, a simple

OpenCL scan implementation provided in [Mer] was used. Additionally, the wg scheme

requires concurrent writes to the same location in a leader-election idiom. OpenCL deems

this as a data-race, rending the entire program undefined [Khr15, p. 48]. Thus, all racy

accesses were identified and changed to OpenCL 2.0 atomic operations (see Section 2.3.2);

each loop redistribution required six memory accesses to be changed. As a result of using

atomic operations, wg is placed in the OCL 2.0 class.

82

The sg scheme requires subgroup orchestration similar to coop-cv. However, sg makes

the additional assumption that subgroup threads execute in lock-step; this is not guaran-

teed in OpenCL (starting with Volta, this is not the case for Nvidia either [NVI17, p. 26]).

Two subgroup barriers per loop were required to explicitly provide the lock-step synchro-

nisation that was previously assumed. These subgroup primitives place the sg scheme in

the OCL 2.1 class.

Performance considerations Because these schemes involve a large amount of inter-

thread communication mediated through barriers (both workgroup and subgroup), the

throughput of barriers is a critical factor. The fg scheme has the highest number of

barriers, but this can be reduced by increasing the number of edges processed per thread,

though this consumes more local memory. Read and write latency to local memory is

important as communication and work redistribution occurs through this memory region.

Finally, if there is very little load imbalance among threads (for example, due to uniform

degree graphs), the overhead of these schemes may outweigh the benefits.

4.3.3 Iteration outlining

Many graph algorithms execute kernels iteratively until a fixed point has been reached. For

example, in breadth-first search (BFS), the number of dependent iterations is proportional

to the diameter of the graph. In the case of planar graphs, such as road networks, this

may be thousands of iterations. If each kernel execution is very short, then the launch

overhead dominates execution time. In iteration outlining, code that launches kernels is

outlined to the GPU. As a result, kernel launches are turned into GPU function calls, with

synchronisation between function calls provided by a global barrier, i.e. the GPU barrier

construct discussed in Chapter 3, which synchronises across all threads on the GPU. This

optimisation is exactly the transformation from the multi-kernel synchronisation approach

to the global barrier approach discussed in Section 3.6.2. This optimisation is abbreviated

to oitergb.

OpenCL generalisation The crux of this optimisation for OpenCL is a portable global

barrier; the exact topic of Chapter 3 in this thesis. The discovery protocol and barrier

presented earlier can directly be used here. To recap, the discovery protocol dynami-

cally discovers the GPU occupancy (i.e. workgroups that are guaranteed relative forward

progress) and creates a custom execution environment. Using this dynamic information,

a portable global barrier can be used. Because of the forward progress requirements of

this optimisation, it falls into the OCL FP class.

83

A possible concern of using the methods of Chapter 3 in this optimisation is that the

results of Section 3.6.3 show that the portable constructs can have a significant overhead

compared with a priori occupancy approaches. For example, BFS[2e23] suffers a 2.53×
slowdown on R9 when the portable constructs are used. However, in this chapter, an

optimised discovery protocol is used which significantly reduces the portability overhead.

For example, the same application on R9 using the optimised discovery protocol only

suffers 1.11× slowdown. Thus, the portability overhead is greatly reduced from what the

results of Section 3.6.3 suggest. The optimisation, along with some results, are discussed

in Section 4.6.2.

OpenCL 2.0 provides support for nested parallelism [Khr15, p. 32] where a thread can

enqueue another kernel while executing on the device. In theory, this nested parallelism

could be used to achieve a similar on-chip synchronisation. Two difficulties were encoun-

tered when investigating this. First, the nested parallelism model is tail recursive, that

is, the child kernel is not guaranteed to execute until the parent finishes. This proved to

be a difficult transformation for loops in the applications. Secondly, the available imple-

mentations of nested parallelism were found to be extremely unreliable, causing compiler

crashes and runtime errors that could not be diagnosed, despite a best-effort following of

the standard. Thus, OpenCL nested parallelism is not provided as an iteration outlining

optimisation at this time.

Performance considerations The performance impact of iteration outlining on a plat-

form is a function of the kernel launch overhead (including a memory copy), the execution

time of the barrier and the execution time of the kernel. While the first two are largely

architecture dependent, the last also depends on the application and input.

4.3.4 Workgroup size

The final optimisation considered is simply resizing the number of threads in the work-

group from 128 to 256. A workgroup size of 128 is used as the default as not all of the

GPUs investigated support a workgroup size of 256 in all cases (see Section 4.4.5). This

optimisation is a simple change to the kernel launch parameters and thus falls into the

OCL 1.x class. The workgroup size is known to affect occupancy (see Chapter 3), which

can affect performance. This optimisation is abbreviated to sz256.

84

4.3.5 The optimisation space

With the exception of fg, all optimisations can be enabled or disabled independently.

In the case of fg, two variants were considered: fg1 and fg8. Thus, there are 95 total

optimisation combinations, excluding the baseline, where no optimisations are enabled.

4.4 Experimental methodology

The compiler for graph algorithms, generating OpenCL code via the optimisations de-

scribed in Section 4.3, allowed the opportunity to undertake a large study in performance

portability for this domain. First, useful terminology is defined for describing the method-

ology and results (Section 4.4.1). Then an analysis is described which, given a set of

empirical data, is able to produce optimisation strategies at various levels of specialisation

(Section 4.4.2). Next, the GPUs considered in this chapter are described in detail (Sec-

tion 4.4.3). Following this, the graph algorithms to which the optimisations were applied

are discussed and along with their graph inputs (Section 4.4.4). Finally, the methods used

to gather experimental data are detailed (Section 4.4.5). A discussion of the experimental

findings then follows in Section 4.5.

4.4.1 Terminology

An application is a graph algorithm expressed in the compiler DSL; the same DSL used

in [PP16]. An application accepts an input, which is a graph. A chip refers to one of

the GPUs listed in Table 2.2, but also includes the runtime environment. A benchmark

is an (application, input) tuple, and a test is an (application, input, chip) tuple. That

is, a benchmark is the instantiation of an application for a given input, and a test is the

instantiation of a benchmark for a given chip.

The compiler generates OpenCL code by applying zero-or-more optimisations to an

application. An optimisation configuration records which optimisations were enabled.

Most optimisations are binary (enabled or disabled), the exception of the fg optimisations,

which may either be disabled, or enabled and set to a numeric value. As previously

mentioned, the two values for fg considered in this chapter are one and eight, noted as fg1

or fg8, respectively. The baseline configuration disables all optimisations.

For a test and two optimisation configurations o1 and o2: o1 yields a confident speedup

over o2 if the difference is statistically significant at the 95% confidence interval. A confi-

dent slowdown is defined analogously. Henceforth, speedup and slowdown refer to confident

speedups and slowdowns unless stated otherwise. An optimisation configuration yields a

85

speedup (slowdown) for a test if it yields a speedup (slowdown) for the test over the

baseline configuration.

An optimisation strategy maps a test to an optimisation configuration. For example,

the baseline strategy maps every test to the baseline configuration. Similarly, the oracle

strategy maps a test to the configuration that led to the maximum speedup observed

during the experiments.

4.4.2 Creating optimisation strategies by specialisation

An optimisation strategy is more portable if it uses less information about a test when

mapping it to an optimisation configuration. The baseline strategy is completely portable:

all optimisations are disabled regardless of the test. In contrast, the oracle strategy is least

portable since it is the most specialised, being generated via exhaustive search.

An analysis is now described that is able to produce, from empirical data, a spectrum

of optimisation strategies between baseline and oracle by incorporating more and more

information about a test. A key challenge in this analysis is to soundly identify useful

optimisations – those that impact positively on performance on average – under various

degrees of specialisation.

This analysis uses a set of exhaustive test results, with runtimes from all possible opti-

misation configurations. The aim of the approach described here is not to determine the

best optimisations as that is easily accomplished through exhaustive search, i.e. the oracle

model. Similarly, It is also not the aim to make predictive models, in which models pre-

scribe optimisations to use in different situations. Indeed, evaluation of predictive models

would require partitioning data into training and evaluation sets, which is not done here.

Rather, the aim is to develop descriptive models, in which exhaustive data is mined to

understand trade-offs between portability and specialisation. Such models have value in

exploring various portability dimensions and might serve as a comparison point for future

predictive approaches.

At a high level, to consider whether an optimisation should be enabled for a (set of)

test(s), the empirical data is split into two sets. The first set contains runtime information

when the optimisation was enabled and the second when it was disabled. A statistical

procedure, the Mann-Whitney U (MWU) test [MW47], is used to determine whether

enabling the optimisation caused a statistically significant change in test runtimes. If so,

then the median of the set of runtimes where the optimisation was enabled is examined

to determine whether the optimisation caused a speedup or slowdown. In the case of a

speedup, the optimisation is recommended to be enabled. If the optimisation did not

86

cause a statistically significant change in runtimes across the tests, then the optimisation

is conservatively recommended to be left disabled.

While a variety of statistical methods could be used on the list of normalised runtimes,

e.g. simply checking means or medians, the MWU test has several nice properties. First,

the MWU test is non-parametric and does not assume any specific distribution of values.

Because empirical runtimes may contain values from different chips or applications, it

cannot be assumed, for example, the runtimes have a normal distribution. Secondly, the

MWU test does not consider the magnitude of value differences; only if they are greater

or less than the comparison set. This is important as magnitudes of runtimes can vary

greatly across chips and the aim of the analysis is not to favour one chip over another.

To specialise the optimisation configurations per chip, application, input or combination

of these, the above analysis is performed, but on partitions of the data. For example, when

specialising optimisations per chip, the data is partitioned into subsets, one for each chip,

and the aforementioned procedure is applied to each partition. Each partition will yield

an optimisation strategy specialised to that partition’s chip.

The analysis is shown in detail in Algorithm 4.1, with specialisation illustrated for the

per-chip case (other specialisations are similar). The approach is described top-down start-

ing with function specialise for chip (line 1). This function simply iterates through

the available chips in the global list CHIPS (line 3), partitions the data into a set per chip

(line 4), and then launches the analysis for the partition, which returns an optimisation

strategy recommended for the partition (line 5).

The function that identifies an optimisation configuration for a partition is

opts for partition (line 7). Here, the aim is to extract the effect of an individual

optimisation opt across the entirety of the data partition. To do this, two lists A and B

are constructed per optimisation (line 10). The lists are populated by iterating through

all the valid optimisation configurations where opt is enabled. This is computed by iterat-

ing through all possible optimisation configurations, stored in ALL OPT CONFIGS, and

filtering the configurations where opt is enabled using the function enabled (line 11).

For each optimisation configuration os, the mirror optimisation configuration is created

where opt is disabled (line 13); thus, the only difference between the two optimisation

configurations os and dis os is that opt is enabled in the former and disabled in the latter.

All test data in partition is then considered (label 14), checking for each test p if the

runtime under the two optimisation configurations is statistically significant (i.e. if the

runtimes are confidently different) via confident (line 15). If so, then the runtime with

opt enabled is normalised to the runtime when opt was disabled (line 16) and added to the

87

Algorithm 4.1 Finding optimisation strategies for different levels of specialisation.

1: function specialise for chip(data)
2: chip opts = map()
3: for chip in CHIPS do
4: chip data = {X in data where X was run on chip}
5: chip opts[chip] = opts for partition(chip data)

6: return chip opts

7: function opts for partition(partition)
8: enabled opts = {}
9: for opt in OPTS do

10: A = [], B = []
11: opt configs = [os in ALL OPT CONFIGS if enabled(opt , os)]
12: for os in opt configs do
13: dis os = os[opt = disabled]
14: for p in partition do
15: if confident(p[os], p[dis opt]) then
16: A.add(p[os] / p[dis opt])
17: B.add(1.0)

18: if enable opt(A,B) then
19: enabled opts.add(opt)

20: return enabled opts

21: function enable opt(A,B)
22: significant = MWU(A,B)
23: return significant and median(A) < 1.0

list A. Because the value added to A was normalised, the baseline value of 1.0 is added

to the second list B.

With data from A and B, a statistical analysis can be performed to determine whether

opt should be enabled (lines 18 and 19). Essentially, enable opt (line 21), takes the

two lists A and B and applies the MWU test (line 22). The MWU test takes two lists

of values X and Y and tests whether there is a statistically significant difference in ranks

between the two lists. That is, it will test if one list has stochastically larger values than

the other list. If the test determines this with p < .05, the median of A is considered: if it

is less than 1.0, indicating half of the tests have sped up, then the optimisation is enabled

(line 23); otherwise it is disabled.

88

I Remark (Ranks and confidence intervals). The procedure for finding optimisation

strategies at various levels of specialisation (i.e. Algorithm 4.1) uses a nonparametric

test, that is, it does not assume a normal distribution of values. This is important

as it compares runtime data across chips, inputs and applications. However, at the

finer-granularity when the chip, input and application is fixed, a confidence interval

around the mean is used to determine if a speedup is confidence or not. This is valid,

as the runtime data collected in these comparisons is simply from repeat runs in same

environment.

4.4.3 GPU platforms tested

Table 2.2 summarises the GPU platforms used in the experimental evaluation of this

chapter: 6 GPUs spanning 4 vendors. The AMD R9 and the Nvidia GPUs are discrete,

all others are integrated. GPUs from the same vendor also span different architecture

configurations. The Nvidia M4000 and Gtx1080 belong to the Maxwell and Pascal

architectures respectively. The Hd5500 and Iris are both Broadwell architecture, but at

different graphics tiers (as described by Intel); tiers GT3 and GT2, respectively, where

GT3 is the top tier for this architecture. They also differ in the number of compute

units, the size of subgroups, and the highest OpenCL version supported. Given these

differences, the GPUs considered in this chapter represent a compelling landscape over

which to examine functional and performance portability.

Closing the functional gap Table 2.2 shows that none of the GPUs examined in this

chapter support OpenCL 2.1.1 Recall from Section 4.3 that the complete set of graph

algorithm optimisations requires an implementation to support OpenCL 2.1 and provide

forward progress guarantees, i.e. to the OCL FP feature class described in Section 2.3.1. In

order to facilitate the full range of optimisations, GPU-specific workarounds were devised

to provide the needed features, using facilities available in earlier OpenCL versions to

model future version features as faithfully as possible, allowing all GPUs of this chapter

to support the OCL FP feature class.

Section 2.4 describes how ARM and Nvidia chips were brought to OCL 2.0 from OCL

1.x by a best-effort OpenCL 2.0 memory model implementation for each chip. Indeed,

recall that this functionality was also required for the experimental study in Chapter 3.

1In fact, we are not aware of any GPU that supports OpenCL 2.1 at the time of writing.

89

Table 4.2: The applications considered along with their available optimisations.
Application variants considered state-of-the-art are noted with a (*).
Applications with no variants have only one implementation.

App Variants Available opts Citation

BFS

cx sz256, np, coop-cv, oitergb [MGG12b]
topo sz256, np, coop-cv, oitergb [BNP12]
tp sz256, np, coop-cv, oitergb [MGG12b]
wl sz256, np, coop-cv, oitergb [MGG12b]
hybrid* sz256, np, coop-cv, oitergb [MGG12b]

CC * sz256, np, coop-cv, oitergb [SKN10]
worklist sz256, coop-cv, oitergb [Lub86]

MIS
pannotia* sz256, coop-cv, oitergb [CBRS13]
boruvka (single worklist) sz256, coop-cv [BNP12]

MST
boruvka (multi worklists)* sz256, coop-cv [BNP12]
residual sz256, np [WLDP15]
residual-wl* sz256, np, coop-cv [WLDP15]PR
tp sz256, np [PP16]
nf* sz256, np, coop-cv, oitergb [DBGO14]
topo sz256, coop-cv, oitergb [BNP12]SSSP
wl sz256, np, coop-cv, oitergb [BNP12]

TRI * sz256, np [Pol16]

To bring all chips up to the OCL 2.1 feature class, support for subgroups is required.

On AMD, the Khronos subgroup extension mirroring the OpenCL 2.1 subgroup func-

tionality [Khr16b, pp. 133-140] is available. Intel GPUs likewise support a specialised

subgroup extension that provides the functionality required by the optimisations [Ash16].

On Nvidia, inline PTX provides warp intrinsic [Nvi18e, p. 209], which are Nvidia’s own

subgroup implementation. The architecture of the ARM GPU does not feature sub-

groups [Lok11], so a subgroup size of one is used, which is a valid subgroup size. This

nullifies any performance benefit that might be obtained from subgroup optimisations,

but allows OpenCL kernels generated by optimisations that assume subgroups to run in

a functionally-portable manner on ARM.

For OCL FP support, Chapter 3 has demonstrated that GPUs from the four vendors

considered do support the occupancy-bound execution model in practice. Thus, this sat-

isfies the requirements of OCL FP directly.

90

4.4.4 Benchmarks

The irgl compiler is accompanied by 19 graph applications, of which 17 were used in

this work. Delaunay Mesh Refinement (DMR) is not used, as some of its (large) support

libraries are written in CUDA. SSSP with a priority worklist is not used, as it uses a high-

performance key–value GPU sort from ModernGPU [Bax], for which an an equivalent

OpenCL library was not found. The applications can be split into 7 high-level problems –

breadth-first search (BFS), connected components (CC), maximal independent set (MIS),

minimal spanning tree (MST), pagerank (PR), single-source shortest path (SSSP), and tri-

angle counting (TRI). Each problem has multiple implementation strategies, summarised

in Table 5.2, the strategies marked (*) implement the fastest algorithms, as discussed

in [PP16]. The “available opts” column shows which optimisations apply to an implemen-

tation; variants with all possible combinations of these optimisations were generated for

the experiments. The “citation” column points to the work where the application variant

was originally presented.

It is noted that SSSPtopo uses a similar strategy to BFStopo, however, the np optimi-

sation is not available for SSSPtopo. This is due to an unresolved issue in the compiler

implementation, and in principle np should be applicable to SSSPtopo. More engineering

effort is planned for the compiler, which should address this issue.

Each application is accompanied by a checker that can be used to validate executions.

BFS, CC, MST, SSSP, and TRI applications must produce bit-exact results every time.

MIS applications, while non-deterministic, must produce solutions that satisfy key invari-

ants that were checked by a script provided with irgl. Finally, although PR applications

exhibit floating point variance, their relative differences from a high confidence oracle must

be within range as checked using the numdiff utility.

Three graph inputs from three important classes were used in this work: a road network

graph of New York (usa.ny), a uniformly random graph (2e23), and a RMAT-style graph

(rmat20). The usa.ny road network input is a high-diameter, uniform low degree graph.

The 2e23 input is a synthetic random graph with uniformly distributed edges. The input

rmat20 is also a synthetic graph, but a recursive procedure is used to construct it, so that

vertex degrees exhibit a power-law distribution [CZF04]. Bi-directional versions of these

graphs were constructed for problems like MIS and MST that require undirected graphs.

MST is not run on 2e23 due to an undiagnosed error.

91

4.4.5 Gathering data

For each execution, the time it takes to execute the application/input on the GPU was

recorded, as this is the primary performance characteristic of interest. As in the original

applications, the time taken to load the graph inputs and the initial/final transfers of

graph data to and from the GPU were ignored.

Each test was run three times. From the runtime data, the average and 95% confidence

intervals [Jai91] were gathered. About 20% of the collected data have confidence intervals

that exceed 15% of the average. These appear to be random outliers, but nevertheless

are included in the analysis directly. More runs would likely reduce the noise, however,

as mentioned below, the total experimental runtime is high and more runs would not be

feasible.

As is common in such large experimental runs, several failures during the experimental

campaign were experienced. First, a small number of runs (typically less than five out of

ten thousand) failed without producing any output. In these cases, the experiments were

simply re-run and the issue did not occur in the repeated runs.

Second, on ARM, 130 benchmarks/optimisation configurations pairs failed due to the

device not being able to support a workgroup size of 256. This is valid OpenCL behaviour,

although it was only observed on this device. In these cases, the sz256 optimisation

is considered unavailable. Third, a variety of vendor compiler issues were encountered,

similar to issues described in the work for Chapter 3 and presented in [SD16b]. For

these issues, workarounds were developed in which parts of the code were transformed in

a semantically equivalent way. Typically, the transformed code uses variables that the

compiler cannot know statically, e.g. kernel arguments. For example, it was found that

while(true) loops that used an explicit break condition commonly caused compiler

issues. A simple transformation changing the loop to while(one != 0) where one is

a kernel argument that the host always sets to 1 resolved many of the issues.

In total, across all platforms and benchmarks, the experimental run takes approximately

237 hours. The platform that accounts for the largest amount of this runtime is Mali-4,

taking 97 hours as the GPU and CPU are smaller and slower devices. Specifically, Mali-

4 has a clock rate of 533 MHz and has 4 compute units. Out of the chips used in this

chapter, the GPU with the next lowest clock rate is the M4000 with a clock rate of 772

MHz, but it has 13 compute units. The GPU with the lowest occupancy is the Hd5500

with an occupancy of 3 using maximum resources (see Table 3.2); however it has a clock

rate of 950 MHz.

92

0%

50%

10%

20%

20%

20%

30%

40%

sz256 coop-cv oitergb fg1 fg8 sg wg

p
e
rc

e
n
t

o
f

b
e
n
ch

m
a
rk

s

optimisation

R9
Hd5500

Iris
Mali-4

Gtx1080
M4000

Figure 4.1: Summary of optimisations used per-chip to obtain the top speedups.

0%

10%

20%

30%

40%

50%

60%

70%

1x <1.25xo <1.5x <1.75x <2x >=2x

p
e
rc

e
n
t

o
f

b
e
n
ch

m
a
rk

s

speedup buckets

R9
Hd5500

Iris
Mali-4

Gtx1080
M4000

Figure 4.2: Summary of top speedups for all benchmarks, split by chip.

4.5 Results and discussion

The research questions of the chapter introduction are now explored by mining the exper-

imental data.

4.5.1 Top speedups across architectures

Research question Are optimisations for GPU graph applications, developed in previ-

ous work and targeted to Nvidia GPUs, beneficial for GPUs from other vendors? How do

the top speedups and slowdowns compare across GPUs and how does the distribution of

optimisations required for top speedups vary across GPUs?

93

Table 4.3: The maximum speedup and slowdown per chip and associated application.
The input for each is usa.ny.

R9 Hd5500 Iris Mali-4 Gtx1080 M4000

max speedup 14.61× 16.61× 13.25× 3.95× 5.10× 3.54×
app BFShybrid SSSPnf BFStp BFStp SSSPnf SSSPnf

max slowdown 6.89× 22.15× 18.70× 15.21× 7.99× 10.00×
app SSSPwl PRtp PRwl SSSPwl PRwl PRtp

First, the effectiveness of the optimisations was assessed, previously tested only on

Nvidia GPUs [PP16], across a range of chips from multiple vendors. Figure 4.1 shows a

histogram of optimisations that were necessary for the top speedup for a benchmark per

chip. By “necessary”, it is meant that if the optimisation is disabled, then the benchmark

suffers a slowdown from the top observed speedup. The figure shows that each optimisation

is necessary to achieve a top speedup for at least one benchmark across all chips. Thus,

these optimisations are not specific to Nvidia GPUs.

Second, these optimisations are shown to also lead to generous speedups across chips.

The value of top speedups achieved are distributed similarly across chips as shown in the

histogram of Figure 4.2. The “1×” bucket counts benchmarks for which no (confident)

speedup was obtained; the “< S×” bins count the number of benchmarks for which

the best speedup was less than S× but greater than or equal to the maximum speedup

associated with the previous bin; the final bin counts the benchmarks for which a top

speedup of at least 2× was achieved.

For most chips, the percentage of benchmarks that could not be sped up is less than

37%. However, speedups appear to be more difficult to obtain for Iris and Gtx1080, for

which no speedups were observed for 65% and 57% of benchmarks, respectively. Notably,

these “difficult” chips are from different vendors, and other chips from the same vendors

(Hd5500 and M4000) exhibit significantly fewer results in this category (i.e. applications

that did not exhibit speedups).

The other extreme of the histogram, the “>= 2×” bin, shows that larger speedups were

observed for between 12% and 21% of benchmarks across all chips. Thus, while not all

chips were able to obtain speedups on the same percentage of benchmarks, all chips were

able to observe more than a 2× speedup on a similar percentage of benchmarks.

Table 4.3 shows the maximum speedup and slowdown per chip and the associated bench-

mark; the relevant input turns out to be usa.ny in all cases. R9, Iris and Hd5500

achieve speedups of more than 10× in the best case; the speedups for Mali-4, Gtx1080

94

0%

10%

20%

30%

40%

50%

60%

70%

80%

1x <1.25x <1.5x <1.75x <2x >=2x

p
e
rc

e
n
t

o
f

te
st

s

speedup buckets

OCL 1.x
OCL 2.0
OCL 2.1
OCL FP

Figure 4.3: Summary of top speedups over all tests, grouped by feature class.

and M4000 are more modest, never exceeding 6×. The only commonly-enabled opti-

misations for these top speedups is oitergb; the reasons for this are investigated through

microbenchmarking in Section 4.5.5. With respect to maximum slowdowns, all chips can

suffer at least a 7× slowdown in the worst case. Thus, optimisation choices can have a

significant effect on the runtime of benchmarks across chips.

4.5.2 Top speedups for feature classes

Research question How do top speedups fare when functional portability is reduced?

That is, how much performance do newer, less supported, features enable across bench-

marks and chips?

The focus is now turned to assessing the extent to which the availability of the latest, or

even possible next-generation, features of GPU programming models impacts on perfor-

mance across the benchmarks and chips. The histogram of Figure 4.3 shows top speedups

across all tests when optimisations are limited to their minimum required feature class

(see Table 4.1). For example, values corresponding to OCL 1.x are limited to the fg and

sz256 optimisations and OCL FP values are free to use any optimisation.

These results show clearly that recent and next-generation programming model features

matter for performance in this domain. More than 70% of tests show no speedups when

optimisations are limited to the OCL 1.x and OCL 2.0 feature classes; and 94% of tests

in this class have less than a 1.5× associated speedup. Optimisations from the OCL 2.1

class, which adds subgroup support, improve the situation, reducing the tests for which

no speedup is achieved to 61%. The majority of the largest speedups, that is speedups of

2× or larger, feature the oitergb optimisation, which is unique to the OCL FP class.

95

Table 4.4: The top and bottom five universal optimisation strategies ranked according
to the number of tests slowed down.

Enabled optimisations Slowdowns Speedups Geomean speedup

fg8 36 60 1.01
fg 37 58 0.98

wg, fg8 38 61 1.00
wg, fg 41 55 0.96

sg 41 56 1.00

wg, coop-cv, oitergb 157 44 0.72
sz256, wg, oitergb 167 44 0.61

sz256, wg 173 23 0.60
sz256, wg coop-cv, oitergb 189 35 0.54

sz256, wg coop-cv 195 22 0.53

In summary, support for cutting edge OpenCL features leads to significant speedups

across the test set. These results offer a compelling motivation for vendors to efficiently

support these language-level abstractions. Additionally, the forward progress guarantees

required by OCL FP are not officially supported by any vendor; again, these results provide

a compelling case for official support to be considered, e.g. via an OpenCL extension.

4.5.3 Applying optimisations universally

Research question Are there “portable optimisations”; that is, optimisation settings

that provide better than baseline performance across the board?

Having established that optimisations are portable, it is now explored whether any

optimisation configuration produces speedups universally, i.e. across all tests. Such a

configuration would yield an appealingly simple optimisation strategy. To answer this,

all 95 optimisation configurations were enumerated, where at least one optimisation is

enabled. For each test, the runtime for every optimisation configuration is compared

with the runtime of the baseline. If an optimisation o in an optimisation configuration is

not applicable to an application (see Table 5.2), then the runtime of the test using the

optimisation configuration without o enabled is used.

Every optimisation configuration yields a slowdown for at least one test. Table 4.4 shows

the top and bottom optimisation configurations, ranked by the number of tests slowed

down by the configuration. The configuration that causes the fewest slowdowns (36; 12%

of all tests) applies fg8 in isolation. However, this “least harmful” optimisation can be

seen as low-risk and low-reward: it is in the OCL 1.x feature class, which provides very

96

0%

100%

20%

40%

60%

80%

sz256 coop-cv oitergb fg1 fg8 sg wg

p
e
rc

e
n
t

o
f

te
st

s

optimisations

beneficial benign harmful

30 34
49

71
51 38

53

110 110
60

59
63 93

104

24 20
54

34
49

32
6

Figure 4.4: Percent of tests for which each optimisation is beneficial, benign, or
harmful.

limited speedups in general (see Section 4.5.2), and applying this optimisation universally

provides only a 1.01× geomean speedup, compared with a 1.5× geomean speedup for the

oracle strategy.

At the other extreme, the combination of sz256, wg, and coop-cv causes the largest num-

ber of slowdowns (195; 66% of all tests), leading to a 0.53× geomean speedup overall (i.e.

nearly a 2× slowdown). However, this configuration should not be discounted entirely: it

yields a 1.7× speedup for the (Gtx1080, sssp-nf, rmat20) test, and a maximum observed

speedup for 2.3% of all tests. Thus, while this configuration appears largely harmful, there

are a small number of cases where it is beneficial and even optimal.

These results show that achieving performance portability universally in this domain is

very difficult: every optimisation configuration leads to a slowdown for at least one test.

4.5.4 Optimisations in top speedups

Research question Are certain optimisations always, or commonly, required for top

speedups across the board? If not, what is the distribution of optimisations required for top

speedups?

Since no optimisation combination avoids slowdowns completely, optimisations that

contribute to top speedups are now examined. For each test, the optimisation configuration

C that led to the top observed speedup is found. This top speedup is then compared with

the speedups observed when optimisations are individually toggled.

If disabling an optimisation o that is enabled in C leads to a slowdown over C, o is

marked as beneficial for the test. If enabling an optimisation o that is disabled in C leads

97

to a slowdown over C, o is marked as harmful for the test. An optimisation that is neither

beneficial nor harmful for a test is marked as benign.

Figure 4.4 summarises the extent to which the optimisations are beneficial, benign, or

harmful, across all tests; cases where an optimisation is not applicable for a given test (see

Table 5.2) were excluded. Nearly all optimisations are harmful for at least 18% of tests,

and most optimisations are harmful in more cases than they are beneficial. The most

harmful optimisation is fg1, harmful for 43% of tests; the most beneficial are oitergb and

fg8, beneficial for 33% and 30% of tests, respectively; the least beneficial is wg, benefiting

just 4% of tests.

Indeed, all optimisations that are present in top speedup configurations for some tests

cause slowdowns in top speedup configurations of other tests. Thus, there is no opti-

misation that can be safely enabled (or disabled) in a majority of cases to achieve top

speedups.

4.5.5 Portable optimisations

Research question What are the performance consequences of abandoning portability

by degrees and specialising to chips, applications or inputs across benchmarks in this do-

main?

The results of Section 4.5.4 show that the effects of optimisations vary substantially

across tests, thus deriving optimisation strategies from the runtime data is challenging.

The results of applying the analysis of Section 4.4.2 to the runtime data for various degrees

of portability is now presented. This allows an investigation into the trade-offs whereby

performance improves as portability constraints are reduced. High-level results relating

to portability vs. specialisation are shown for the test set, considering three dimensions of

specialisation: chip, application, and input.

To specialise over a dimension d, the tests are partitioned into distinct subsets where all

tests in a subset have the same value for d. Each subset is then assigned an optimisation

configuration using the analysis Section 4.4.2. In the present analysis, all possible dimen-

sions were considered: chip, app(lication), input, chip/app, app/input, chip/input. The

global strategy employs no specialisation (and hence no partitions). For the oracle strat-

egy that is specialised to a test (i.e. all three basic dimensions), a simple search through

the experimental data for the maximum speedup was performed.

The effects of specialisation The discussion starts with Figure 4.5, which shows for

each optimisation strategy the percentage of tests that exhibited a speedup, slowdown or

98

0%

20%

40%

60%

80%

100%

ba
se

lin
e

gl
ob

al
ch

ip
ap

p
in

pu
t

ch
ip

/a
pp

in
pu

t/a
pp

ch
ip

/in
pu

ts

or
ac

le

portable specialised 1 dim specialised 2 dim
p
e
rc

e
n
t

o
f

te
st

s

optimisations strategies

speedups no difference slowdowns

0

60
32 27 32

13 16 18 0

165
2

13 34 32
48 29 33

0

0

103 120 104 101 104 120 114

165

Figure 4.5: The percentage of tests for each optimisation strategy that provided a
speedup, no difference or slowdown. Concrete test counts are given on the
bars.

1

1.1

1.2

1.3

1.4

1.5

ba
se

lin
e

gl
ob

al
ap

p
in

pu
t

ch
ip

ch
ip

/a
pp

ch
ip

/in
pu

ts

in
pu

t/a
pp

or
ac

le

portable specialised 1 dim specialised 2 dim

g
e
o
m

e
a
n
 s

lo
w

d
o
w

n
 (

lo
g
)

optimisations strategies

1.5

1.31 1.3
1.26 1.24 1.24

1.16 1.15

1.00

Figure 4.6: The geomean slowdown compared to the oracle across all tests for different
optimisation strategies. Concrete test counts are given on the bars.

99

no significant change under the optimisation strategy. In this chart, the 43% of tests for

which confident speedups were not observed are excluded (see Figure 4.3). As a result, the

baseline strategy shows no difference on all tests and the oracle strategy shows speedups

on all tests.

The completely portable strategy (global) provides a speedup on 62% of tests and a

slowdown on 18% of tests. Each additional dimension of specialisation halves the number

of slowdowns. The count of speedups roughly remains in the same order of magnitude

between a global optimisation strategy up to (but not including) the oracle strategy.

While Figure 4.5 shows the number of speedups and slowdowns, it does not measure

the magnitude of the runtime differences between optimisation strategies. To illustrate

runtime magnitude differences, the geomean under the oracle strategy and the geomean

under each optimisation strategy across all tests was computed. Figure 4.6 shows for each

strategy the strategy geomean normalised to the oracle geomean across all tests. Thus, the

value shows the average slowdown per test under the strategy against the best observed.

The baseline strategy shows a geomean of 1.5× slowdown, while the oracle strategy shows

no slowdown.

The following observations can be made from Figures. 4.5 and 4.6: the optimal single

dimension to specialise across for speedups is chip, which provides 120 speedups as opposed

to 104 and 101 for app and input respectively. Additionally, the geomean slowdown is

1.24× as opposed to 1.3× and 1.26× for app and input. Specialising for application gives

the fewest slowdowns but also the largest mean slowdown.

The optimal two dimensions to specialise across for speedups is inputs and applica-

tions, with 120 tests showing a speedup with a geomean slowdown of 1.15×. While the

single dimension chip specialisation gives the same number of speedups, it has twice as

many slowdowns (16 vs. 32). The optimal two dimensions for the fewest slowdowns is

applications and architecture, with 13 slowdowns. Much like the single dimension, this op-

timisation strategy also has the largest geomean slowdown at 1.24×. Interestingly, this is

the same geomean slowdown as the optimisation strategy only across chips. This suggests

that the chip and application dimensions do not synergise well.

4.5.6 Optimisations and features of chips, applications and inputs

Research question Can optimisation strategies specialised per chip deliver insights

into performance-critical architectural, application, or input features?

Here the optimisation strategies produced by the analysis are explored. In particular, the

global strategy and the single dimension (chip, input, application) specialisation strategies

100

are considered, shown in Table 4.5. The optimisations are studied to reveal details about

the domain of specialisation, e.g. why the strategies for the R9 and Iris chips enable coop-

cv while the other chips do not. Optimisations for combined dimensions (e.g. chip and

input) are not shown as the optimisations can be seen as the combination of information

from the two constituent dimensions.

First, universal properties of Table 4.5 are briefly discussed. In particular, no strategy

shown ever enables the sz256, fg1 or wg optimisation. Thus, the information available

at these dimensions of specialisation is not enough for the analysis to ever enable these

optimisations. For wg, this observation is consistent with earlier results. That is, Figure 4.4

shows that wg is only required in 6 tests to achieve the top speedup; the lowest of any

optimisation. This is not the case for sz256 or fg1 and it has not yet been diagnosed why

these optimisations are never enabled from the analysis. Nevertheless, again as shown by

Figure 4.4, sz256, fg1, and sz256 are required in some cases to observe some top speedups;

however, the analysis here does not shed light on these situations.

Global optimisations

As seen in Table 4.5, the global strategy enables the optimisations oitergb, fg8 and sg.

This result is consistent with Figure 4.4; namely, these three optimisations have the highest

percentage of tests for which they are beneficial. The exception is that the fg1 optimisation

has a larger percentage than sg, however fg1 also has a large percentage of tests for which

it is harmful; this is likely why the analysis did not enable fg1. While it is shown in

Section 4.5.3 that no global strategy avoids slowdowns completely, Figure 4.5 shows that

this global strategy gives a speedup on over half of the tests. Figure 4.6 shows that while

this strategy still suffers a considerable average slowdown over the oracle strategy (1.31×),

the global strategy gives a considerable mean speedup over the baseline strategy. Thus,

while the analysis can produce specialised models, it appears to be capable of discovering

effective global strategies as well.

Chip-specific optimisations

Here, the following observations of the chip-specialised strategy Table 4.5 are explored:

(1) the two Nvidia chips are the only two chips that disable oitergb; (2) Iris and R9

uniquely enable coop-cv; and (3) Mali-4 enables sg even though it does not have sub-

groups. The observations are each examined using microbenchmarks, revealing interesting

performance features of the chips.

101

Table 4.5: The optimisations enabled by the analysis for the following levels of
portability: global, per-chip, per-app, and per-input.

Strategy sz256 coop-cv oitergb fg1 fg8 sg wg

global X X X
chip
R9 X X X X
Hd5500 X X X
Iris X X X X
Mali-4 X X
Gtx1080 X X
M4000 X X
input
usa.ny X X
rmat20 X X
2e23 X X
app
BFScx X X X
BFStopo X
BFStp X X X
BFSwl X X X
BFShybrid X X
CC X X
MISworklist

MISpannotia

MSTsingle-wl

MSTmulti-wl

PRresidual X X
PRresidual-wl X X
PRtp X X
SSSPnf X X X
SSSPtopo X
SSSPwl X X X
TRI X X

Strategy sz256 coop-cv oitergb fg1 fg8 sg wg

102

0%

20%

40%

60%

80%

100%

30 100 1000

G
P
U

 u
ti

lis
a
ti

o
n

Time per Kernel Invocation (µs)

R9
Hd5500

Iris
Mali-4

Gtx1080
M4000

Figure 4.7: Results of the kernel launch frequency microbenchmark per chip.

Overhead of kernel launches and memory copies The oitergb optimisation is

enabled by all chips except those from Nvidia. To establish a causal relationship, a mi-

crobenchmark (similar to the one used in previous work to motivate the optimisation on

Nvidia architectures [PP16]) was developed and run across the GPUs of this chapter. Es-

sentially, the microbenchmark launches a constant-time kernel a fixed number of times

(10, 000), interleaving the launches with a memory copy of a single integer from the GPU

to the CPU. The memory copy between kernel launches mimics the loop dependence that

oitergb moves to the GPU. The constant-time kernels establish the exact utilisation of the

GPU, so timing the entire procedure reveals the overhead of launching these kernels and

of the memory copies that oitergb is designed to reduce. OpenCL does not provide device

timers like CUDA’s clock64, so a calibration loop is used to approximate constant-time

kernels and therefore the results are somewhat noisy.

Figure 4.7 shows the utilisation of the GPU as the kernel execution time is varied.

For a given kernel time, Nvidia chips have relatively higher utilisation compared to other

chips, implying that they have the lowest launch and memory copy latencies. The kernel

launch and memory copy overheads are sufficiently higher for all other chips that they

must include oitergb for performance. Note that oitergb is used by some benchmarks on

Nvidia GPUs (Figure 4.1), but for fewer benchmarks than other chips.

Subgroup RMW combining The coop-cv optimisation is enabled for R9 and Iris

(but not the other Intel chip, Hd5500). The most common form of this optimisation

aggregates atomic RMW instructions within a subgroup. To investigate why this optimi-

103

Table 4.6: Microbenchmark results for subgroup atomic combining and workgroup
memory divergence.

R9 Hd5500 Iris Mali-4 Gtx1080 M4000

sg-combine 22.10 .98 7.95 1.06 .88 .97
m-divergence 1.04 1.07 1.08 6.45 1.27 1.08

sation is only turned on for a few architectures, an OpenCL microbenchmark was written

to measure the time for N atomic fetch and add invocations on a single memory lo-

cation (here, N = 20, 000). In a separate microbenchmark, all atomics in the subgroup

are combined into one atomic (mimicking coop-cv), thus potentially improving throughput

by the size of the subgroup. The sg-combine row of Table 4.6 shows the speedup of this

coop-cv microbenchmark version over the original.

The speedups from R9 and Iris, the two chips for which the analysis suggest the coop-cv

optimisation, are notably higher than values for the other chips. The overhead of subgroup

communication for combining causes the speedups to be a fraction of the subgroup size –

R9 has a subgroup size of 64, but sees only a 22× speedup. Iris uses a subgroup size of

16 for these kernels, and delivers about half of that as speedup.

The Mali-4 chip has a subgroup size of 1, and does not show speedup as expected. The

Nvidia chips do not exhibit speedup, but investigation has shown that the CUDA compiler

already performs this optimisation natively.2 It is suspected this is also the case for the

Nvidia OpenCL compiler. Stranger is that coop-cv is enabled for Iris but not Hd5500,

both from Intel. The compiled GPU assembly is not available in a documented form for

these chips and thus, OpenCL compiler optimisations cannot be explored. It is speculated

that coop-cv occurs in the OpenCL compiler similar to Nvidia GPUs, but it is not clear

why it does not occur on Iris.

Intra-workgroup memory divergence Since the Mali-4 has a subgroup size of

1, it is intriguing to investigate why the sg optimisation is enabled for it. Recall that sg

improves load balance by redistributing work over all threads from the same subgroup.

By careful elimination, it was eventually discovered that the workgroup barriers that are

a part of the sg optimisation were the source of the speedup. Previous work [LLK+14] has

found that semantically unnecessary workgroup barriers can improve performance in GPU

kernel execution by limiting the memory divergence of threads in the same workgroup.

2From personal communication with Sreepathi Pai.

104

Table 4.7: Kernel launches and worklist sizes for different inputs when running BFSwl.

Input Kernel launches Average worklist size

usa.ny 621 606.5
rmat20 14 65155.2
2e23 19 466083.4

Again, a microbenchmark was developed to test this by having two kernels read and

write to a large array using strided accesses indexed by thread id. In one of the kernels, a

semantically unnecessary barrier is introduced into the loop, so that threads in a workgroup

are never more than one iteration away from each other. The speedup of the kernel with

barriers over the kernel without barriers across all chips is shown in the m-divergence row

of Table 4.6.

While all chips appear to benefit from the barrier, the clear outlier is the Mali-4,

on which adding the gratuitous barrier leads to an impressive 6.45× speedup. Thus,

the Mali-4 appears to be extremely sensitive to intra-workgroup memory divergence,

Figure 4.1 shows that sg is required for top speedups on Mali-4 more than any other

chip. Thus, while initially confounding, these findings suggests a new optimisation may

be required to protect against memory divergence on all GPUs.

Input-specific optimisations

The different optimisation configurations for the input strategy from Table 4.5 are now

examined. Namely, that usa.ny enables oitergb and disables sg.

Recall from Sections 4.3.3 and 4.5.6 that oitergb is beneficial in the presence of many

short kernels being launched iteratively. Graphs with a high diameter, such as usa.ny,

tend to lead to many short kernels. The graphs 2e23 and rmat20 have lower diameters

and thus have the opposite property: a small number of longer running kernels. For

example, Table 4.7 shows the number of iterations as well as the average size of the input

worklist for each input when running the BFSwl application. The number of items in the

worklist can be used as an estimate of the time each kernel launch takes. Notice that

usa.ny causes at least 30× more iterations than the other two inputs. Additionally, on

average there is at least 100× less work per kernel. Because of this property, usa.ny is

able to benefit from oitergb regardless of chip or application.

The sg optimisation, disabled for usa.ny, is reasoned about similarly. The distribution

optimisation of sg balances the worklist items. If there are not many items in the worklist,

then the overhead of the distribution orchestration outweighs the benefits. Again, Table 4.7

105

Table 4.8: Average worklist sizes for three variants of BFS across different inputs.

App usa.ny rmat20 2e23

BFSwl 606.5 65155.2 466083.4
BFScx 3698.5 590010.9 1766063.3
BFStp 3661.4 627411.1 1864174.7

shows that the average number of items in the worklist for usa.ny is much smaller than

the other two inputs, and is small enough that sg is disabled.

Application-specific optimisations

To complete the discussion, a few observations on application-specific optimisations shown

in Table 4.5 are explored. It should be borne in mind that not all optimisations are

applicable to all applications (Table 5.2), thus optimisations that are not applicable for an

application will never be enabled for that application. Four high-level observations about

application specific optimisations can be made.

The first observation is that coop-cv is enabled only for BFScx and BFStp. The reason

for this is that these two variants of BFS employ an optimistic worklist strategy, where all

candidate nodes in a frontier are pushed to the worklist. The other variants, e.g. BFSwl,

only push nodes that have not yet been examined. The optimistic strategy can be beneficial

due to streaming memory accesses as their labels do not have to be checked before pushing.

However, the optimistic strategy also leads to many more worklist pushes, and thus atomic

RMW operations. This can be seen by the average worklist sizes presented in Table 4.8;

notice how the tp and cx variants have rougly 5× the number of items as the wl variant.

Because of this, aggregating atomics is especially valuable in these applications.

The second observation is that for all applications for which np is applicable, only

BFStopo disables fg8 and sg. This is because the topo applications use a strategy in which

the input worklist logically contains all nodes in the graph. These nodes are partitioned

across threads. If a thread finds that a node is not important for the current iteration, the

thread is able to simply exit. However, if an np optimisation is used, then all threads must

continue executing, including participating in barrier synchronisation. Because fg8 and

sg only distribute work across across subgroups, there may be many subgroups without

meaningful work. These threads then simply add overhead, making fg8 and sg unattractive

for this strategy. Because SSSPtopo implements a similar strategy, it is speculated that the

analysis would also disable fg8 and sg for this application as well. However, as discussed

106

Table 4.9: Number of kernel launches and average time (ms) per kernel for Hd5500.

App
usa.ny rmat20 2e23

launches avg. time launches avg. time launches avg. time

SSSPnf 2407 .03 60 13.77 80 31.25
MISpannotia 17 1.65 8 25.00 17 165.47

in Section 4.4.4, the np optimisations are not available for SSSPtopo due to an unresolved

issue in the compiler implementation.

The third observation is that oitergb is mixed across the applications. While not all cases

are examined here, the two applications with the highest and lowest common language

effect size, i.e. the percent of observations for which the optimisation caused a performance

improvement, for oitergb in the MWU analysis. The application with the highest common

language effect size is SSSPnf, in which oitergb caused a speedup in 89% of 481 total

samples. The application with the lowest common language effect size is MISpannotia, in

which oitergb caused a speedup in only 20% of 44 samples. There are fewer samples for

MISpannotia because the np optimisations are not available.

As discussed throughout, oitergb benefits cases where there are many short kernel

launches. Table 4.9 shows the number of kernel launches for both applications, as well as

the average time per kernel on Hd5500. Notice that SSSPnf always has at least 4× the

number of kernel launches for each input compared with MISpannotia. Additionally, the

average kernel time is roughly 55×, 2×, and 5× less for SSSPnf than for MISpannotia for

the three inputs. As a result, SSSPnf is a better candidate for oitergb than MISpannotia.

The final observation is that MIS and MST applications do not enable any optimisa-

tions. Thus, these applications likely do not have chip or input independent features that

optimisations can exploit.

4.5.7 Optimisation policies

Research question How does an optimisation policy guided by tuning on single GPU

platform fare when used to make optimisation decisions for other GPU platforms?

The effect of taking an optimisation strategy tuned for a given chip and applying it to all

chips is now discussed. Such situations may arise if optimisations strategies are specialised

for one chip, e.g. a chip that is readily available to a developer, and then ported new chip,

e.g. a chip that is unavailable to a developer. For this, a new optimisation strategy per

chip C is generated, which given a benchmark b, returns the optimisation configuration

that achieved the highest speedups for C on b. These strategies were generated through an

107

geomean

M4000

Gtx1080

Mali-4

Iris

Hd5500

R9

R9 Hd5500 Iris Mali-4 Gtx1080 M4000 geomean

e
xe

cu
te

d
 o

n
 c

h
ip

optimisations tuned for chip

1.17 1.17 1.17 1.22 1.18 1.17 NA

1.10 1.16 1.15 1.23 1.05 1.00 1.11

1.23 1.32 1.29 1.36 1.00 1.14 1.22

1.46 1.33 1.41 1.00 1.50 1.43 1.34

1.08 1.05 1.00 1.19 1.18 1.15 1.11

1.19 1.00 1.06 1.23 1.25 1.18 1.15

1.00 1.20 1.15 1.32 1.15 1.15 1.16

Figure 4.8: Heatmap of the geomean slowdown compared to the oracle of executing an
optimisation configuration tuned for one chip on all other chips.

exhaustive search through the data, similar to the oracle strategy. For all pairs (C,C ′) of

chips, the runtimes for C using optimisation strategies tuned for C are compared against

the runtimes using optimisation strategies tuned for C ′. As a metric, the geomean slow-

down over the oracle strategy is used (similar to Figure 4.6). That is, what is the average

slowdown across all benchmarks restricted to chip C ′ if using an optimisation strategy

tuned for chip C.

Figure 4.8 shows a heatmap of these results, where the rows correspond to chips running

the benchmarks and the columns correspond to optimisation strategies tuned for individual

chips. The diagonal is 1.00 as there are no slowdowns for a chip using the optimisation

strategy tuned for that chip. The values of the bottom row shows the geomean across all

values in the column associated with an optimisation strategy. Smaller values indicate a

given optimisation strategy is more portable, causing fewer slowdowns across chips. The

numbers of the far right column show the geomean slowdown across the row associated with

the chip. Smaller values indicate a given chip suffers fewer slowdowns under optimisation

strategies tailored for different chips.

No chip optimised strategy is completely portable to another chip. However, the two In-

tel chips (Iris and Hd5500) behave similarly to each other. In contrast, Nvidia’s Gtx1080

(a newer architecture) slows down when the optimal configuration from the M4000 (an

older architecture) is used. However, the M4000 works well with the Gtx1080 configu-

ration. These counter-intuitive generational differences are concerning, for they limit the

extent to which knowledge gained on one GPU is less transferable to another. Interest-

108

ingly, the Iris behaves well under the R9 strategy (1.08×), but the reverse is not true

(1.15×).

Mali-4 provides the highest geomean slowdowns, possibly given its architectural dif-

ferences. That is, an optimisation strategy tailored for Mali-4 slows downs benchmarks

on other chips. The Mali-4 also suffers the most slowdowns when optimisation strategies

for other GPUs are applied.

4.6 Revisiting results from Chapter 3

The discussion of results in this chapter raise several questions about the results of the pre-

vious chapter. Here, two separate issues are discussed that may appear to be contentious

across chapters, but upon further investigation, are explainable.

4.6.1 Multi-kernel vs. oitergb

Section 3.6.2 discusses performance benefits of modifying applications that use iterative

kernel launches against using a portable global barrier, which is exactly the oitergb op-

timisation presented in this chapter. The results of Section 3.6.2 show that performance

improvements are modest, with only two tests out of 56 (about 3%) showing a speedup

of 2× or more. However, in this chapter, Figure 4.3 shows that adding the oitergb op-

timisation leads to 16% of the tests showing a speedup of 2× or more (as it is the only

optimisation in the OCL FP feature class).

The reason for this disconnect is that the Pannotia benchmarks are not as optimised

as the irgl benchmarks, and as such, the kernel execution times are not short enough to

yield as much benefit as was observed in this chapter. As a concrete example, consider

MISpannotia, the only benchmark common to the results of this chapter and Section 3.6.2.

It is shown in Table 4.9 that MISpannotia has many fewer (and longer) kernel invocations

than another application that benefits greatly from oitergb. As another example, the

Pannotia SSSP implementation uses a sparse matrix vector multiplication approach that

examines every node in every kernel launch. The SSSP approaches in this chapter examine

fewer nodes per iteration and thus have shorter kernel execution times.

As an additional piece of supporting evidence, consider the oitergb microbenchmark

results of Figure 4.7. Notice that the rightmost data point shows that Iris has the lowest

GPU utilisation for the longest running kernels. Thus, for longer running kernels, Iris

would be expected to benefit the most. This is exactly what the results of the previous

109

Table 4.10: Average runtime (ms) over 20 iterations of the discovery protocol and the
portability overhead of the BFS application of Section 3.6.3 using two
mutex strategies.

Mutex Protocol time (ms) BFS[2e23] BFS[rmat22]

original 136.25 2.53× 2.09×
self-destructing 2.21 1.11× 1.09×

chapter show in Section 3.9. For the long-running Pannotia benchmarks, Iris has the

largest geomean speedup when using the global barrier.

These results reinforce the conclusion that global barrier optimisations are best used to

avoid many short kernel launches.

4.6.2 Cost of portability

In this chapter, the discovery protocol and global barrier approach of the previous chapter

were used to implement the oitergb optimisation. However, Figure 3.10 shows that the

overhead of these portable constructs can be quite severe when compared to a barrier

approach that uses a priori occupancy knowledge. In the worst case, R9 suffers a geomean

slowdown of 1.71× when using a portable approach. This raises the question as to whether

the oitergb implementation in this chapter suffers similar severe slowdowns due to the

portable implementation.

Upon deeper investigation into the results of Figure 3.10, the cause of the large slow-

downs was identified to be the execution of the discovery protocol. In particular, the

slowdown was greatest among the chips with the higher occupancies, i.e. R9 and Nvidia

chips. This is because many workgroups are contending for the discovery protocol mutex.

While a fair mutex is critical for a high recall, it has low throughput in the presence of

high contention, as the lock is restricted to be acquired in the order that it was requested.

For the oitergb implementation in this chapter, this issue was addressed by implementing

a self-destruct mechanism to the discovery protocol mutex. The idea behind this optimi-

sation is that the mutex is no longer required after the poll is closed; threads will simply

exit (see Figure 3.3). Thus, the thread that closes the poll can also destroy the mutex. In

turn, this alleviates lock contention. In this scheme, the poll open flag must be declared

atomic to avoid OpenCL data-races.

Table 4.10 shows timing results, restricted to R9 as it suffered the most extreme slow-

downs, of: (1) running the discovery protocol in isolation with and without the self-

destructing mutex; and (2) the new portability overhead of the two most severe slowdowns

110

of Figure 3.10 – BFS with 2e23 and rmat22. Clearly, the exploding mutex reduces the

cost of the discovery protocol significantly, and as a result, the portability overhead of

the applications becomes much smaller. Thus, while there likely is some cost associated

with the discovery protocol and custom execution environment, the portability costs of

the oitergb optimisation presented in this chapter are likely much less than Figure 3.10

might suggest.

4.7 Related work

A study [VVdL+15] of the portability of three OpenCL graph algorithms using a CPU

and two Nvidia GPUs concluded that the effects of inputs swamped out any benefits

gained by optimising them for specific OpenCL platforms and that maintaining a single

(functionally) portable version across platforms was more productive. The results of this

chapter support the finding that inputs play a significant role in performance, but show

that specialising for input is better than not optimising at all and specialising across other

dimensions using a compiler can deliver even more performance.

Merrill et al. [MGG12a] construct a performance-portable library of parallel primitives

containing reductions, scans, sorting algorithms, etc., by encoding tunable parameters

such as number of items per load, the number of threads per thread block, etc., in the

CUDA/C++ type system. Their system is evaluated on three Nvidia GPUs and reaches

similar conclusions about the lack of a globally applicable optimisations for the problems

they consider.

Other work [ZSC13] has studied the performance portability of OpenCL on more tra-

ditional GPU problems, such as SGEMM, SpMV and FFT.

In particular, Price and McIntosh-Smith [PMS17] study performance portability of a

GPU Jacobi solver over Nvidia, AMD and Intel chips (including two CPU Intel chips).

The parameter space in their work is sufficiently large (13 parameters, some with many

options) that they do not perform an exhaustive search, but rather use an autotuning

method for several hours. A heat map, similar to Figure 4.8, is used to show the difficulties

of portability, especially across vendors. To address these issues, they employ a bi-level

autotuning optimisation approach, using a metric of the worst performing test. That

is, they consider one optimisation configuration o better than another o′ for a set of

benchmarks b, if the largest slowdown applying o′ is less than the largest slowdown applying

o over b. This approach would not work immediately in the domain of this chapter, as

Section 4.5.3 shows that all possible optimisations cause at least one slowdown. Thus,

this approach would simply converge to the completely unoptimised configuration. Using

111

a metric other than the largest slowdown may be possible, but many candidates are

immediately problematic. For example, if the number of slowdowns is used as a metric,

then the first optimisation configuration of Table 4.4 would be found, which, as discussed,

is a low-risk, low-reward configuration. Additionally, if the geomean was used as a metric,

then the approach may favour certain chips, as Table 4.3 shows, some chips provide higher

speedups than others. Thus, the choice of the analysis presented in this chapter uses a

non-parametric, rank based test which appears to overcome these limitations.

It has been shown that the layout of byte code, stack frames, and the heap can introduce

performance measurement bias on CPU systems. Previous work has used layout randomi-

sation techniques across runs to remove such biases [CB13, MDHS09]. It is unclear if

GPU systems suffer similar measurement biases and proprietary OpenCL runtimes make

it difficult to implement similar randomisation techniques. Randomisation might improve

the quality of the data collected for each test, but otherwise the methods of this chap-

ter would be unchanged. The choice to use a non-parametric statistical method in this

chapter was motivated by previous work that shows experimental data from computer

systems is largely not normally distributed, making techniques like ANOVA inapplicable,

and proposes the use of quantile regression [dOFD+13]. The MWU test is similarly non-

parametric, but quantile analysis was not necessary for the application domain in this

chapter.

Muralidharan et al. [MRH+16] propose a technique for autotuning across architectures

without retraining for the target architecture. Using a set of performance data (e.g. per-

formance counters) obtained from 6 different Nvidia GPUs, and using target architecture

features at runtime, they use an SVM to predict the most appropriate variants. The re-

sults of this chapter aim to construct descriptive models as opposed to predictive models,

and treats GPUs, applications and inputs as black boxes. Appropriately suited to the

poor state of portable OpenCL profilers, the approach in this chapter requires only the

ability to run and time a program.

4.8 Summary

Enabled by the functionally portable global barrier of Chapter 3, this chapter has demon-

strated the difficulty of achieving performance portability of OpenCL graph algorithms

across a diverse set of GPUs. The results have shown that universally beneficial (or harm-

ful) optimisations do not exist. A data analysis was presented that can consume exhaustive

experimental data and yield optimisation strategies that can be tailored for portability

by various degrees of specialisation over chips, applications and inputs. The geomean gap

112

between an oracular optimisation strategy and a strategy that specialise for application

and input (but is oblivious to chip) is 16%. Using strategies customised to each dimension,

several performance bottlenecks were identified. Along each dimension, the following were

shown to be key features for performance:

• chip features: kernel launch latency, lack of atomic RMW combining, and memory

divergence;

• input features: the diameter of the graph;

• application features: the number of nodes pushed to a frontier based worklist and

the number and average runtime of individual kernels;

Overall, for the domain of GPU graph algorithms, this chapter has provided bounds for

performance under various portability constraints.

While the performance evaluation of the global barrier was inconclusive in Chapter 3,

this chapter has explored in detail a domain of GPU algorithms where there is a clear

benefit for the global barrier. We believe this study strengthens the argument that official

support for an OpenCL global barrier should be considered. Next, Chapter 5 addresses

concerns encountered from industry about the interaction between interactive GPU ap-

plications, e.g. graphics, and applications that use a global barrier.

113

5 Cooperative GPU Multitasking

5.1 Personal context

The obvious limitation to the global barrier work of Chapter 3 and 4 is that the occupancy-

bound execution model on which it relies is not officially supported by OpenCL, nor by any

vendor. We wanted to understand whether the OpenCL committee (and the associated

vendors) would be open to considering the execution model given that we had shown that

it has some pragmatic utility. To that end, I presented the global barrier of Chapter 3 at

ARM (in Cambridge, UK), AMD (in Redmond, WA) and at the International Workshop on

OpenCL (in Vienna, AT). Additionally, we had email correspondence with Lee Howes, who

had worked on GPUs at Qualcomm and is an editor of the OpenCL specification [Khr15],

and Andrew Richards at Codeplay.

The take-away from all these conversations was that while today’s GPUs empirically

support the occupancy-bound execution model, no vendor wants to commit to the model.

That is, vendors want to keep the possibility open for development that would break the

progress guarantees of the model. In particular, we understood that: (1) a completely fair

preemptive model, e.g. like that of mainstream CPUs, would likely be too expensive due to

the large states of workgroups, but (2) unfair preemption, where an occupant workgroup

is preempted with no guarantees of returning execution relative to other occupant work-

groups, may be useful for cases of multitasking with high priority tasks (e.g. graphics) or

energy throttling, especially on mobile GPUs.

The work presented in this chapter provides new programming constructs that aim to

address the concerns from industry, while still offering enough progress guarantees to use

blocking idioms, including global barrier synchronisation.

5.2 Motivation

Many interesting parallel algorithms are irregular : the amount of work to be processed is

unknown ahead of time and may change dynamically in a workload-dependent manner.

There is growing interest in accelerating such algorithms on GPUs, with the work in

114

kill

kill

fork

gather time

time

execution time

3210

Graphics request 2 CUs

Graphics terminated

Host CPU GPU Compute Units (CUs)

graphics graphics

Figure 5.1: Cooperative kernels can flexibly resize to allow other tasks, e.g. graphics,
run concurrently.

Chapter 4 being a concrete example. In some cases, irregular algorithms can be optimised

using blocking synchronisation between workgroups, as seen with the global barrier used

by the oitergb optimisation in Chapter 4. Another blocking idiom used in parallel irregular

algorithms is work stealing, which requires each workgroup to maintain a queue, typically

mutex-protected, to enable stealing by other workgroups.

To avoid starvation, a blocking concurrent algorithm requires fair scheduling of work-

groups. For example, if one workgroup holds a mutex, an unfair scheduler may cause

another workgroup to spin-wait forever for the mutex to be released. Similarly, an unfair

scheduler can cause a workgroup to spin-wait indefinitely at a global barrier so that other

workgroups do not reach the barrier.

A degree of fairness: occupancy-bound execution As discussed in Chapter 3, cur-

rent GPU programming models specify almost no fairness guarantees regarding scheduling

of workgroups, and current GPU schedulers are not totally fair in practice. Instead, the

occupancy-bound execution model, empirically observed on many current GPUs, maps

each workgroup to a hardware resource and provides relative fairness to as many work-

groups can simultaneously occupy the GPU. In this chapter, the hardware resource re-

quired to execute a workgroup will be called a compute unit, although as noted in Sec-

tion 3.6.1, sometimes a compute unit can be oversubscribed with more than one workgroup

occupant.

The occupancy-bound execution model does not guarantee fair scheduling between all

workgroups: if the hardware resources of a GPU are fully occupied, then a not-yet-

occupant workgroup will not be scheduled until some occupant workgroup completes

execution. Yet the execution model does provide fair scheduling between occupant work-

groups, which are bound to separate compute units that operate in parallel. Current GPU

115

implementations of blocking algorithms assume the occupancy-bound execution model, us-

ing either occupancy assumption or discovery methods as discussed in Chapter 3.

Resistance to occupancy-bound execution Despite its practical prevalence, none

of the current GPU programming models actually mandate occupancy-bound execution.

Further, there are reasons why this model is undesirable. First, occupancy-bound exe-

cution does not enable multitasking, since a workgroup effectively owns a compute unit

until the workgroup has completed execution. The GPU cannot be used meanwhile for

other tasks, even high priority interactive tasks (e.g. graphics rendering). Second, energy

throttling is an important concern for battery-powered devices [VC13]. In the future, it

may be desirable for a mobile GPU driver to power down some compute units, unfairly

suspending execution of associated occupant workgroups, if the battery level is low.

Our assessment, informed by discussions with a number of industrial practitioners who

have been involved in the OpenCL and/or HSA standardisation efforts, is that GPU

vendors (1) will not commit to the occupancy-bound execution model they currently im-

plement, for the above reasons, yet (2) will not guarantee fair scheduling using preemption.

This is due to the high runtime cost of preempting workgroups, which requires manag-

ing thread local state (e.g. registers, program counters) for all workgroup threads (up to

1024 on Nvidia GPUs), as well as local memory (up to 64 KB on Nvidia GPUs). Ven-

dors instead wish to retain the essence of the simple occupancy-bound model, supporting

preemption only in key special cases.

As a concrete example, Nvidia’s Pascal architecture is documented to support preemp-

tion [NVI16], yet the documentation provides no fairness guarantees. Indeed, on a GPU

from this architecture (GTX Titan X), starvation for blocking algorithms is still observed:

a kernel containing a global barrier executes successfully when run with 56 workgroups,

but hangs indefinitely when run with 57 workgroups. Thus, indicating that the ability to

preempt does not imply totally fair scheduling.

A way forward: cooperative kernels To summarise: blocking algorithms demand

fair scheduling, but for various pragmatic reasons GPU vendors will not commit to fair-

ness guarantees, even the limited guarantees provided by the occupancy-bound execution

model. This chapter presents cooperative kernels, an extension proposal to the OpenCL

GPU programming model that aims to resolve this impasse. The extensions and their

semantics are briefly described below.

A kernel that requires fair scheduling is identified as cooperative, and written using

two additional language primitives, offer kill and request fork, placed by the programmer.

116

Where the cooperative kernel could proceed with fewer workgroups, a workgroup can exe-

cute offer kill, offering to sacrifice itself to the scheduler. This indicates that the workgroup

would ideally continue executing, but that the scheduler may preempt the workgroup; the

cooperative kernel must be prepared to deal with either scenario. Where the cooperative

kernel could use additional resources, a workgroup can execute request fork to indicate

that the kernel is prepared to proceed with the existing set of workgroups, but is able to

benefit from one or more additional workgroups commencing execution directly after the

request fork program point.

The use of request fork and offer kill creates a contract between the scheduler and the

cooperative kernel. Functionally, the scheduler must guarantee that the workgroups ex-

ecuting a cooperative kernel are fairly scheduled, while the cooperative kernel must be

robust to workgroups leaving and joining the computation in response to offer kill and

request fork. Non-functionally, a cooperative kernel must ensure that offer kill is executed

frequently enough such that the scheduler can accommodate soft real-time constraints,

e.g. allowing a smooth frame-rate for graphics. In return, the scheduler should allow the

cooperative kernel to utilise hardware resources where possible, killing workgroups only

when demanded by other tasks, and forking additional workgroups when possible.

Cooperative kernels allow for cooperative multitasking, used historically when preemp-

tion was not available or too costly. Cooperative kernels avoid the cost of arbitrary pre-

emption as the state of a workgroup killed via offer kill does not have to be saved. Previous

cooperative multitasking systems have provided yield semantics, whereby a processing unit

would temporarily give up its hardware resource. Cooperative kernels deviate from this

design because, in the case of a global barrier, adopting yield would force the cooperative

kernel to block completely when a single workgroup yields, stalling the kernel execution

until the given workgroup resumes. Instead, offer kill allows a kernel to make progress

with a smaller number of workgroups, with workgroups potentially joining again later via

request fork.

Figure 5.1 illustrates sharing of GPU compute units between a cooperative kernel and

a graphics task. Workgroups 2 and 3 of the cooperative kernel are killed at an offer kill

to make room for a graphics task. The workgroups are subsequently restored to the

cooperative kernel when workgroup 0 calls request fork. The gather time is the time

between resources being requested and the application surrendering them via offer kill.

To satisfy soft real-time constraints, the gather time should be low; the experimental

evaluation of Section 5.7.2 shows that, in practice, the gather-time for applications is

acceptable for a range of graphics workloads.

117

The cooperative kernels model has several appealing properties:

1. By providing fair scheduling between workgroups, cooperative kernels meet the needs

of blocking algorithms, including irregular algorithms.

2. The model has no impact on the development of regular (non-cooperative) compute

and graphics kernels.

3. The model is backwards-compatible: offer kill and request fork may be ignored, and

a cooperative kernel will behave exactly as a regular kernel does on current GPUs.

4. Cooperative kernels can be implemented over the occupancy-bound execution model

provided by current GPUs: the prototype implementation of this chapter uses no

special hardware or driver support above what is provided the OpenCL standard.

5. Cooperative kernels are complementary to preemption; that is, if hardware support

for preemption is available, it can be leveraged to implement cooperative kernels

efficiently, as the programmer provides “smart” preemption points.

Placing the primitives manually is straightforward for a representative set of GPU-

accelerated irregular algorithms examined in this chapter. The experimental evaluation

shows that the model can enable efficient multitasking of cooperative and non-cooperative

tasks.

5.2.1 Chapter contributions

In summary, the main contributions of this chapter are:

• cooperative kernels, an extension to the OpenCL GPU programming model that

supports the scheduling requirements of blocking algorithms (Section 5.4), while

also addressing pragmatic concerns of vendors;

• a prototype implementation of cooperative kernels, including a simple scheduler, on

top of OpenCL 2.0 (Section 5.5);

• two sets of applications, one set of applications adapted to use the cooperative kernels

model, and another set of applications to be representative of interactive GPU tasks

(Section 5.6);

118

• an experimental evaluation assessing the overhead and responsiveness of the coop-

erative kernels approach over a set of irregular algorithms (Section 5.7), including a

best-effort comparison with the efficiency afforded by hardware-supported preemp-

tion available on Nvidia GPUs (Section 5.7.3).

Related publications The material presented in this chapter is based on work pub-

lished in the 11th ACM SIGSOFT Symposium on the Foundations of Software Engineering

(FSE’17) [SED17a]. The work received a distinguished paper award.

5.3 Two blocking GPU idioms

The chapter begins by discussing two high-level code patterns that appear in existing GPU

applications and use blocking synchronisation between workgroups. The two patterns

discussed are: work stealing (Section 5.3.1) and graph traversal (Section 5.3.2).

5.3.1 Work stealing

Work stealing enables dynamic balancing of tasks across processing units. It is useful when

the number of tasks to be processed is dynamic, due to one task creating an arbitrary

number of new tasks. Work stealing has been explored in the context of GPUs [CT08,

TPO10]. Each workgroup has a local queue from which it obtains tasks to process, and

to which it stores new tasks. If its queue is empty, a workgroup tries to steal a task from

another queue.

Figure 5.2 illustrates a work stealing kernel. Each thread receives a pointer to the task

queues, in global memory, initialised by the host to contain initial tasks. A thread uses its

workgroup id (line 2) as a queue id to access the relevant task queue. The pop or steal

1 kernel void work_stealing(global Task * queues) {
2 int queue_id = get_group_id();
3 while (more_work(queues)) {
4 Task * t = pop_or_steal(queues, queue_id);
5 if (t) {
6 process_task(t, queues, queue_id);
7 }
8 }
9 }

Figure 5.2: An excerpt of a work stealing algorithm in OpenCL.

119

1 kernel void graph_app(global graph *g, global nodes *n0,
2 global nodes *n1) {
3 int level = 0;
4 global nodes *in_nodes = n0;
5 global nodes *out_nodes = n1;
6 int tid = get_global_id();
7 int stride = get_global_size();
8 while(in_nodes.size > 0) {
9 for (int i = tid; i < in_nodes.size; i += stride) {

10 process_node(g, in_nodes[i], out_nodes, level);
11 }
12 swap(&in_nodes, &out_nodes);
13 global_barrier();
14 reset(out_nodes);
15 level++;
16 global_barrier();
17 }
18 }

Figure 5.3: An outline of an OpenCL graph traversal.

function (line 4) pops a task from the workgroup’s queue or tries to steal a task from other

queues. Although not depicted here, concurrent accesses to queues inside more work and

pop or steal are guarded by a mutex per queue, implemented using atomic compare

and swap operations on global memory.

If a task is obtained, then the workgroup processes it (line 6), which may lead to

new tasks being created and pushed to the workgroup’s queue. The kernel presents two

opportunities for spin-waiting: spinning to obtain a mutex, and spinning in the main

kernel loop to obtain a task. Without fair scheduling, threads waiting at these points

might spin indefinitely, causing the application to hang.

5.3.2 Graph traversal

Figure 5.3 illustrates a frontier-based graph traversal algorithm, representative of algo-

rithms studied in Chapter 4 and in related work [BNP12, PP16]. The kernel is given three

arguments in global memory: a graph structure, and two arrays of graph nodes. Initially,

n0 contains the starting nodes to process. Private variable level records the current

frontier level, and in nodes and out nodes point to distinct arrays recording the nodes

to be processed during the current and next frontier, respectively.

120

The application iterates as long as the current frontier contains nodes to process (line 8).

At each frontier, the nodes to be processed are evenly distributed between threads through

stride-based processing.

In this case, the stride is the total number of threads, obtained via get global size.

A thread calls process node to process a node given the current level, with nodes to

be processed during the next frontier being pushed to out nodes. After processing the

frontier, the node array pointers of a thread are swapped (line 12).

At this point, the GPU threads must wait for all other threads to finish processing the

frontier. To achieve this, a global barrier is used (line 13). After all threads reach this

point, the output node array is reset (line 14) and the level is incremented. The threads

use another global barrier to wait until the output node is reset (line 16), after which

they continue to the next frontier. As discussed throughout this thesis, the global barrier

is not provided as a GPU primitive. However, a robust portable global barrier can be

implemented following the approach of Chapter 3.

Blocking summary The mutexes and barriers used by these two examples appear to

run reliably on current GPUs for kernels that are executed with no more workgroups than

can be simultaneously occupant on the GPU, e.g. as in Chapter 4. This is due to the

fairness of the occupancy-bound execution model, discussed in Chapter 3, that current

GPUs have been shown, experimentally, to provide. But, as discussed in Section 5.2, this

model is not endorsed by language standards or vendor implementations, and may not be

respected in the future.

In Section 5.4.2, it is shown how the work stealing and graph traversal examples of

Figures. 5.2 and 5.3 can be updated to use the cooperative kernels programming model to

resolve the scheduling issue.

5.4 Cooperative kernels

The new constructs of the cooperative kernels programming model are summarised in Ta-

ble 5.1 and the semantics of the new constructs are described in more detail in Section 5.4.1.

The blocking idioms presented in the previous section are used to assess programmabil-

ity of these constructs (Section 5.4.2), then the nonfunctional properties required by the

model are outlined (Section 5.4.3). In the extended version of the published work, op-

erational semantics are given [SED17b]. These are not provided in this thesis as they

are primarily a contribution of Alastair F. Donaldson. Section 5.5.3 discusses reasonable

alternative semantics for the cooperative kernel constructs that might be considered.

121

Table 5.1: Overview of new cooperative kernel constructs.

Construct Description

transmit
A qualifier for private variables. The values in variables qualified
with transmit in thread 0 of a workgroup will be copied into the
private memory of new workgroups forked with request fork.

request fork

Signals to the scheduler that if there are sufficient resources
available, new workgroups can be forked and join the
computation at the call of request fork. New workgroups are
assigned contiguous ids and have access to kernel arguments and
variables qualified with transmit from the workgroup that called
request fork. Must be called in a workgroup-uniform location.

offer kill

Signals to the scheduler that if resources are needed elsewhere,
the calling workgroup can permanently leave the computation at
this point. The scheduler may only kill the active workgroup
with the highest id. Must be called in a workgroup-uniform
location.

global barrier
Like the global barrier discussed in Chapter 3 and 4,
synchronises all active threads executing the cooperative kernel.
Must be called in a kernel-uniform location.

resizing global barrier

Similar to global barrier, synchronises all active threads.
Additionally, workgroups may be forked or killed (similar to
request fork and offer kill) at the point of synchronisation. Must
be called in a kernel-uniform location.

5.4.1 Semantics of cooperative kernels

As with a regular OpenCL kernel, a cooperative kernel is launched by the host application,

passing parameters to the kernel and specifying a desired number of threads and work-

groups. Unlike in a regular kernel, the parameters to a cooperative kernel are immutable

(though pointer parameters can refer to mutable data).

Cooperative kernels are written using the following extensions: transmit, a qualifier

on the variables of a thread; offer kill and request fork, the key functions that enable

cooperative scheduling; and global barrier and resizing global barrier primitives for inter-

workgroup synchronisation.

Transmitted variables A variable declared in a cooperative kernel can optionally be

annotated with a new transmit qualifier. Annotating a variable v with transmit means

that when a workgroup uses request fork to spawn new workgroups, the workgroup should

transmit its current value for v to the threads of the new workgroups. The semantics for

this are detailed in the discussion of request fork below.

122

Active workgroups If the host application launches a cooperative kernel requesting

N workgroups, this indicates that the kernel should be executed with a maximum of

N workgroups, and that as many workgroups as possible, up to this limit, are desired.

However, the scheduler may initially schedule fewer than N workgroups, and as explained

below the number of workgroups that execute the cooperative kernel can change during

the lifetime of the kernel.

The number of active workgroups—workgroups executing the kernel—is denoted M .

Active workgroups have consecutive ids in the range [0,M − 1]. Initially, at least one

workgroup is active; if necessary the scheduler must postpone the kernel until some com-

pute unit becomes available. For example, in Figure 5.1: at the beginning of the execution

M = 4; while the graphics task is executing M = 2; after the fork M = 4 again.

When executed by a cooperative kernel, get num groups returns M , the current num-

ber of active workgroups. This is in contrast to get num groups for regular kernels,

which returns the fixed number of workgroups that execute the kernel.

Fair scheduling is guaranteed between active workgroups; i.e. if some thread in an active

workgroup is enabled, then eventually this thread is guaranteed to execute an instruction.

Semantics for offer kill The offer kill primitive allows the cooperative kernel to return

compute units to the scheduler by offering to sacrifice workgroups. The idea is as follows:

allowing the scheduler to arbitrarily and abruptly terminate execution of workgroups might

be drastic, yet the kernel may contain specific program points at which a workgroup could

gracefully leave the computation.

Similar to the OpenCL workgroup barrier primitive, offer kill, is a workgroup-level

function—it must be encountered uniformly by all threads in a workgroup.

Suppose a workgroup with id m executes offer kill. If the workgroup has the largest id

among active workgroups then it can be killed by the scheduler, except that workgroup 0

can never be killed (to avoid early termination of the kernel). More formally, if m < M−1

or M = 1 then offer kill is a no-op. If instead M > 1 and m = M − 1, the scheduler can

choose to ignore the offer, so that offer kill executes as a no-op, or accept the offer, so that

execution of the workgroup ceases and the number of active workgroups M is atomically

decremented by one. Figure 5.1 illustrates this, showing that workgroup 3 is killed before

workgroup 2.

123

Semantics for request fork Recall that a desired limit of N workgroups was specified

when the cooperative kernel was launched, but that the number of active workgroups, M ,

may be smaller than N , either because (due to competing workloads) the scheduler did

not provide N workgroups initially, or because the kernel has given up some workgroups

via offer kill calls. Through the request fork primitive (also a workgroup-level function),

the kernel and scheduler can collaborate to allow new workgroups to join the computation

at an appropriate point and with appropriate state.

Suppose a workgroup with id m ≤M executes request fork. Then the following occurs:

an integer k ∈ [0, N −M] is chosen by the scheduler; k new workgroups are spawned with

consecutive ids in the range [M,M + k − 1]; the active workgroup count M is atomically

incremented by k.

The k new workgroups commence execution at the program point immediately following

the request fork call. The variables that describe the state of a thread are all uninitialised

for the threads in the new workgroups; reading from these variables without first initial-

ising them is an undefined behaviour. There are two exceptions to this: (1) because the

parameters to a cooperative kernel are immutable, the new threads have access to these

parameters as part of their local state and can safely read from them; (2) for each variable

v annotated with transmit, every new thread’s copy of v is initialised to the value that

thread 0 in workgroup m held for v at the point of the request fork call. In effect, thread

0 of the forking workgroup transmits the relevant portion of its local state to the threads

of the forked workgroups.

Figure 5.1 illustrates the behaviour of request fork. After the graphics task finishes

executing, workgroup 0 calls request fork, spawning the two new workgroups with ids 2

and 3. Workgroups 2 and 3 join the computation where workgroup 0 called request fork.

Notice that k = 0 is always a valid choice for the number of workgroups to be spawned

by request fork, and is guaranteed if M is equal to the workgroup limit N .

Global barriers Because workgroups of a cooperative kernel are fairly scheduled, a

global barrier primitive can be provided in this model. Two variants are specified:

global barrier and resizing global barrier.

The global barrier primitive is similar to the global barrier described throughout this

thesis. It is a kernel-level function, i.e. if it appears in conditional code then it must be

reached by all threads executing the cooperative kernel. On reaching a global barrier, a

thread waits until all threads have arrived at the barrier. Once all threads have arrived, the

threads may proceed past the barrier with the guarantee that all global memory accesses

issued before the barrier have completed. The global barrier primitive can be implemented

124

similar to the approach described in Chapter 3, however the implementation must take

into account a growing and shrinking number of workgroups, as request fork and offer kill

may change the count of active workgroups.

The resizing global barrier primitive is also a kernel-level function. It is identical to

global barrier, except that it caters for cooperation with the scheduler: by issuing a

resizing global barrier the programmer indicates that the cooperative kernel is prepared

to proceed after the barrier with more or fewer workgroups.

When all threads have reached resizing global barrier, the number of active workgroups,

M , is atomically set to a new value, M ′ say, with 0 < M ′ ≤ N . If M ′ = M then the

active workgroups remain unchanged. If M ′ < M , workgroups [M ′,M − 1] are killed. If

M ′ > M then M ′ −M new workgroups join the computation after the barrier, as if they

were forked from workgroup 0. In particular, the transmit-annotated local state of thread

0 in workgroup 0 is transmitted to the threads of the new workgroups.

The semantics of resizing global barrier can be modelled via calling request fork and

offer kill, surrounded and separated by calls to a global barrier, i.e.:

global_barrier();

if(get group id() == 0) request_fork();

global_barrier();

offer_kill();

global_barrier();

The enclosing global barrier calls ensure that the change in number of active workgroups

from M to M ′ occurs entirely within the resizing barrier, so that M changes atomically

from a programmer’s perspective. The middle global barrier, while not semantically neces-

sary, ensures that forking occurs before killing, so that workgroups [0,min(M,M ′)−1] are

left intact. That is, so that workgroups are not forked immediately after they are killed.

Because resizing global barrier can be implemented as above, is is not regarded concep-

tually as a primitive of the cooperative kernels model. However, Section 5.5.2 shows how

a resizing barrier can be implemented more efficiently through direct interaction with the

scheduler.

5.4.2 Programming with cooperative kernels

A changing workgroup count Unlike in regular OpenCL, the value returned by

get num groups is not fixed during the lifetime of a cooperative kernel: it corresponds to

the active group count M , which changes as workgroups execute offer kill, and request fork.

The value returned by get global size is similarly subject to change. A cooperative

125

1 kernel void cooperative_work_stealing(global Task * queues) {
2 int queue_id;
3 while (more_work(queues)) {

4 request fork();

5 offer kill();

6 queue id = get group id();

7 Task * t = pop_or_steal(queues, queue_id);
8 if (t) {
9 process_task(t, queues, queue_id);

10 }
11 }
12 }

Figure 5.4: Cooperative kernel version of the work stealing kernel of Figure 5.4.
Changes to correctly use cooperative features are highlighted .

kernel must thus be written in a manner that is robust to changes in the values returned

by these functions.

In general, their volatility means that use of these functions should be avoided. However,

the situation is more stable if a cooperative kernel does not call offer kill and request fork

directly, so that only resizing global barrier can affect the number of active workgroups.

Then, at any point during execution, the threads of a kernel are executing between some

pair of resizing barrier calls, called a resizing barrier interval (considering the kernel entry

and exit points conceptually to be special cases of resizing barriers). The active workgroup

count is constant within each resizing barrier interval, so that get num groups and

get global size return stable values during such intervals. As illustrated below for

graph traversal, this can be exploited by algorithms that perform strided data processing.

Adapting work stealing In this pattern, there is no state to transmit since a computa-

tion is entirely parameterised by a task, which is retrieved from a global queue. Figure 5.4

shows the original work stealing code of Figure 5.2 adapted to use cooperative features.

Calls to request fork and offer kill are added at the start of the main loop (lines 5 and 4) to

let a workgroup offer itself to be killed or forked, respectively, before it processes a task.

Note that a workgroup may be killed even if its associated task queue is not empty, since

remaining tasks will be stolen by other workgroups. In addition, since request fork may be

the entry point of a workgroup, the queue id must now be computed after it, so the call

to get group id is moved inside the loop after request fork, i.e. to line 6 in the adapted

126

1 kernel void cooperative_graph_app(global graph *g,
2 global nodes *n0,
3 global nodes *n1) {

4 transmit int level = 0;

5 transmit global nodes *in_nodes = n0;

6 transmit global nodes *out_nodes = n1;
7 while(in_nodes.size > 0) {

8 int tid = get global id();

9 int stride = get global size();

10 for (int i = tid; i < in_nodes.size; i += stride) {
11 process_node(g, in_nodes[i], out_nodes, level);
12 }
13 swap(&in_nodes, &out_nodes);

14 resizing global barrier();

15 reset(out_nodes);
16 level++;

17 resizing global barrier();

18 }
19 }

Figure 5.5: Cooperative kernel version of the graph traversal kernel of Figure 5.3.
Changes to correctly use cooperative features are highlighted .

code. In particular, the queue id cannot be transmitted since a newly spawned workgroup

should read from its own queue and not the one of the forking workgroup.

Adapting graph traversal Figure 5.5 shows a cooperative version of the graph traver-

sal kernel of Figure 5.3 from Section 5.3. On lines 14 and 17, the original global barriers

are changed into resizing barriers. Several variables are marked to be transmitted in the

case of workgroups joining at the resizing barriers (lines 4, 5 and 6): level must be

restored so that new workgroups know which frontier they are processing; in nodes and

out nodes must be restored so that new workgroups know which of the node arrays to

use for input and output. Lastly, the static work distribution of the original kernel is no

longer valid in a cooperative kernel. This is because the stride (which is based on M) may

change after each resizing barrier call. To fix this, the work is re-distributed after each

resizing barrier call by recomputing the thread id and stride (lines 8 and 9). This exam-

ple exploits the fact that the cooperative kernel does not issue offer kill nor request fork

directly: the value of stride obtained from get global size at line 9 is stable until

the next resizing barrier at line 14.

127

Patterns for irregular algorithms Section 5.6.1 describes the set of irregular GPU

algorithms used in the experiments of this chapter, which largely captured the irregular

blocking algorithms that were available as open source GPU kernels at the time of the work.

These algorithms all employ either work stealing or operate on graph data structures.

Placing the new constructs in these applications followed common, easy-to-follow patterns

in each case. The work stealing algorithms have a transactional flavour and require little

or no state to be carried between transactions. The point at which a workgroup is ready

to process a new task is a natural place for offer kill and request fork, and few or no

transmit annotations are required. Figure 5.5 is representative of most level-by-level graph

algorithms. It is typically the case that on completing a level of the graph algorithm, the

next level could be processed by more or fewer workgroups, which resizing global barrier

facilitates. Some level-specific state must be transmitted to new workgroups, which was

determined on a case-by-case basis.

5.4.3 Non-functional requirements

The semantics presented in Section 5.4.1 describe the behaviours that a developer of a

cooperative kernel should be prepared for. However, the aim of cooperative kernels is to

find a balance that allows efficient execution of algorithms requiring fair scheduling, and

responsive multitasking, so that the GPU can be shared between cooperative kernels and

other shorter tasks with soft real-time constraints. To achieve this balance, an implemen-

tation of the cooperative kernels model, and the programmer of a cooperative kernel, must

strive to meet the following non-functional requirements.

The purpose of offer kill is to let the scheduler destroy a workgroup in order to schedule

higher-priority tasks. The scheduler relies on the cooperative kernel to execute offer kill

sufficiently frequently that soft real-time constraints of other workloads can be met. Using

the work stealing example: a workgroup offers itself to the scheduler after processing each

task. If tasks are sufficiently short then the scheduler will have ample opportunities to

de-schedule workgroups. But if tasks are very long then it might be necessary to rewrite

the algorithm so that tasks are shorter and more numerous, to achieve a higher rate of

calls to offer kill. Getting this non-functional requirement right is GPU- and application-

dependent. In Section 5.6.3, experiments are presented that measure the response rate that

would be required to co-schedule graphics rendering with a cooperative kernel, maintaining

a smooth frame rate.

128

Recall that, on launch, the cooperative kernel requests N workgroups. The scheduler

should thus aim to provide N workgroups if other constraints allow it, by accepting an

offer kill only if a compute unit is required for another task, and responding positively to

request fork calls if compute units are available.

5.5 Prototype implementation

Our vision was that cooperative kernel support will be integrated in the runtimes of future

GPU implementations of OpenCL, with driver support for the required new primitives.

However, to explore cooperative kernels experimentally on current GPUs, a prototype was

developed that mocks up the required runtime support via a megakernel, and exploits

the occupancy-bound execution model to ensure fair scheduling between workgroups.

Though, it is emphasised that an aim of cooperative kernels is to avoid depending on

the occupancy-bound model. The prototype exploits this model simply to allow experi-

mentation on current GPUs whose proprietary drivers are not available to modify. The

megakernel approach is described in Section 5.5.1 followed by implementation details of

various scheduler components in Section 5.5.2.

5.5.1 The megakernel mock up

Instead of multitasking multiple separate kernels, a set of kernels are merged into a

megakernel—a single, monolithic kernel. The megakernel is launched with as many work-

groups as can be occupant concurrently. One workgroup takes the role of the scheduler,1

and the scheduling logic is embedded as part of the megakernel. The remaining workgroups

act as a pool of workers. A workgroup repeatedly queries the scheduler to be assigned a

task, which corresponds to executing a cooperative or non-cooperative kernel. In the non-

cooperative case, the workgroup executes the relevant kernel function uninterrupted, then

awaits further work. In the cooperative case, the workgroup either starts from the kernel

entry point or immediately jumps to a designated point within the kernel, depending on

whether the workgroup is an initial workgroup of the kernel, or a workgroup forked via

request fork. In the latter case, the new workgroup also receives a struct containing the

values of all relevant transmit-annotated variables.

1The scheduler requirements given in Section 5.4 are agnostic to whether the scheduling logic takes place
on the CPU or GPU. To avoid expensive communication between GPU and the GPU, in this work the
scheduler was implemented on the GPU.

129

Simplifying assumptions For ease of implementation, the prototype implementation

has several limitations. Namely, the prototype:

• supports multitasking a single cooperative kernel with a single non-cooperative ker-

nel, though the non-cooperative kernel can be invoked many times;

• requires that offer kill, request fork and resizing global barrier are called from the entry

function of a cooperative kernel. This allows the use of goto and return to direct

threads into and out of the kernels;

• requires that all transmit variables are declared in the root scope. This constraint

simplifies sharing transmit annotated variables with newly forked workgroups.

These constraints did not prohibit any applications in the benchmarks considered for this

work. A non-mock implementation of cooperative kernels would not use the megakernel

approach, so the engineering effort associated with lifting this restriction in the prototype

implementation was not deemed to be worthwhile.

5.5.2 Scheduler design

To enable multitasking through cooperative kernels, the runtime (in this work, the megak-

ernel) must: (1) track the state of workgroups, i.e. whether a workgroup is waiting or

computing a kernel; (2) maintain consistent context states for each kernel, e.g. tracking

the number of active workgroups; and (3) provide a safe way for these states to be modified

in response to request fork and offer kill. These issues are now discussed. Additionally, the

implementation of a more efficient resizing barrier is presented. The presentation discusses

how the scheduler would handle arbitrary combinations of kernels, though as noted above,

the current prototype implementation is restricted to the case of two kernels.

Scheduler contexts and resource messages To dynamically manage workgroups

executing cooperative kernels, the framework must track the state of each workgroup

and provide a channel of communication from the scheduler workgroup to workgroups

executing request fork and offer kill. To achieve this, a scheduler context structure is used,

mapping a primitive workgroup id to the workgroup’s status, which is either available

or the id of the kernel that the workgroup is currently executing. The scheduler can

then send workgroups executing cooperative kernels a resource message, commanding

workgroups to exit at offer kill, or spawn additional workgroups at request fork. Thus,

the scheduler context needs a communication channel for each cooperative kernel. In

130

the prototype implementation, communication channels are provided using OpenCL 2.0

atomic variables in global memory.

Launching kernels and managing workgroups To launch a kernel, the host sends

a data packet to the GPU scheduler consisting of a kernel to execute, kernel inputs, and

a flag indicating whether the kernel is cooperative. In the prototype implementation, this

host-to-device communication channel is provided using OpenCL fine-grained SVM atomic

operations (see Section 2.3.2).

Upon receiving a data packet describing a kernel launch K, the scheduler must de-

cide how to schedule K. Suppose K requests N workgroups. The scheduler queries the

scheduler context. If there are at least N available workgroups, K can be scheduled and

commence execution immediately. Suppose instead that there are only Na < N available

workgroups, but a cooperative kernel Kc is executing. The scheduler can use Kc’s channel

in the scheduler context to command Kc to relinquish N −Na workgroups via executions

of offer kill. Once N workgroups become available, the scheduler then instructs N work-

groups from the available workgroups to execute kernel K. If the new kernel K is itself

a cooperative kernel, the scheduler would be free to provide K with fewer than N active

workgroups initially.

If a cooperative kernel Kc is executing with fewer workgroups than it initially requested

and there exists available workgroups, then the scheduler may decide to instruct the

available workgroups to join the execution of Kc; these workgroups will join the next

time a workgroup of Kc executes request fork. To do this, the scheduler asynchronously

signals Kc through the communication channel to indicate the number of workgroups that

should join at the next request fork command. When a workgroup w of Kc subsequently

executes request fork, thread 0 of w updates the kernel and scheduler contexts so that the

given number of new workgroups are directed to the program point after the request fork

call. This involves searching through the workgroup pool to find available workgroups, as

well as copying the values of transmit-annotated variables to the new workgroups.

An efficient resizing barrier In Section 5.4.1, the semantics of a resizing barrier

were defined using calls to request fork and offer kill between two global barrier calls. It is

possible, however, to implement the resizing barrier using only one call to a global barrier

with request fork and offer kill embedded inside. Such an implementation is now described.

The starting global barrier implementation follows the master/slave XF barrier, de-

scribed in Chapter 3.5.1. Recall that in this implementation one workgroup (the master)

collects signals from the other workgroups (the slaves) indicating that they have arrived

131

at the barrier and that they are waiting for a reply indicating that they may leave the

barrier. Once the master has received a signal from all slaves, it replies with a signal to

each slave saying that they may leave.

Incorporating request fork and offer kill into such a barrier implementation is straight-

forward. Upon entering the barrier, the slaves first execute offer kill, possibly exiting. The

master then waits for M slaves (the number of active workgroups), which may decrease

due to offer kill calls by the slaves, but will not increase. Once the master observes that

M slaves have arrived, it knows that all other workgroups are waiting to be released. The

master executes request fork, and the statement immediately following this request fork is

a conditional that forces newly spawned workgroups to join the slaves in waiting to be

released. Finally, the master releases all the slaves: the original slaves and the new slaves

that joined at request fork.

While the implementation described above is simple, it is also sub-optimal. Workgroups

execute offer kill only once per resizing barrier call and, depending on order of arrival, it

is possible that only one workgroup is killed per resizing barrier call. This prevents the

scheduler from gathering workgroups quickly, which may not be sufficient for interactive

tasks, e.g. graphics.

The gather time, i.e. the time between when the scheduler receives a kernel launch

request and when enough workgroups to execute the new kernel are made available, can

be reduced by providing a new query function for cooperative kernels, which returns the

number of workgroups that the scheduler wants to obtain from the cooperative kernel.

A more efficient resizing barrier can now be implemented using this new scheduler hook

as follows: (1) the master waits for all slaves to arrive; (2) the master calls request fork and

commands the new workgroups to be slaves; (3) the master calls query, obtaining a value

W ; (4) the master releases the slaves, broadcasting the value W to them; (5) workgroups

with ids larger than M −W spin, calling offer kill repeatedly until the scheduler claims

them—from query it is known that the scheduler will eventually do so. Results show that

the barrier using query greatly reduces the gather time in practice (Section 5.7.2).

5.5.3 Alternative semantic choices

The semantics of cooperative kernels has been guided by the applications studied in this

work (described in Section 5.6.1). Several cases where different and also reasonable se-

mantic decisions are now discussed.

132

Killing workgroups in decreasing id order The semantics of offer kill are such that

only the active workgroup with the highest id can be killed. This has an appealing prop-

erty: it means that the ids of active workgroups are contiguous, which is important for

efficient strided accessing of data. The cooperative graph traversal algorithm of Figure 5.5

illustrates this: the algorithm is prepared for get global size to change after each

resizing barrier call, but depends on the fact that get global id returns a contiguous

range of thread ids.

A disadvantage of this decision is that it may provide sub-optimal responsiveness from

the point of view of the scheduler. Suppose the scheduler requires an additional compute

unit, but the active thread with the largest id is processing some computationally intensive

work and will take a while to reach offer kill. The chosen semantics mean that the scheduler

cannot take advantage of the fact that another active workgroup may invoke offer kill

sooner.

Cooperative kernels that do not require contiguous thread ids (e.g. the work stealing

example of Figure 5.4) might be more suited to a semantics in which workgroups can

be killed in any order, but where workgroup ids, and thus thread global ids, are not

guaranteed to be contiguous.

Although cooperative multitasking is not mentioned, fairness properties that consider

decreasing workgroup ids also appear in the forward progress guarantees of the HSA GPU

programming model [HSA17]. This model, and the associated fairness guarantees, are

discussed in Chapter 6.

Keeping one workgroup alive The cooperative kernel semantics dictate that the

workgroup with id 0 will not be killed if it invokes offer kill. This avoids the possibility

of the cooperative kernel terminating early due to the programmer inadvertently allowing

all workgroups to be killed, and the decision to keep workgroup 0 alive fits well with the

choice to kill workgroups in descending order of id.

However, there might be a use case for a cooperative kernel reaching a point where it

would be acceptable for the kernel to exit, although desirable for some remaining compu-

tation to be performed if competing workloads allow it. In this case, a semantics where all

workgroups can be killed via offer kill would be appropriate, and the programmer would

need to guard each offer kill with an id check in cases where killing all workgroups would

be unacceptable. For example:

if(get group id(0) != 0) offer kill();

would ensure that at least workgroup 0 is kept alive.

133

Transmission of partial state from a single thread Recall from the semantics of

request fork that newly forked workgroups inherit the values of transmit-annotated vari-

ables associated with thread 0 of the forking workgroup. Alternative choices here would

be to have forked workgroups inherit values for all variables from the forking workgroup,

and to have thread i in the forking workgroup provide the valuation for thread i in each

spawned workgroup, rather than having thread 0 transmit the valuation to all new threads.

The decision for transmitting only selected variables is based on the observation that

many of a thread’s private variables are dead at the point of issuing request fork or

resizing global barrier, thus it would be wasteful to transmit them. A live variable analysis

could instead be employed to over-approximate the variables that might be accessed by

newly arriving workgroups, so that these are automatically transmitted.

In all cases, it was found that a variable that needed to be transmitted had the property

of being uniform across the workgroup. That is, despite each thread having its own copy

of the variable, each thread was in agreement on the variable’s value. As an example, the

level, in nodes and out nodes variables used in Figure 5.5 are all stored in thread-

private memory, but all threads in a workgroup agree on the values of these variables

at each resizing global barrier call. As a result, transmitting the thread 0’s valuation of

the annotated variables is equivalent to (and more efficient than) transmitting values on

a thread-by-thread basis. A real-world example where the current semantics would not

suffice has not yet been encountered.

5.6 Evaluation applications and GPUs

Here, the experience of porting irregular kernels to cooperative kernels, which were used

in the evaluation, is discussed (Section 5.6.1). The GPUs used in this chapters exper-

iments are detailed (Section 5.6.2). The section concludes with a description of how

non-cooperative workloads that mimic real interactive GPU tasks, specifically graphics

rendering, were developed (Section 5.6.3).

5.6.1 Cooperative applications

Table 5.2 gives an overview of the 8 blocking applications ported to cooperative kernels

in this work. There are four graph algorithms from the global barrier variants of the

Pannotia [CBRS13] applications (see Section 3.6.2). Two of the applications are based

on the Lonestar GPU applications of Section 3.6.3. The blocking idiom common to these

two sets of applications is the global barrier. The table indicates how many of the original

134

Table 5.2: Blocking GPU applications investigated: the number of global barriers
converted into resizing barriers, the number of cooperative constructs added,
the lines of code (LoC) and the number of inputs.

App Barriers to resizing offer kills request forks transmits LoC Inputs
COLOR 2 / 2 0 0 4 55 2
MIS 3 / 3 0 0 0 71 2
BC 3 / 6 0 0 3 150 2
SSSPpannotia 3 / 3 0 0 0 42 1
BFS 2 / 2 0 0 4 185 2
SSSPlonestar 2 / 2 0 0 4 196 2
OCTREE 0 / 0 1 1 0 213 1
GAME 0 / 0 1 1 0 308 1

Pannotia Lonestar GPU work stealing

global barriers were changed to resizing barriers, and how many variables need to be

annotated with transmit. In all cases, all of the global barriers were converted to resizing

global barriers, except in the BC application, which contains barriers deeper in the call

stack. Recall that this case is not supported by the prototype implementation, although

these barriers could in principle be converted. Because there is an SSSP application

common to both Pannotia and Lonestar GPU, a subscript is used to distinguish them.

The Lonestar GPU approach uses a worklist approach while the Pannotia version uses

sparse matrix operations. Thus, while the two applications share the same name, they

implement significantly different strategies. Although many applications of Chapter 4 use

a global barrier, these applications were not available at the time that the work of this

chapter was conducted. However, the Lonestar GPU BFS application is similar to many

of the applications of Chapter 4.

The remaining two applications are based on work stealing idioms from [CT08]. Origi-

nally written in CUDA, a port to OpenCL was required. These two applications required

the addition of one request fork and one offer kill at the start of the main loop, and no

variables needed to be transmitted, similar to the example discussed in Section 5.4.2.

Most graph applications come with two different data sets as input, while the work

stealing applications have just one. This leads to 13 application/input pairs in total.

5.6.2 GPUs used in evaluation

The prototype scheduler implementation (Section 5.5) requires two optional features of

OpenCL 2.0: SVM fine-grained buffers and SVM atomics. Out of the available GPUs (see

Table 2.2), four met the requirements: Hd520, Hd5500, Iris, and R7. However, AMD’s

135

Linux drivers for OpenCL suffer from a known defect whereby long-running kernels lead

to defunct processes that the OS cannot kill [SD16b]. This issue was observed on R7

using the latest driver and thus made this chip difficult to experiment on. Additionally,

alarming results were observed on this platform when using SVM atomics: modifying

a kernel to include a simple CPU/GPU handshake through SVM slowed down kernel

execution by an order of magnitude in some cases. This behaviour, combined with the

defunct processes issue, lead us to believe that the support required for cooperative kernels

is not yet mature enough within AMD’s drivers. Thus the experiments were run on three

Intel GPUs: Hd520, Hd5500 and Iris.

5.6.3 Developing non-cooperative kernels

Enabling rendering of smooth graphics in parallel with blocking irregular algorithms is an

important use case for cooperative kernels. However, because the prototype implementa-

tion is based on a megakernel that takes over the entire GPU (see Section 5.5), the native

interaction cannot be assessed directly.

The following method was devised to determine OpenCL workloads that simulate the

computational intensity of various graphics rendering workloads. This method makes the

following assumption: the system has a GUI driven by the GPU and insufficient GPU

resources will cause the GUI to momentarily glitch.2 First, a synthetic kernel is designed

that occupies all compute units of a GPU for a parameterised time period t. This kernel

is invoked in an infinite loop by a host application. A maximum value for t is found such

that the synthetic kernel executes without having an observable impact on the graphics

rendering of the host (i.e. there are no screen glitches). Using the computed value, the

application is run for X seconds, the time Y < X dedicated to GPU execution during

this period is measured and the number of kernel launches n that were issued is recorded.

The value X ≥ 10 was used in all experiments. The values (X − Y)/n and X/n estimate

the average time spent using the GPU to render the display between kernel calls (call this

E) and the period at which the OS requires the GPU for display rendering (call this P),

respectively.

2This was observed to be the case on the Intel GPUs experimented with in this chapter.

136

Table 5.3: Period and execution time for each rendering task.

Rendering task Period-P (ms) Execution time-E (ms)

light 70 3
medium 40 3
heavy 40 10

This approach was used to measure the GPU availability required for three rendering

tasks:

• light, whereby desktop icons were smoothly emphasised under the mouse pointer;

• medium, whereby window dragging over the desktop was smoothly animated; and

• heavy, which required smooth animation of a WebGL shader in a browser. In this

case, the Chrome experiments were used.3

For each rendering task, the results are shown in Table 5.3. For medium and heavy, the

40ms period coincides with the human persistence of vision. The 3ms execution duration

of both light and medium configurations indicates that GPU computation is cheaper for

basic display rendering compared with more complex rendering.

5.7 Evaluation

Here, the results of running cooperative kernels on the prototype implementation are pre-

sented. First, the overhead associated with moving to cooperative kernels when multitask-

ing is not required is examined (Section 5.7.1). Then, the responsiveness and throughput

of non-cooperative workloads in the presence of cooperative workloads are examined (Sec-

tion 5.7.2). The section concludes with a comparison of cooperative kernels against a

model of kernel-level preemption, which appears to be what current Nvidia GPUs provide

(Section 5.7.3).

5.7.1 Overhead of cooperative kernels

Invoking the cooperative scheduling primitives incurs some overhead even if no killing,

forking or resizing actually occurs, because the cooperative kernel still needs to interact

with the scheduler to determine this. This overhead is assessed by measuring the slowdown

3See https://www.chromeexperiments.com

137

Table 5.4: Cooperative kernel slowdown without multitasking.

Chip
Overall Global barrier apps Work stealing apps

geomean max geomean max geomean max

Hd520 1.20 1.75∗ 1.18 1.75∗ 1.42 1.42�

Hd5500 1.14 1.45† 1.16 1.45† 1.10 1.18�

Iris 1.08 1.37‡ 1.07 1.37‡ 1.12 1.23�

∗COLOR[eco], †BC[128k], ‡SSSPlonestar[usa.ny], �OCTREE

in execution time between the original and cooperative versions of a kernel, forcing the

scheduler to never modify the number of active workgroups in the cooperative case.

Recall that the mega kernel-based implementation merges the code of a cooperative

and a non-cooperative kernel. This can reduce the occupancy for the merged kernel,

e.g. due to higher register pressure. This is an artefact of the prototype implementation,

and would not be a problem if cooperative primitives were implemented inside the GPU

driver. Thus, both the original and cooperative versions of a kernel were launched with

the reduced occupancy bound in order to meaningfully compare execution times.

Results Table 5.4 shows the geometric mean and maximum slowdown across all appli-

cations and inputs, with averages and maxima computed over 10 runs per benchmark. For

the maximum slowdowns, the application and input are indicated. The slowdown is below

1.75× even in the worst case, and closer to 1.2× on average. The best-performing chip is

Iris, with an average slowdown of 1.08× and a maximum slowdown of 1.37×. The worst-

performing chip is Hd520 with an average slowdown of 1.2× and a maximum slowdown

of 1.75×. In all cases, the worst slowdown occurs on a global barrier application, although

the application/input combination differs across chips. However, on average, work stealing

applications suffer larger slowdowns than barrier applications, except for the Hd520 chip.

These results are encouraging, especially since the performance of the prototype could

clearly be improved upon in a native implementation.

5.7.2 Multitasking via cooperative scheduling

The responsiveness of multitasking between a long-running cooperative kernel and a series

of short, non-cooperative kernel launches is now assessed. Additionally, the performance

impact of multitasking on the cooperative kernel is investigated.

For a given cooperative kernel and its input, the kernel was launched and then a non-

cooperative kernel was repeatedly scheduled. The non-cooperative kernel aims to simulate

138

the intensity of one of the three classes of graphics rendering workloads discussed in Sec-

tion 5.6.3. In these experiments, matrix multiplication was used as the non-cooperative

workload, with matrix dimensions tailored to reach the appropriate execution duration.

Four different cases for the number of workgroups requested by the non-cooperative kernel

were considered: (1) one workgroup; (2) a quarter of the available workgroups; (3) half of

the available workgroups; and (4) all-but-one of the available workgroups. For the graph

algorithms, both the regular and query resizing global barriers were experimented with.

Thus, these experiments span 13 pairs of cooperative kernels and inputs, 3 classes of non-

cooperative kernel workloads, 4 quantities of workgroups requested for the non-cooperative

kernel, and 2 variations of resizing barriers for graph algorithms, leading to 288 configu-

rations. Each configuration was run 10 times on each GPU in order to report averaged

performance numbers. For each run, the execution time of the cooperative kernel was

recorded. For each scheduling of the non-cooperative kernel during the run, the gather

time needed by the scheduler to collect workgroups to launch the non-cooperative kernel

and the non-cooperative kernel execution time was recorded. For every kernel (cooperative

and non-cooperative), the results were sanity-checked by comparing their computed result

with expected reference results.

To work around compiler crash and compiler hang bugs in Intel’s current OpenCL

drivers, some semantics-preserving changes were applied to a few of the applications.

Driver bugs also meant that results could not be obtained for some configurations where the

non-cooperative kernel asks for all-but-one workgroups (namely BC, BFS and SSSPlonestar

on all chips, and COLOR on Iris). Furthermore, the GAME application did not run at

all on Hd520. These driver bugs led to severe failures such as machine freezes and blue

screens. Thus, the results exclude these configurations.

Responsiveness Figure 5.6 reports, on three configurations, the average gather and

execution times for the non-cooperative tasks with respect to the number of workgroups

allocated to it. A logarithmic scale is used for time since gather times tend to be much

smaller than execution times. The horizontal grey lines indicates the desired period (P)

for non-cooperative tasks. These graphs show a representative sample of the results; the

full set of graphs for all configurations is provided in the extended version of the paper

that this chapter is based on [SED17b].

The top graph (Figure 5.6a) illustrates results from the OCTREE work stealing appli-

cation on Iris. When the non-cooperative kernels (light, medium or heavy) uses only one

workgroup, the execution time is long enough that the non-cooperative task cannot com-

plete within the period required for a screen refresh. The gather time is very low though,

139

.1

1

10

medium/heavy P (40)
light P (70)

1000

1 N/4 N/2 N-1

time (ms)

number of non-cooperative workgroups

Iris OCTREE

gather time
light/medium task

heavy task

(a)

.1

1

10

medium/heavy P (40)
light P (70)

1000

1 N/4 N/2 N-1

time (ms)

number of non-cooperative workgroups

Hd520 MIS[eco]

gather time (W/O query)
gather time

light/medium task
heavy task

(b)

.1

1

10

medium/heavy P (40)
light P (70)

1000

1 N/4 N/2

time (ms)

number of non-cooperative workgroups

Hd5500 BFS[rmat22]

gather time (W/O query)
gather time

light/medium task
heavy task

(c)

Figure 5.6: Gather time and non-cooperative task time results for three cases:
(a) OCTREE on Iris; (b) MIS[eco] on Hd520; and (c) BFS[rmat22] on
Hd5500.

140

since the scheduler needs to collect only one workgroup. The more workgroups that the

non-cooperative task asks for, the faster the task computes: here the non-cooperative ker-

nel becomes fast enough with a quarter (resp. half) of available workgroups for light and

medium (resp. heavy) graphics workload. Inversely, the gather time increases since the

scheduler must collect an increasing number of workgroups and thus, must wait for the

workgroups executing the OCTREE application to encounter an offer kill.

The bottom two graphs (Figures 5.6b and 5.6c) show results for graph algorithms on

the other two GPUs, Hd520 and Hd5500 respectively. These applications use global

barriers, and results are shown using both the regular and query barrier designs described

in Section 5.5.2. The execution times for the non-cooperative task were averaged across all

runs, including with both types of barrier. The average gather time associated with each

type of barrier is shown separately. The graphs show a similar trend to the work stealing

graph of Figure 5.6a: as the number of workgroups requested by the non-cooperative

increases, the execution time of the non-cooperative tasks decrease and the gather time

increases.4

A difference between the two graphs for the barrier applications is that the gather time

is higher on the right graph (Figure 5.6c) than on left graph (Figure 5.6b). As discussed in

the previous chapter (Section 4.4.4), the rmat22 input is a high-degree graph, and thus

executes resizing barriers infrequently for BFS. The MIS application encounters resizing

barriers more frequently on the eco input. This is illustrated in Table 5.5, which shows

how many resizing barriers are executed and the execution time on Hd5500 for these two

benchmarks. The average frequency of resizing barrier calls can then be computed as the

benchmark execution time divided by the number of resizing barriers. The table shows that

MIS[eco] executes resizing barriers more than 10× more frequently than BFS[rmat22].

The scheduler thus has fewer opportunities to collect workgroups and gather time increases.

Nonetheless, on both global barrier examples, the scheduling responsiveness can benefit

from the query barrier: when used, this barrier lets the scheduler collect all needed work-

groups as soon as they hit a resizing barrier. As illustrated on both barrier graphs, the

gather time of the query barrier is almost stable with respect to the number of workgroups

that need to be collected.

Performance Figure 5.7a reports, for Iris, the overhead brought by the scheduling of

non-cooperative kernels over the cooperative kernel execution time. This is the slowdown

associated with running the cooperative kernel in the presence of multitasking, vs. running

4The right figure has only 3 points on the x-axis: recall that BFS experienced an undiagnosed error with
the final configurations, and thus there are no runs with “N-1” non-cooperative workgroups.

141

Table 5.5: The number of resizing barriers for the barrier applications of Figure 5.6b
and 5.6c, along with their execution time (on Hd5500) and average
frequency of resizing barrier calls.

App[input] resizing global barriers Execution time (ms) Avg. resizing frequency (ms)

BFS[rmat22] 30 311 10.37
MIS[eco] 3003 3263 1.09

 1

 1.1

 1.2

 1.3

 1.4

 1.5

1 N/4 N/2 N-1

ge
om

ea
n

slo
w

do
w

n

non-cooperative workgroups

heavy medium light

(a)

medium/heavy P (40)

light P (70)

 10

 100

 1000

1 N/4 N/2 N-1

average period (ms)

non-cooperative workgroups

heavy medium light

(b)

Figure 5.7: (a) slowdown of cooperative kernel when multitasking various
non-cooperative workloads, and (b) the period with which non-cooperative
kernels are able to execute.

the cooperative kernel in isolation (geometric mean over all applications and inputs). Fig-

ure 5.7b shows the period at which non-cooperative kernels can be scheduled (arithmetic

mean over all applications and inputs). The results for the other GPUs were similar. Re-

sults are partitioned for the three non-cooperative workloads: light, medium and heavy.

The two horizontal lines Figure 5.7b correspond to the period goals of the workloads: the

higher (resp. lower) line corresponds to a period of 70ms (resp. 40ms) for the light (resp.

medium and heavy) workload.

The data includes some outliers that occur with benchmarks in which the resizing barri-

ers are not called very frequently and the graphics task requires half or more workgroups.

For example, a medium graphics workload for BFS on the rmat22 input has over an 8×
overhead when asking for all-but-one of the workgroups. As Figure 5.7a shows, most of the

benchmarks were much better-behaved than this. The massive overhead of this outlier is

likely because resizing barriers were called infrequently enough that the cooperative kernel

142

Table 5.6: Application overhead of multitasking three graphics workloads using
kernel-level preemption and using cooperative kernels.

Graphics task Kernel-level Cooperative Resources

light 1.04 1.04 N/4
medium 1.08 1.08 N/4
heavy 1.33 1.39 N/2

was never able to fork workgroups and was thus resigned to executing the cooperative ker-

nel with only one workgroup. Remedies for situations like this might include introducing

semantically unnecessary resizing barriers to cooperative kernel in order to provide the

scheduler with more opportunities to fork workgroups.

As Figure 5.7a shows, co-scheduling non-cooperative kernels that request a single work-

group leads to almost no overhead, but as Figure 5.7b shows, the period is far too high

to meet the needs of any of the three non-cooperative workloads. For example, a heavy

workload averages a period of 939ms, while a period of 40ms is required for a smooth

graphics frame rate. As more workgroups are dedicated to non-cooperative kernels, they

execute quickly enough to be scheduled at the required period. For the light and medium

workloads, a quarter of the workgroups executing the non-cooperative kernel are able to

meet their goal period (70ms and 40ms resp.). However, a quarter of the workgroups are

not sufficient to meet the goal for the heavy workload (giving a mean period of 88ms and

requiring 40ms). If half of the workgroups are allocated to the non-cooperative kernel, the

heavy workload averages a period 10% over its goal (mean of 44ms). If all-but-one are

allocated, the heavy workload reaches its goal period.

As expected, allocating more non-cooperative workgroups increases the execution time

of the cooperative kernel. Still, heavy workloads meet their period by allocating all-but-

one non-cooperative workgroups, incurring a slowdown of less than 1.4× on average. Light

and medium workloads meet their period with only a negligible overhead of the cooperative

kernel (less than a 1.03× slowdown on average).

Overall, these experimental findings are encouraging, especially because they provide

a lower bound on potential performance of the cooperative kernel model. Implementing

the model natively, with device-specific runtime support, could only improve performance

and responsiveness compared with that of the megakernel-based prototype used in these

experiments.

143

5.7.3 Comparison with kernel-level preemption

Nvidia’s recent Pascal architecture provides hardware support for instruction-level pre-

emption [NVI16, SA16]. However, this preemption occurs at the kernel granularity, and

not at the finer granularity of workgroups, as described in this chapter. Intel GPUs do

not provide this feature, and the OpenCL prototype of cooperative kernels cannot run

on Nvidia GPUs, making a direct comparison impossible. Because empirical comparisons

are not possible, a theoretical analysis of the overheads associated with sharing the GPU

between graphics and compute tasks via kernel-level preemption is presented here.

Suppose a graphics workload is required to be scheduled with period P and duration D,

and that a compute kernel requires time C to execute without interruption. Assuming the

cost of preemption is negligible (e.g. Nvidia have reported preemption times of 0.1ms for

Pascal [SA16], because of special hardware support), then the overhead associated with

switching between compute and graphics every P time steps is P/(P −D).

This theoretical kernel-level preemption overhead model is compared with the experi-

mental cooperative kernel results of Figure 5.7 for each graphics workload. The reported

cooperative kernel overhead is using the geomean slowdown of the configuration that al-

lowed the deadline of the graphics task to be met. Based on the above assumptions,

the cooperative kernel approach provides similar overhead for low and medium graphics

workloads, however, has a higher overhead for the high workload.

The low performance of cooperative kernels for heavy workloads is because the graph-

ics task requires half of the workgroups, crippling the cooperative kernel enough that

request fork calls are not issued as frequently. As mentioned earlier, future work may

examine how to insert more resizing calls in these applications to address this. These

results suggest that a hybrid preemption scheme may work well. That is, the coopera-

tive approach works well for light and medium tasks; on the other hand, heavy graphics

tasks benefit from the coarser grained, kernel-level preemption strategy. However, the

preemption strategy requires appears to require specialised hardware.

144

5.8 Related Work

Much work has been done on accelerating irregular computations on GPUs, often relying

on the occupancy-bound execution model; references to such work are given in Section 4.7.

However, the occupancy-bound execution model is not guaranteed on current or future

GPU platforms. As the experiments of this chapter demonstrate, the cooperative kernels

model allows blocking algorithms to be upgraded to run in a manner that facilitates

responsive multitasking.

GPU multitasking and scheduling Hardware support for preemption has been pro-

posed for Nvidia GPUs, as well as SM-draining, whereby workgroups occupying a compute

unit are allowed to complete until the SM becomes free for other tasks [TGC+14]. SM

draining is limited the presence of blocking constructs, since it may not be possible to drain

a blocked workgroup. A follow-up work adds the notion of SM flushing, where a work-

group can be re-scheduled from scratch if it has not yet committed side-effects [PPM15].

Both approaches have been evaluated using simulators, over sets of regular GPU kernels.

Very recent Nvidia GPUs (i.e. the Pascal architecture) support preemption, though, as

discussed in Section 5.2 and Section 5.7.3, it is not clear whether they guarantee fairness

or allow tasks to share GPU resources at the workgroup level [NVI16].

A number of works have considered how best to schedule dynamic workloads on GPUs.

Among these, the Whippletree approach employs a persistent megakernel to schedule mul-

tiple, dynamic tasks in a manner that aims to best utilise GPU resources [SKB+14], and

the TimeGraph approach similarly aims to optimise scheduling of competing workloads,

in the context of OpenGL [KLRI11]. None of these approaches tackles the problem of

fair scheduling on GPUs, thus they do not aid in safe deployment of blocking irregular

algorithms.

As mentioned throughout this thesis, CUDA and OpenCL provide the facility for a

kernel to spawn further kernels, called nested parallelism in CUDA [Nvi18a, app. D] and

dynamic parallelism in OpenCL [Khr15, pp. 32–33]. This can be used to implement

a GPU-based scheduler, by having an initial scheduler kernel repeatedly spawn further

kernels as required, according to some scheduling policy [MO16]. However, kernels that

uses dynamic parallelism are still prone to unfair scheduling of workgroups, and thus does

not help in deploying traditional blocking algorithms on GPUs.

145

Cooperative multitasking Cooperative multitasking is used by some current operat-

ing systems, especially in the domain of real-time computing. For example, FreeRTOS can

be configured with either a preemptive or cooperative scheduling system [Ama17, p. 355].

RISC OS [RIS] currently only provides a cooperative scheduler. Additionally, cooperative

multitasking can be implemented in high-level languages for cases in which preemptive

multitasking is either too costly or not supported on legacy systems [Tar91].

In the context of GPUs, cooperative multitasking has been used to refer to the standard

programming model, where the onus is on the GPU kernel to complete execution within a

reasonable time budget [ACKS12, IOOH12]. This is in contrast to the cooperative kernel

model, which specifically aims to support the needs of long-running GPU tasks.

5.9 Summary

This chapter has presented cooperative kernels, a small set of GPU programming exten-

sions (summarised in Table 5.1) that allow long-running, blocking kernels to be fairly

scheduled and, at the same time, dynamically adjust resource usage to account for exter-

nal GPU requirements, e.g. multitasking and energy throttling. In particular, cooperative

kernels allow global barrier synchronisation, which was shown to enable significant perfor-

mance improvements for irregular applications in Chapter 4. In fact, Section 4.5.6 shows

that the situations where the global barrier is most beneficial in terms of performance

are exactly the situations where the resizing global barrier is able to reliably meet mul-

titasking deadlines. These examples have many global barriers and short global barrier

intervals, meaning that if the global barriers were changed to resizing global barriers, then

the scheduler will frequently have the opportunity to manage resources.

Experimental results, using a megakernel-based prototype, show that the model is a

good fit for current GPU-accelerated irregular algorithms. Light and medium graphics

tasks are able to meet their deadlines with cooperative kernels with no more overhead

than a kernel-level preemption approach, which likely requires special hardware support.

The performance that could be gained through a native implementation with driver sup-

port would likely be even better. Additionally, programming with the cooperative kernel

constructs is straightforward for existing blocking kernels. The placement of cooperative

constructs could even be automated, e.g. they could be emitted by the optimising compiler

of Chapter 4.

146

Another benefit of cooperative kernels is that they are complementary to preemption

strategies. Indeed, if a GPU model had a fair scheduler enabled by preemption, the

implementation could simply ignore the cooperative constructs, i.e. choosing never to

kill or fork workgroups, or it might use cooperative constructs as hints to where more

efficient preemption could occur. Such a hybrid model could overcome the shortcomings

of cooperative kernels by guaranteeing deadlines, and also benefit from the strengths of

cooperative kernels by efficiently preempting at cooperative hooks when possible.

147

6 A Formalisation of GPU Fairness

Properties

6.1 Personal context

During the experimental campaigns of the previous chapters, several experiences with

inter-workgroup synchronisation stood out to me. When executing a global barrier, the

occupancy needed to be considered to avoid starvation. However, when executing a mutex,

the occupancy did not need to be considered. Furthermore, a GPU scan application from

the CUB library [Nvi] had a “waterfall” synchronisation pattern, in which workgroups

passed values only to their immediate neighbours; we could not show starvation-freedom

for this application using the occupancy-bound execution model. Clearly these idioms

had different blocking properties. Looking through the literature, it seemed like there

were many classes of non-blocking programs (e.g. non-locking, wait-free, obstruction free),

but blocking programs always seemed to be lumped together without distinction.

Given this, I wanted to explore finer-grained classes of blocking programs and the

corresponding fairness properties that schedulers need to provide in order to guarantee

starvation-freedom. I was unaware of any previous attempt to formalise this area, and

this was a glaring blindspot in the reasoning behind the applications we were developing.

I was inspired by the formalisation efforts of weak memory models in [AMT14], where

a single formal framework could be tweaked to describe the behaviours of different sys-

tems, and I hoped to lay some groundwork on something similar for fairness. This chapter

presents an effort to bring some formal clarity to the fairness properties of various GPU

schedulers.

6.2 Motivation

As discussed throughout this thesis, blocking synchronisation idioms, e.g. mutexes and

barriers, play an important role in concurrent programming. Schedulers on traditional

multi-core CPU systems typically provide fairness guarantees that are strong enough that

148

blocking synchronisation works as expected. However, systems with semi-fair schedulers,

e.g. GPUs, are becoming increasingly common. Such schedulers provide varying degrees

of fairness, guaranteeing enough to allow some, but not all, blocking idioms. While a

number of applications that use blocking idioms do run on today’s GPUs (e.g. applications

of Section 4 using the oitergb optimisation), reasoning about liveness properties of such

applications is difficult as documentation and examples are scarce and scattered.

The aim of this chapter is to clarify fairness properties of semi-fair schedulers. To do

this, a general temporal logic formula is defined, based on weak fairness and parameterised

by a thread fairness criterion: a predicate that enables fairness per-thread at certain points

of an execution. To investigate the practical implications of the formalisation, the fairness

properties for three GPU schedulers are formally defined: OpenCL, HSA, and occupancy-

bound execution. Then, existing GPU applications are examined and it is shown that

none of these schedulers are strong enough to provide the fairness properties required by

these applications.

Because these applications execute as expected on current GPUs, it hence appears that

existing GPU scheduler descriptions do not entirely capture the fairness properties that are

provided on current GPUs. Thus, fairness guarantees for two new schedulers are presented

that aim to support existing GPU applications. The behaviour of common blocking idioms

under each scheduler is examined and one of the new schedulers is shown to allow a more

natural implementation of the discovery protocol of Chapter 3.

6.2.1 Schedulers

The scheduler of a concurrent system is responsible for the placement of virtual threads

onto hardware resources. There are often insufficient resources for all threads to execute in

parallel, and it is the job of the scheduler to dictate resource sharing, potentially influencing

the temporal semantics of concurrent programs. For example, consider a two threaded

program where thread 0 waits for thread 1 to set a flag. If the scheduler never allows

thread 1 to execute then the program will hang due to starvation. Thus, to reason about

liveness properties, developers must understand the fairness guarantees provided by the

scheduler.

Current GPU programming models offer a compelling case study for scheduler seman-

tics for three reasons: (1) some blocking idioms are known to hang due to starvation on

current GPUs, e.g. as shown in Chapter 3, a global barrier will hang if executed with

more workgroups than the occupancy bound; (2) other blocking idioms, e.g. mutexes,

run without starvation on current GPUs; yet (3) documentation for some GPU program-

149

ming models explicitly states that no guarantees are provided, while others state only

minimal guarantees that are insufficient to ensure starvation-freedom even for mutexes.

Because GPU schedulers are largely embedded in closed-source proprietary frameworks

(e.g. drivers), this chapter does not consider concrete scheduling logic, but instead aims

to derive formal fairness guarantees from prose documentation and empirical behaviours.

GPU threads in the same workgroup can synchronise efficiently via the OpenCL

barrier instruction. Yet, despite practical use cases, there are no such intrinsics for

inter-workgroup synchronisation. Instead, inter-workgroup synchronisation is achieved

by building constructs, e.g. mutexes, using finer-grained primitives, such as atomic read-

modify-write instructions (RMWs). However, reasoning about such constructs is difficult

as inter-workgroup thread interactions are relatively unstudied, especially in relation to

fairness. Thus, this chapter considers inter-workgroup interactions exclusively and the

threads considered will be assumed to be in disjoint workgroups. Under this constraint,

it is cumbersome to use the word workgroup and distracts from the theoretical aim this

work. Because a workgroup can be thought of as being a “composite thread”, henceforth

the word thread is used to mean workgroup in this chapter.

The unfair OpenCL scheduler and non-blocking programs As noted in Chap-

ter 3, OpenCL disallows all blocking synchronisation due to scheduling concerns, stat-

ing [Khr15, p. 31]: “A conforming implementation may choose to serialize the [threads]

so a correct algorithm cannot assume that [threads] will execute in parallel. There is no

safe and portable way to synchronize across the independent execution of [threads]”

Such weak guarantees are acceptable for many popular GPU programs, such as matrix

multiplication, as they are non-blocking. That is, these programs can terminate without

starvation under an unfair scheduler, i.e. a scheduler that provides no fairness properties.

Blocking synchronisation and fair schedulers On the other hand, there are many

useful blocking synchronisation idioms, which require fairness properties from the sched-

uler to ensure starvation-freedom. Three common examples of blocking idioms considered

throughout this work, barrier, mutex and producer-consumer (PC), are described in Ta-

ble 6.1. Intuitively, a fair scheduler provides the guarantee that any thread that is able to

execute will eventually execute. Fair schedulers are able to guarantee starvation-freedom

for the idioms of Table 6.1.

150

Table 6.1: Blocking synchronisation idioms considered in this work.

Idiom Description

barrier

Aligns the execution of all participating threads: a thread waits
at the barrier until all threads have reached the barrier.
Blocking, as a thread waiting at the barrier relies on the other
threads to make enough progress to also reach the barrier.

mutex

Provides mutual exclusion for a critical section. A thread
acquires the mutex before executing the critical section, ensuring
exclusive access. Upon leaving, the mutex is released. Blocking,
as a thread waiting to acquire relies on the thread in the critical
section to eventually release the mutex.

producer-consumer
(PC)

Provides a handshake between threads. A producer thread
prepares some data and then sets a flag. A consumer thread
waits until the flag value is observed and then reads the data.
Blocking, as the consumer thread relies on the producer thread
to eventually set the flag.

Table 6.2: Blocking synchronisation idioms guaranteed starvation-freedom under
various schedulers.

Fair HSA OBE Unfair (e.g. OpenCL)

barrier yes no occupancy-limited no
mutex yes no yes no
PC yes one-way occupancy-limited no

6.2.2 Semi-fair schedulers

Two schedulers have been described so far: fair and unfair, under which starvation-freedom

for blocking idioms is either always or never guaranteed, respectively. However, some

GPU programming models have semi-fair schedulers, under which starvation-freedom is

guaranteed for only some blocking idioms. Two such schedulers are now described and an

informal analysis of the idioms of Table 6.1 under these schedulers is given (summarised

in Table 6.2). If starvation-freedom is guaranteed for all threads executing idiom i under

scheduler s then it is said that i is allowed under s.

Heterogeneous system architecture (HSA) Similar to OpenCL, Heterogeneous Sys-

tem Architecture (HSA) is a parallel programming model designed to efficiently target

GPUs [HSA17]. Unlike OpenCL however, the HSA scheduler conditionally allows block-

ing between threads based on thread ids. Thread B can block thread A, if: “[thread]

A comes after B in [thread] flattened id order” [HSA17, p. 46]. Under this scheduler: a

151

barrier is not allowed, as all threads wait on all other threads regardless of id; a mutex

is not allowed, as the ids of threads are not considered when acquiring or releasing the

mutex; PC is conditionally allowed if the producer has a lower id than the consumer.

Occupancy bound execution (OBE) As presented in Chapter 3, occupancy-bound

execution (OBE) is a pragmatic GPU execution model that aims to capture the guarantees

that current GPUs have been shown experimentally to provide. While OBE is not officially

supported, a substantial number of GPU programs (including applications of Chapter 4

using the oitergb optimisation and applications of Chapter 3) depend on the guarantees

provided by this execution model. Recall that the OBE scheduler guarantees fairness

among the threads that are currently occupant (i.e., are actively executing) on the GPU

hardware resources. The fairness properties, given Section 3.3, are: “A [thread that has

executed at least one instruction] is guaranteed to eventually be scheduled for further

execution on the GPU.” Under this scheduler: a barrier is not allowed, as all threads wait

on all other threads regardless of whether they have been scheduled previously; a mutex

is allowed, as a thread that has previously acquired a mutex will be fairly scheduled such

that it eventually releases the mutex; PC is not allowed, as there is no guarantee that the

producer will be scheduled fairly with respect to the consumer.

While general barrier and PC idioms are not allowed under OBE, Chapter 3 shows

that constrained variants of these idioms are allowed by using the occupancy discovery

protocol. Recall that the protocol, as described in Section 3.4, works by identifying a

subset of threads that have been observed to take an execution step, i.e. it discovers a set

of co-occupant threads. Barrier and PC idioms are then able to synchronise threads that

have been discovered; thus OBE allows occupancy-limited variants of these idioms.

It is worth noticing that the two variants of PC shown in Table 6.2 (occupancy-limited

and one-way) are incomparable. That is, one-way is not occupancy-limited, as the OBE

scheduler makes no guarantees about threads with lower ids being scheduled before threads

with higher ids. Similarly, occupancy-limited is not one-way, as the OBE scheduler allows

bi-directional PC synchronisation if both threads have been observed to be co-occupant.

152

I Remark (CUDA). Like OpenCL, CUDA gives no scheduling guarantees, stat-

ing [Nvi18a, p. 11]: “[Threads] are required to execute independently: It must be

possible to execute them in any order, in parallel or in series.” Still, some CUDA pro-

grams rely on OBE or HSA guarantees (see Section 4). The recent version 9 of CUDA

introduces cooperative groups [Nvi18a, app. C], which provide primitive barriers be-

tween programmer specified threads. Because only primitive barriers are provided,

cooperative groups are not considered in this chapter. Indeed, the aim of this work

is to reason about fine-grained fairness guarantees, as required by general blocking

synchronisation.

6.2.3 Chapter contributions

The results of Table 6.2 raise the following points, which this chapter aims to address:

1. The temporal correctness of common blocking idioms varies under different GPU

schedulers; however, no formal scheduler descriptions are known that are able to

validate these observations.

2. Two GPU models, HSA and OBE, have schedulers that are incomparable. However,

for each scheduler, there exist programs that rely on its scheduling guarantees. Thus,

neither of these schedulers captures all of the guarantees observed on today’s GPUs.

To address (1), a formula is provided, based on weak fairness, for describing the fairness

guarantees of semi-fair schedulers. This formula is parameterised by a thread fairness

criterion (TFC), a predicate over a thread and the program state, that can be tuned to

provide a desired degree of fairness. This formula is evaluated by defining thread fairness

criteria for the two existing semi-fair schedulers: HSA and OBE (Section 6.5).

To address (2), the claim that existing programs rely on HSA and OBE is substantiated

by examining existing blocking GPU programs that run on current GPUs. It is shown

that there exist programs that rely on HSA guarantees, as well as programs that rely on

OBE guarantees (Section 6.6). That is, neither the HSA nor the OBE schedulers entirely

capture guarantees on which existing GPUs applications rely.

To remedy this, the fairness properties of two new schedulers are presented, defined

by their respective thread fairness criterion. The two new schedulers are: HSA+OBE, a

simple combination of HSA and OBE, and LOBE (linear OBE), an intuitive strengthening

of OBE based on contiguous thread ids. Both provide the guarantees required by current

153

W. Fairness

True

general barrier

(Example 6.6)

LOBE

∃t′ ∈ T : ex(t′)∧t′ ≥ t

LOBE disc. barrier

(Example 6.6)

HSA+OBE

TFCHSA ∨TFCOBE

1-way PC+mutex

(Section 6.7)

HSA

¬∃t′ ∈ T : (t′ < t)∧ en(t′)
1-way PC (Example 6.4)

OBE

ex(t)

mutex and disc. barrier

(Examples 6.3 and 6.6)

Unfair

False

CUDA reduction

(Section 6.6)

stronger weaker
fairness guarantees

Figure 6.1: The semi-fair schedulers defined in this work from strongest to weakest.

programs (Section 6.7), however it is argued that LOBE corresponds to a more intuitive

scheduler implementation. Next, an optimisation to the occupancy discovery protocol of

Chapter 3 is shown, which exploits exclusive LOBE guarantees (Section 6.7.1).

The schedulers and their properties discussed in this chapter are summarised in Fig-

ure 6.1. Each scheduler is given a box in the figure. The first line in the box shows the

scheduler’s TFC (over a thread t), followed by the idiom(s) allowed under the scheduler

and where in the chapter the idiom is analysed. Because the schedulers are ordered by

strength, any idiom to the right of the schduler is allowed under the scheduler and any

idiom to the left is disallowed. HSA and OBE are aligned vertically as they are incompa-

rable.

To summarise, the chapter contributions are as follows:

• A formalisation of semi-fair schedulers using a temporal logic formula and the use

this definition to describe the HSA and OBE GPU schedulers (Section 6.5).

• An analysis of blocking GPU applications showing that no existing GPU scheduler

definition is strong enough to describe the guarantees required by all such programs

(Section 6.6).

• Two new semi-fair schedulers that meet the requirements of current blocking GPU

programs are presented: HSA+OBE and LOBE (Section 6.7). The guarantees of

the LOBE scheduler are shown to provide a more natural implementation of the

discovery protocol (Section 6.7.1).

Related work on programming models and GPU schedulers was discussed in Sec-

tion 6.2.1, while applications that depend on specific schedulers are surveyed in Section 6.6.

Related publications The material presented in this chapter is based on material

originally published in the 29th International Conference on Concurrency Theory (CON-

CUR’18) [SED18].

154

6.3 GPU program assumptions

The formal semantics in this chapter assume these program constraints, which are common

to GPU applications:

1. Termination: programs are expected to terminate under a fair scheduler. GPU

programs generally terminate, and in fact, they get killed by the OS if they execute

for too long [SD16b].

2. Static thread count : while dynamic thread creation is recently available, e.g. through

OpenCL nested parallelism [Khr15, pp. 32–33], this work addresses only static

parallelism. The survey of programs in Section 6.6 did not reveal any programs that

used nested parallelism.

3. Deterministic threads: the scheduler is the only source of nondeterminism; the com-

putation performed by a thread depends only on the program input and the order

in which threads interleave. This is the case for all GPU programs examined.

4. Enabled threads: all threads are enabled, i.e. able to be executed, at the beginning

of the program and do not cease to be enabled until they terminate. While some

systems contain scheduler-aware intrinsics, e.g. condition variables [Bar], GPU pro-

gramming models do not. As a result, the idioms of Table 6.1 are implemented

using atomic operations and busy-waiting, which do not change whether a thread is

enabled or not.

5. Sequential consistency : while GPUs have relaxed memory models (e.g. see [SD16a]),

this work aims to understand scheduling under the interleaving model as a first step.

6.4 Formal program reasoning

A sequential program is a sequence of instructions and its behaviour can be reasoned

about by step-wise execution of instructions. This work does not provide instruction-level

semantics, but examples can be found in the literature (e.g. for GPUs, see [BCD+15]). A

concurrent program is the parallel composition of n sequential programs, for some n > 1.

The set T = {0, 1, . . . , n − 1} provides a unique id for each thread, often called the tid .

The behaviour of a concurrent program is defined by all possible interleavings of atomic

(i.e. indivisible) instructions executed by the threads. Let A be the set of available atomic

instructions.

155

1 void thread0(mutex m) {
2 // acquire
3 while(!CAS(m,0,1));
4 // release
5 store(m,0);
6 }
7 void thread1(mutex m) {
8 // acquire
9 while(!CAS(m,0,1));

10 // release
11 store(m,0);
12 }

(a)

0

1

2

3

4

5

6

7

0 CAS: T

1 CAS: T

0 store

1 CAS: F

0 CAS: F

1 CAS: T

1 store

1 store 0 CAS: T

0 store

(b)

Figure 6.2: Two threaded mutex idiom (a) program code and (b) corresponding LTS.

For example, Figure 6.2a shows two sequential programs, thread0 (with tid of 0) and

thread1 (with tid of 1), which both have access to a shared mutex object. The set

A of atomic instructions is {CAS(m,old,new), store(m,v)}, whose semantics are as

follows:

• CAS(m,old,new): atomically checks whether the value of m is equal to old. If so,

updates the value to new and returns true. Otherwise returns false.

• store(m,v): atomically stores the value of v to m.

Using these two instructions, Figure 6.2a implements a simple mutex idiom, in which each

thread loops trying to acquire a mutex (via the CAS instruction), and then immediately

releases the mutex (via the store instruction). While other mutex implementations

exist, e.g. see [HS08, ch. 7.2], the blocking behaviour shown in Figure 6.2a is idiomatic to

mutexes.

Labelled transition systems To reason about concurrent programs, a labelled transi-

tion system (LTS) is used. Formally, an LTS L is a 4-tuple (S, I, L,→) where

• S is a finite set of states, with I ⊆ S the set of initial states. A state contains values

for all program variables and a program counter for each thread.

• L ⊆ T × A is a set of labels. A label is a pair (t, a) consisting of a thread id t ∈ T
and an atomic instruction a ∈ A.

156

• → ⊆ S × L× S is a transition relation. For convenience, the relation (p, (t, a), q) ∈
→ is sometimes abbreviated to p

t,a−→ q, or even p
t−→ q if a is not relevant to

the discussion. Leaving out the a element of the tuple is not ambiguous as only

per-thread deterministic programs are considered. Dot notation is used to refer to

members of the tuple; e.g., α.t is written to refer to the thread id component of α

for an α ∈ →.

Given a concurrent program, the LTS can be constructed iteratively. A start state s is

created with program initial values. For each thread t ∈ T , the next instruction a ∈ A
is executed to create state s′ to explore. L is updated to include (t, a) and (s, (t, a), s′) is

added to →. This process iterates until there are no more states to explore. For example,

the LTS for the program of Figure 6.2a is shown in Figure 6.2b. For ease of presentation,

the state program values are omitted; labels show the thread id followed by the atomic

action. If the action has a return value (e.g. CAS) that value is shown following the

action. In the example figure, T and F indicate return values of true and false, respectively.

For a thread id t ∈ T and state p ∈ S, t is said to be enabled in p if there exists a state

q ∈ S such that p
t−→ q. This is captured by the predicate: en(p, t). Next, p is a terminal

state if no thread is enabled in p; that is, ¬en(p, t) holds for all t ∈ T . This is captured by

the predicate: terminal(p). Intuitively, en(p, t) states that it is possible for a thread t to

take a step at state p and terminal(p) states that all threads have completed execution at

state p. The program constraints of Section 6.3 ensure that all threads are enabled until

their termination.

Program executions and temporal logic The executions E of a concurrent program

are all possible paths through its LTS. Formally, a path z ∈ E is a (possibly infinite)

sequence of transitions: α0α1 . . ., with each αi ∈ →, where αi.p and αi.q refer to the

p and q elements of the relation in →. An execution path is constrained such that:

the path starts in an initial state, i.e. α0.p ∈ I; adjacent transitions are connected, i.e.

αi.q = αi+1.p; and if the path is finite, with n transitions, then it leads to a terminal state,

i.e. terminal(αn−1.q).

I Remark (Infinite paths). Because the programs in this work are assumed to ter-

minate under fair scheduling (Section 6.3), infinite paths are discarded by the fair

scheduler, but not necessarily semi-fair schedulers. Indeed, these infinite paths allow

semi-fair schedulers to be distinguished.

157

Given a path z and a transition αi in z, pre(αi, z) is used to denote the transitions up

to, and including, i of z, that is, α0α1 . . . αi. Similarly, post(αi, z) is used to denote the

(potentially infinite) transitions of z from αi, that is, αiαi+1 For convenience, en(α, t)

is used to denote en(α.p, t) and terminal(α) is used to denote terminal(α.q). Finally, a

new predicate is defined: ex (α, t′), which holds if and only if t′ = α.t. Intuitively, ex (α, t′)

indicates that thread t′ executes the transition α.

The notion of executions E over an LTS allows reasoning about liveness properties of

programs. However, the full LTS may yield paths that realistic schedulers would exclude,

illustrated in Example 6.1. Thus, fairness properties, provided by the scheduler, are

modelled as a filter over the paths in E.

I Example 6.1 (Mutex without fairness). The two-threaded mutex LTS given

in Figure 6.2b shows that it is possible for a thread to loop indefinitely waiting to

acquire the mutex if the other thread is in the critical section, as seen in states 1 or 2.

Developers with experience writing concurrent programs for traditional CPUs know

that on most systems, these non-terminating paths do not occur in practice!

Fairness filters and liveness properties can be expressed using temporal logic. For a path

z and a transition α in z, temporal logic allows reasoning over post(α, z) and pre(α, z), i.e.

reasoning about future and past behaviours. Following the classic definitions of fairness,

linear time temporal logic (LTL), is used in this work (see, e.g. [BK08, ch. 5] for an

in-depth treatment of LTL). For ease of presentation, a less common operator, , from

past-time temporal logic (which has the same expressiveness as LTL [LPZ85]) is used.

Temporal operators are evaluated with respect to z (a path) and α (a transition) in z.

They take a formula φ, which is either another temporal formula or a transition predicate,

ranging over α.p, α.t, or α.q (e.g. terminal). The three temporal operators used in this

work are:

• The global operator �, which states that φ must hold for all α′ ∈ post(α, z).

• The future operator ♦, which states that φ must hold for at least one α′ ∈ post(α, z).

• The past operator , which states that φ must hold for at least at one α′ ∈ pre(α, z).

To show that a liveness property f holds for a program with executions E, it is sufficient

to show that f holds for all pairs (z, α) such that z ∈ E and α is the first transition in

z. For example, one important liveness property is eventual termination: ♦terminal .

158

Applying this formula to the LTS of Figure 6.2b, a counter-example (i.e. a path that

does not terminate) is easily found: 0
1−→ 2, (2

0−→ 2)ω. In this path, thread 0 loops

indefinitely trying to acquire the mutex. Infinite paths are expressed using ω-regular

expressions [BK08, ch. 4.3].

However, many systems are able to reliably execute programs that use mutexes in a

manner similar to Figure 6.2a. Such systems have fair schedulers, which do not allow the

infinite looping paths described above. A fairness guarantee provided by a scheduler is

expressed as a temporal predicate on paths and is used to filter out problematic paths

before a liveness property, e.g. eventual termination, is considered.

In this work, weak fairness [BK08, p. 258] is considered, which is typically expressed as:

∀t ∈ T : ♦�en(t) =⇒ �♦ex (t) (6.1)

Intuitively, weak fairness states that if a thread is able to execute, then it will eventually

execute. There is also a notion of strong fairness that is useful in more complicated interac-

tions, e.g. if per-thread actions are not deterministic. However, the program assumptions

in this work do not allow programs containing such interactions.

I Remark (Weak fairness and program assumptions). The formula for weak fairness

given in Equation 6.1 is the definition as traditionally given in the literature. However,

the program assumptions given in Section 6.3 make the initial ♦ operator unnecessary.

That is, the left-hand side of the implication in the original definition is satisfied when

thread t is eventually enabled and globally remains enabled. The program assumptions

state that all threads are initially enabled and remain enabled until termination. Thus,

the ♦ predicate is trivially satisfied by every thread at the beginning of the execution.

As a result, a simpler and equivalent form of weak fairness could be considered in this

work:

∀t ∈ T : �en(t) =⇒ �♦ex (t) (6.2)

Because the two definitions are equivalent under the program assumptions, this

chapter will continue to reference the traditional definition due to its prevalence in the

literature.

159

I Example 6.2 (Mutex with weak fairness). Having defined fairness, proving

termination for the LTS of Figure 6.2b can now be returned to. If the scheduler

provides weak fairness, then any paths that do not satisfy the weak fairness definition

can be discarded. The two problematic paths are: 0
1−→ 2, (2

0−→ 2)ω and 0
0−→ 1, (1

1−→
1)ω. Neither path satisfies weak fairness: in both cases the thread that can break the

cycle is always enabled, yet it is not eventually executed once the infinite cycle begins.

Thus, if executed on system which provides weak fairness, the program of Figure 6.2a

is guaranteed to eventually terminate.

6.5 Formalising semi-fairness

The formalism for reasoning about fairness properties for semi-fair schedulers is now pre-

sented. Semi-fairness is parameterised by a per-thread predicate called the thread fairness

criterion, or TFC. Intuitively, the TFC states a condition which, if satisfied by a thread

t, guarantees fair execution for t.

Formally an execution is semi-fair with respect to a TFC if the following holds:

∀t ∈ T : ♦�(en(t) ∧ TFC (t)) =⇒ �♦ex (t) (6.3)

The formula is similar to weak fairness (Equation 6.1), but in order for a thread t to be

guaranteed eventual execution, not only must t be enabled, but the TFC for t must also

hold. Semi-fairness for different schedulers, e.g. HSA and OBE, can be instantiated by

using different TFCs, which in turn will yield different liveness properties for programs

under these schedulers, e.g. as shown in Table 6.2.

The weaker the TFC is, the stronger the fairness condition is. Semi-fairness with the

weakest TFC, i.e. true, yields classic weak fairness. Conversely, semi-fairness with the

strongest TFC, i.e. false, yields no fairness.

Formalising a specific notion of semi-fairness now simply requires a TFC. This is illus-

trated by defining TFCs to describe the semi-fair guarantees provided by the OBE and

HSA GPU schedulers, introduced informally in Section 6.2.1.

Formalising OBE semi-fairness The prose definition for the OBE scheduler fits this

framework nicely, as it describes the per-thread condition for fair scheduling: once a thread

has been scheduled (i.e. executed an instruction), it will continue to be fairly scheduled.

This is straightforward to encode in a TFC using the temporal logic operator (see

160

Section 6.4), which holds for a given predicate if that predicate has held at least once in

the past. Thus the TFC for the OBE scheduler can be stated formally as follows:

TFCOBE (t) = ex (t) (6.4)

Formalising HSA semi-fairness A TFC for the HSA scheduler is less straightforward

because the prose documentation is given in terms of relative allowed blocking behaviours,

rather than in terms of thread-level fairness. Recall the definition from Section 6.2.1:

thread B can block thread A if: “[thread] A comes after B in [thread] flattened id or-

der” [HSA17, p. 46]. Searching the documentation further, another snippet phrased closer

to a TFC is found, stating [HSA17, p. 28]: “[Thread] i + j might start after [thread] i

finishes, so it is not valid for a [thread] to wait on an instruction performed by a later

[thread].” It is assumed here that j refers to any non-zero positive integer. Because these

prose documentation snippets do not discuss fairness explicitly, it is difficult to directly

extract a TFC. Thus, a best-effort attempt is made following this reasoning: (1) if thread

i is fairly scheduled, no thread with id greater than i is guaranteed to be fairly scheduled;

and (2) threads that are not enabled (i.e. they have terminated) have no need to be fairly

scheduled. Using these two points, a TFC can be derived for HSA stating: a thread is

guaranteed to be fairly scheduled if there does not exist another thread that has a lower

id and is enabled. Formally:

TFCHSA(t) = ¬∃t′ ∈ T : (t′ < t) ∧ en(t′) (6.5)

Although this TFC is somewhat removed from the prose snippets in the HSA docu-

mentation, this formal definition has value in enabling precise discussions about fairness.

For example, confidence in this definition can be provided by illustrating that the idioms

informally analysed in Section 6.2.1 behave as expected; see Example 6.3, 6.4 and 6.6.

161

I Example 6.3 (Mutex with semi-fairness). Here, the mutex LTS of Figure 6.2b is

analysed under OBE and HSA semi-fairness guarantees. Recall the two problematic

paths (causing starvation) are: 0
0−→ 1, (1

1−→ 1)ω. and 0
1−→ 2, (2

0−→ 2)ω

• OBE: In both problematic paths, one thread t acquires the mutex, and the

other thread t′ spins indefinitely. However, thread t has executed an instruction

(acquiring the mutex) and is thus guaranteed eventual execution under OBE;

the problematic paths violate this guarantee as thread t never executes after it

acquires. Therefore both paths are discarded, guaranteeing starvation-freedom

for mutexes under OBE.

• HSA: The second problematic path: 0
1−→ 2, (2

0−→ 2)ω, cannot be discarded as

thread 0 waits for thread 1 to release. Thread 1 does not have the lowest id of

the enabled threads, thus there is no guarantee of eventual execution. Therefore

starvation-freedom for mutexes cannot be guaranteed under HSA.

1 void thread0(int x0, int x1) {
2 // produce to tid 1
3 store(x0,1);
4 // consume from tid 1
5 |while(load(x1) != 1);|
6 }
7 void thread1(int x0, int x1) {
8 // produce to tid 0
9 |store(x1,1);|

10 // consume from tid 0
11 while(load(x0) != 1);
12 }

(a)

0

1

2

3

4

5

6

0 store

1 store

1 store

0 load: 0

0 store

1 load: 0

0 load: 1

1 load: 1

1 load: 1

0 load: 1

(b)

Figure 6.3: Two threaded PC idiom (a) program code and (b) corresponding LTS.
Omitting (a) lines in gray and (b) states and transitions in gray and dashed
lines yields the one-way variant of this idiom.

162

I Example 6.4 (PC with semi-fairness). Figure 6.3 illustrates a two-threaded

producer-consumer (PC) program. A new atomic instruction, load, is used, which

simply reads a value from memory (the return value is given on the LTS edges). Thread

0 produces a value via x0 and then spins, waiting to consume a value via x1. Thread

1 is similar, but with the variables swapped. A subset of this program, omitting lines

4, 5, 8, and 9, shows the one-way PC idiom, where threads only consume from threads

with lower ids, i.e., only thread 1 consumes from thread 0. The LTS for the one-way

variant omits states 0, 1, 5, and 6 and the start state changes to state 2.

There are two problematic paths for the general test, in which one of the threads

spins indefinitely waiting for the other thread to produce a value: 0
0−→ 1, (1

0−→ 1)ω, and

0
1−→ 2, (2

1−→ 2)ω. For the one-way variant, there is one problematic path: (2
1−→ 2)ω.

This program is now analysed under OBE and HSA semi-fairness.

• OBE: Consider the problematic path 0
1−→ 2, (2

1−→ 2)ω. Because thread 0 has

not executed an instruction, OBE does not guarantee eventual execution for

thread 0 and thus this path cannot be discarded. Similar reasoning shows that

the problematic path for the one-way variant cannot be discarded either. Thus,

neither general nor one-way producer consumer idioms are allowed under OBE.

• HSA: Consider the problematic path 0
0−→ 1, (1

0−→ 1)ω. Because thread 1 does

not have the lowest id of the enabled threads, HSA does not guarantee eventual

execution for thread 1 and this path cannot be discarded. However, consider

the problematic path for the one-way variant: (2
1−→ 2)ω. Because thread 0 has

the lowest id of the enabled threads, HSA guarantees thread 0 will eventually

execute, thus causing this path to be invalid. Therefore, general PC is not

allowed under HSA, but one-way PC, following increasing order of thread ids, is

allowed.

163

6.6 Inter-workgroup synchronisation in the wild

The scheduling guarantees assumed by existing GPU applications are now examined. This

provides a basis for understanding (1) what scheduling guarantees are actually provided

by existing GPUs, as these applications run without issues on current devices, and (2) the

utility of schedulers, i.e. whether their fairness guarantees are exploited by current appli-

cations.

The exploration of GPU applications that use inter-workgroup synchronisation was per-

formed on a best-effort basis by searching through popular works in this domain. Candi-

date programs were manually examined, searching for the idioms in Table 6.1, and relating

them to the corresponding scheduler under which they are allowed.

OBE programs The most prevalent examples of applications that require OBE guar-

antees use the occupancy-limited global barrier. Such applications were studied in detail

in Chapter 4. Earlier examples, such as the Xaio and Feng global barrier [XF10], which

Chapter 3 references heavily, use a priori occupancy knowledge for scheduling guarantees.

The Xaio and Feng work has been cited many times, mostly by works describing appli-

cations that are accelerated using the global barrier. Also, as mentioned throughout this

thesis, the persistent thread model [GSO12] describes other use cases of OBE guarantees,

including work stealing. A concrete work stealing application was originally presented

in [CT08] and used as an example in Chapter 5. Thus, the OBE scheduler guarantees

appear to be well-tested and useful on current GPUs.

HSA programs Only four applications that use the one-way PC idiom were found:

two scan implementations, a sparse triangular solve (SpTRSV) application, and a sparse

matrix vector multiplication (SpMV) application. While there are few applications in this

category, it is argued that they are important, as they appear in vendor-endorsed libraries.

The two scan applications, one found in the popular Nvidia CUB GPU library [Nvi] and

the second presented in [YLZ13], use a straightforward one-way PC idiom. Both scans

work by computing workgroup-local scans on independent chunks of a large array. Threads

compute chunks according to their thread id, e.g. thread 0 processes the first chunk. A

thread t then passes its local sum to its immediate neighbour, thread t+1, who spins while

waiting for this value. The neighbour factors in this sum and then passes an updated value

to its neighbour, and so forth. A 2014 study on the performance of different GPU scan

implementations found the CUB implementation to be the most efficient [Mer15].

164

The SpMV application, presented in [DG15], has several workgroups cooperate to calcu-

late the result for a single row. Before any cooperation, the result must first be initialised,

which is performed by the workgroup with the lowest id out of the cooperating workgroups.

The other workgroups spin, waiting for the initialisation. This algorithm is implemented

in the clSPARSE library [clS], a joint project between AMD and Vratis.

The SpTRSV application, presented in [LLH+16], allows multiple producers to accumu-

late data to send to a consumer. However, in the triangular solver system, all producers

will have lower ids than the relative consumers. Thus the PC idiom remains one-way.

OpenCL programs Applications that contain non-trivial inter-workgroup synchroni-

sation and are non-blocking were also searched for. These applications would be guar-

anteed starvation-freedom under any scheduler, including the unfair OpenCL scheduler.

The criteria for non-trivial synchronisation used is: inter-workgroup interactions that

cannot be achieved by a single atomic read-modify-write (RMW) instruction. While ex-

amples of non-blocking data-structures were found (e.g. in the work-stealing applications

of [Hwu11, ch. 35]), the top level loop was blocking as threads without work waited on

other threads to complete work. Interestingly, we found only one application that appeared

to be globally non-blocking: a reduction application in the CUDA SDK [Nvi18b], called

threadFenceReduction, in which the final workgroup to finish local computations also

does a final reduction over all other local computations.

6.7 Unified GPU semi-fairness

The exploration of applications in Section 6.6 shows that there are current applications

that rely on either HSA or OBE guarantees. Because these applications run without

starvation on current GPUs, it appears that current GPUs provide stronger fairness guar-

antees than either HSA or OBE describe. In this section, two new semi-fairness guarantees

are proposed, which unify the HSA and OBE guarantees. As such, these new guarantees

potentially provide a more accurate description of current GPUs schedulers.

165

HSA+OBE semi-fairness A straightforward approach to creating a unified fairness

property from two existing semi-fair properties is to take the disjunction of the TFCs.

Thus, threads guaranteed fairness under either existing scheduler are guaranteed fairness

under the unified scheduler. This can be done with the HSA and OBE semi-fair schedulers

to create a new unified semi-fairness condition, called HSA+OBE, i.e.,

TFCHSA+OBE (t) = TFCHSA(t) ∨ TFCOBE (t) (6.6)

Thinking about the set of programs for which a scheduler guarantees starvation-freedom,

let PHSA be the set of programs allowed under HSA, with POBE and PHSA+OBE defined

similarly. Note that PHSA ∪POBE ⊂ PHSA+OBE ; that is, there are programs in PHSA+OBE

that are neither in PHSA nor POBE . For example, consider a program that uses one-

way PC synchronisation and also a mutex. This program is not allowed under the OBE

or HSA scheduler in isolation, but is allowed under the semi-fair scheduler defined as

their disjunction. However, this idiom combination seems contrived as only four existing

applications discussed in Section 6.6 exploits the one-way PC idiom (see Section 6.6) and

it is not obvious that a mutex would be useful in these applications.

LOBE semi-fairness The HSA+OBE fairness guarantees may be sufficient for rea-

soning about existing applications, but these guarantees do not seem like they would

naturally be provided by a system scheduler implementation. HSA+OBE guarantees fair-

ness to (1) the thread with the lowest id that has not terminated (thanks to HSA) and

(2) threads that have taken an execution step (thanks to OBE). For example, it might

allow relative fair scheduling only between threads 0, 23, 29, and 42, if they were scheduled

at least once in the past. Thus, HSA+OBE allows for “gaps”, where threads with relative

fairness do not have contiguous ids. Perhaps a more intuitive scheduler would guarantee

that threads with relative fairness have contiguous ids.

Given these intuitions, a new semi-fair guarantee is defined, called LOBE (linear

occupancy-bound execution). Similar to OBE, LOBE guarantees fair scheduling to any

thread that has taken a step. Additionally, LOBE guarantees fair scheduling to any thread

t if another thread t′ (1) has taken a step, and (2) has an id greater than or equal to t

(hence the word linear). Formally, the LOBE TFC can be written:

TFCLOBE (t) = ∃t′ ∈ T : ex (t′) ∧ t′ ≥ t (6.7)

166

It is now shown that LOBE is a unified scheduler, i.e. any program allowed under HSA

or OBE is allowed under LOBE. To do this, it is sufficient to show that TFCOBE =⇒
TFCLOBE and TFCHSA =⇒ TFCLOBE . First, consider TFCOBE =⇒ TFCLOBE : this

is trivial as the comparison check in TFCLOBE includes equality, thus any thread that has

taken a step is guaranteed to be fairly scheduled.

Considering now TFCHSA =⇒ TFCLOBE : first recall a property of executions from

Section 6.4, namely that an execution either ends in a state where all threads have ter-

minated, or it is infinite. Thus, at an arbitrary non-terminal point in an execution, some

thread t must take a step. If t has the lowest id of the enabled threads, then both LOBE

and HSA guarantee that t will be fairly executed. If t does not have the lowest id of

the enabled threads, then LOBE guarantees that all threads with lower ids than t will

be fairly executed, including the thread with the lowest id of the enabled threads, thus

satisfying the fairness constraint of HSA.

6.7.1 LOBE discovery protocol

Because TFCHSA+OBE is defined as the disjunction of TFCHSA and TFCOBE , the rea-

soning in Section 6.7 is sufficient to show that LOBE fairness guarantees are at least as

strong as HSA+OBE. A practical GPU program is now discussed for which correctness re-

lies on the stronger guarantees provided by LOBE compared to HSA+OBE. This example

shows that (1) LOBE guarantees are strictly stronger than HSA+OBE, and (2) fairness

guarantees exclusive to LOBE can be useful in GPU applications.

The example is a modified version of the discovery protocol from Chapter 3, which

dynamically discovers threads that are guaranteed to be co-occupant, and are thus guar-

anteed relative fairness by OBE. Recall that the protocol works using a virtual poll, in

which threads have a short time window to indicate, using shared memory, that they

are co-occupant. The protocol acts as a filter: discovered co-occupant threads execute a

program, and undiscovered threads exit without performing any meaningful computation.

Because only co-occupant threads execute the program, OBE guarantees that blocking

idioms such as barriers can be used reliably.

GPU programs are often data-parallel, and threads use their ids to efficiently partition

arrays; thus having contiguous ids is vital. Because OBE fairness does not consider thread

ids, in order to provide contiguous ids, the discovery protocol dynamically assigns new

ids to discovered threads (see Table 3.1 in Section 3.4). While functionally this approach

is sound, there are two immediate drawbacks: (1) programs must be written using new

thread ids, which can require intrusive changes, and (2) the native thread id assignment

167

Algorithm 6.1 Occupancy discovery protocol. Applying LOBE optimisation removes
the code in dashed boxes and adds the code in solid boxes .

1: function Discovery protocol(open, count, id map, m)

2: Lock(m)
3: if open ∨(tid < count) then

4: id map[tid]← count

5: count← count+ 1

6: count← max(count, tid+ 1)
7: Unlock(m)
8: else
9: Unlock(m)

10: return False

11: Lock(m)
12: if open then
13: open← False

14: Unlock(m)
15: return True

on GPUs may be optimised by the driver for memory accesses in data-parallel programs;

using new ids would forego these optimisations. Exploiting the scheduling guarantees

of LOBE, the discovery protocol can be modified to preserve native thread ids and also

ensuring contiguous ids.

I Example 6.5 (Thread ids and data locality). It is possible that the protocol

discovers four threads (with tids 2-5) and creates the following mapping for their new

dynamic ids: {(5 −→ 0), (2 −→ 1), (3 −→ 3), (4 −→ 4)}. The GPU runtime might have na-

tively assigned threads 2 and 3 to one processor (or a GPU compute unit) and threads

4 and 5 to another. Because these compute units often have caches, data-locality be-

tween threads on the same compute unit could offer performance benefits [WCL+15].

In data-parallel programs, there is often data-locality between threads with consecu-

tive ids. Thus, in our example mapping, the (native) threads, 2 and 5 could not exploit

data locality, as their new ids are consecutive, but their native ids are not.

The discovery protocol algorithm, given in Figure 3.3, is reproduced in Algorithm 6.1.

The changes made to exploit LOBE guarantees are indicated by dashed boxes for removed

code and solid boxes for added code. Here, a quick reiteration of the original discovery

protocol algorithm is given. The algorithm has two phases, both protected by the same

mutex m. The first phase is the polling phase (lines 2-10), where threads are able to

indicate that they are currently occupant (i.e. executing). The open shared variable is

initialised to true to indicate that the poll is open. A thread first checks whether the poll

is open (line 3). If so, then the thread marks itself as discovered; this involves obtaining

a new id (line 4) and incrementing the number of discovered threads through the shared

168

variable count (line 5). The thread can then continue to the closing phase (starting line

11). If the poll was not open, the thread indicates that it was not discovered by returning

false (lines 8-10). In the closing phase, a thread checks to see if the poll is open; if so, the

thread closes the poll and no other threads can be discovered at this point (lines 12-13).

All threads who enter the closing phase have been discovered to be co-occupant, thus they

return true (line 15). The total number of co-occupant threads will be stored in count .

This protocol can be optimised by exploiting fairness guarantees of LOBE. In particular,

because LOBE guarantees that threads are fairly scheduled in contiguous id order, the

protocol can allow a thread with a higher id to discover all threads with lower ids. As a

result, threads are able to keep their native ids, although the number of discovered threads

is still dynamic. The optimisation to the discovery protocol is simple: first the id map,

which originally mapped threads to their new dynamic ids is not needed (lines 1 and 4).

Next, the number of discovered threads is no longer based on how many threads were

observed to poll, but rather on the highest id of the discovered threads (line 6). Finally,

even if the poll is closed, a thread entering the poll may have been discovered by a thread

with a higher id; this is now reflected by each thread comparing its id with count (line 3).

In Example 6.6, we show that a barrier prefaced by the LOBE optimised protocol is not

allowed under HSA+OBE guarantees, and thus illustrate that LOBE fairness guarantees

are strictly stronger than HSA+OBE.

169

discovery
protocol

0 1 2 3
all threads
can leave

barrier
0, 2 wait0 wait

0 arrive 2 arrive 1 arrive

Figure 6.4: Sub-LTS of a barrier, with an optional discovery protocol preamble.

I Example 6.6 (Barriers under semi-fairness). The behaviour of barriers is now

analysed, with optional discovery protocols, under our semi-fair schedulers. Figure 6.4

shows a subset of an LTS for a barrier idiom that synchronises three threads with ids

0, 1, and 2. For the sake of clarity, instead of using atomic actions that correspond to

GPU instructions, abstract instructions arrive and wait are used, which correspond

to a thread marking its arrival and waiting at the barrier, respectively.

The sub-LTS shows one possible interleaving of threads arriving at the barrier, in

the order 0, 2, 1. The final thread to arrive (thread 1) allows all threads to leave. The

sub-LTS shows the various spin-waiting scenarios that can occur in a barrier at states 1

and 2. A discovery protocol can optionally be used before the barrier synchronisation.

The sub-LTS is first analysed using the LOBE optimised discovery protocol (Sec-

tion 6.7.1). Recall that the LOBE discovery protocol discovers threads if it has seen

a step from a thread with an equal or greater thread id. In our example with three

threads, the fewest behaviours the protocol is guaranteed to have seen is a step by

thread 2, denoted: DP
2−→ 0.

• HSA+OBE: Consider the starvation path:

DP
2−→ 0, 0

0−→ 1, 1
0−→ 2, (2

0−→ 2, 2
2−→ 2)ω.

This path cannot be disallowed by HSA+OBE as at state 2, HSA+OBE guaran-

tees fair scheduling for the thread with the lowest id (thread 0) and any threads

that have taken a step (threads 0 and 2). This path requires fair execution from

thread 1 to break the starvation loop. Thus, barrier synchronisation using the

LOBE discovery protocol is not allowed under HSA+OBE or any of the weaker

schedulers (OBE and HSA).

• LOBE: The above starvation path is disallowed by LOBE, as LOBE guarantees

fair execution for any thread t that has executed and any thread with a lower

id than t. Because at state 0, the LOBE discovery protocol has observed a step

from thread 2, fairness is guaranteed for threads 2, 1, and 0. Thus, barriers with

LOBE discovery protocol are allowed under LOBE.

170

I Example 6.6 cont. Now, the general barrier (i.e. with no discovery protocol) is

analysed:

• LOBE: The starvation path 0
0−→ 1, (1

0−→ 1)ω is not disallowed by LOBE, as

LOBE cannot guarantee fair execution for any thread other than thread 0 at

state 1 where the infinite starvation path begins. Thus, general barriers are not

allowed under LOBE. Because LOBE is stronger than HSA+OBE, HSA and

OBE, the general barrier is not allowed under these schedulers either.

Finally, the barrier using the original discovery protocol (as described in Sec-

tion 6.7.1) is analysed:

• HSA: The starvation path DP
0,1,2−−−→ 0, 0

0−→ 1, (1
0−→ 1)ω is not disallowed by

HSA, as HSA only guarantees fair execution to the lowest enabled thread (i.e.

thread 0). To break this starvation loop in the sub-LTS, thread 2 would need

fairness guarantees. Thus barriers using the original discovery protocol are not

allowed under HSA.

• OBE: Because the original discovery protocol guarantees all threads have taken

a step before the barrier execution (i.e. DP
0,1,2−−−→ 0), OBE guarantees all three

threads fair scheduling. Thus all starvation loops in the sub-LTS are guaranteed

to be broken, and the barrier using the original discovery protocol is allowed

under OBE. Because HSA+OBE and LOBE are stronger than OBE, this syn-

chronisation idiom is also allowed under those schedulers.

6.8 Summary

Current GPU programming models provide loose scheduling fairness guarantees in En-

glish prose, if any at all. In practice, Chapter 3 has shown that GPUs feature semi-fair

schedulers that are neither fair, nor totally unfair. The goal of this chapter is to clarify the

fairness guarantees that GPU programmers can rely on, or at least the ones they assume.

To this aim, a formal framework was introduced that combines the classic weak fairness

with a thread fairness criterion (TFC), enabling fairness to be specified at a per-thread

level. The framework is illustrated by defining the TFC for HSA (from its specification)

171

and OBE (from its description in Chapter 3). The scheduling guarantees are used to anal-

yse three classic concurrent programming idioms: barrier, mutex and producer-consumer.

While some existing GPU programs rely on either HSA or OBE guarantees, these two

models are not comparable. Specifically, the one-way producer-consumer idiom is al-

lowed under HSA but may starve under OBE. Conversly the occupancy-limited producer-

consumer idiom is allowed under OBE but may starve under HSA. Thus, GPUs that aim

to support the examined current GPU programs must support stronger guarantees that

neither HSA nor OBE entirely capture. The presented framework allows for the straight-

forward combination of scheduling guarantees, which is used to define the HSA+OBE

scheduler. Another unified scheduler, LOBE, is also defined, which offers slightly stronger

fairness guarantees than HSA+OBE, but corresponds to a more intuitive scheduler imple-

mentation. The guarantees unique to LOBE are shown to be useful through a GPU pro-

tocol optimisation for which other GPU semi-fair schedulers do not guarantee starvation-

freedom, but LOBE does.

The formal framework, examples, and application survey presented in this chapter lay

a foundation on which we hope GPU developers and vendors can use to work toward a

more clear understanding of scheduling guarantees on GPU accelerators.

172

7 Conclusion

The aim of this thesis was to provide an exploration of the GPU inter-workgroup barrier,

and in particular to investigate the behaviour of such a barrier under various GPU seman-

tics and situations where significant performance improvements might be enabled by such

a barrier. This thesis concludes with a summary of the contributions and discussions of

future work.

7.1 Contributions

This thesis has made the following original contributions in the exploration of inter-

workgroup barrier synchronisation for GPUs:

• Chapter 3 introduced the occupancy-bound execution (OBE) model: an abstraction

that captures forward progress guarantees empirically observed on many current

GPUs. Using these guarantees, a discovery protocol was presented, which safely

estimates a set of co-occupant workgroups; such workgroups are guaranteed relative

forward progress. The discovery protocol, built on top of the execution model,

allowed the implementation of a portable inter-workgroup barrier. Experimental

results showed that, using heuristics, the discovery protocol was nearly always able to

identify the maximum number of workgroups that can be co-occupant on the GPU.

This scheme was successfully demonstrated on six GPUs spanning four vendors,

showing, for the first time, a portable inter-workgroup barrier.

• Chapter 4 presented a set of GPU optimisations for irregular applications generalised

to portable OpenCL. One of the optimisations required a portable global barrier,

for which the scheme of Chapter 3 was used. This generalisation enabled a large

empirical study, spanning 6 GPUs, 17 applications, and 3 inputs. All combinations

of GPUs, applications and inputs were run under all available optimisation combi-

nations. A methodology for evaluating performance trade-offs of portability versus

specialisation was developed and used to evaluate various optimisation strategies in

this domain. While the observed result trends were intuitive—more specialisation

173

yields more performance—the methodology provides quantification to the trade-offs

as well as insights into characteristics of GPUs, applications, or inputs. For example,

GPUs that have a high kernel launch overhead can greatly benefit from using the

optimisation enabled by the portable inter-workgroup barrier.

• Chapter 5 introduced the cooperative kernels programming model, developed in re-

sponse to industry feedback suggesting that OBE progress guarantees may not hold

for future GPUs; the main concern being that multi-tasking might create situations

where occupant workgroups are unfairly preempted. The cooperative kernel model

consists of three new primitives be added to the OpenCL programming model: (1) an

instruction where a workgroup volunteers to be killed if its hardware resources are

needed; (2) an instruction where a workgroup requests that additional workgroups

can be forked if resources are available; and (3) an inter-workgroup barrier where

workgroups can be killed or forked. These three instructions, via their interactions

with a workgroup scheduler, can allow multi-tasking while also avoiding the high cost

of workgroup preemption. Several long-running compute kernels that use work steal-

ing and inter-workgroup barriers were shown to be easily adapted to the cooperative

kernel programming model. A prototype scheduler was implemented in OpenCL

and it was shown that the long-running compute kernels could be multi-tasked with

three intensities of interactive tasks while meeting their deadlines.

• Chapter 6 formalised a hierarchy of progress guarantees using a temporal logic for-

mula based on weak fairness. The formula is parameterised by a thread fairness

criterion (TFC), which determines fairness on a per-thread basis. A TFC, and

thus, progress guarantees, was formalised for each of the workgroup schedulers of

the OpenCL, OBE, and HSA GPU programming models. Three common blocking

idioms (mutex, barrier, and producer-consumer) were analysed under each model;

each were shown to either deadlock due to starvation or successfully terminate. Un-

der this analysis, it was shown that OBE and HSA are incomparable, yet there exist

programs executing successfully on current GPUs relying on one or the other model.

Thus, current GPUs appear to offer guarantees stronger than any existing descrip-

tion. To address this, two unified models were presented. The guarantees of one of

the unified models, linear OBE (LOBE), was shown to enable an optimisation of the

discovery protocol of Chapter 3.

174

7.2 Future work

Directions for future work are now discussed. Section 7.2.1 begins by presenting immediate

avenues for future work, in which the thesis contributions could be extended in a straight-

forward way. Section 7.2.2 discusses the higher-level research context exposed in this work

and ideas about future work that address the fundamental concepts that motivated this

thesis.

7.2.1 Immediate future work

Utilising open stacks In this thesis, the OpenCL execution stack was treated as a black

box; only the OpenCL API and kernel language were used. However, recently both AMD

and Intel have provided open GPU stacks, including the OpenCL framework (e.g. compilers

and drivers). Specifically, AMD has released ROCm1 and Intel has released NEO.2 Both

of these open stacks provide lower-level controls to modify the OpenCL runtime. For

example, it may be possible to query the occupancy bound for a given GPU kernel and

natively provide a maximal launch [GSO12] option. Under this scheme, the program

does not specify the number of workgroups, but instead the runtime provides as many

workgroups as can be simultaneously occupant. Such a scheme would remove the need

the for the discovery protocol, and thus, the associated application performance overheads

reported in Sections 3.6.3 and 4.6.2. However, without official progress guarantees, such

an effort would be relying on undocumented features and, as discussed in Chapter 5, such

guarantees may not be supported on future GPUs.

Prescriptive performance models The work of Chapter 4 used descriptive models to

explain the empirical results. However, such models require a large amount of empirical

data to produce. The more common use case for an optimising compiler is to be able to

determine effective optimisations without having to run a large number of experiments.

This use case would require prescriptive performance models, in which a compiler would

use static, or a small amount of dynamic, information to confidently pick an effective

optimisation configuration for an application, GPU, and possibly input. Section 4.5.6

starts to lay the foundation for such models, by teasing out characteristics of applications,

GPUs, and inputs for which certain optimisations appear to be effective. In particular,

for the inter-workgroup barrier optimisation, the effective situations actually appear to

1See:
https://rocm.github.io/

2See:
https://software.intel.com/en-us/forums/opencl/topic/758168

175

be fairly straightforward. The simple micro-benchmark of Section 4.5.6 can measure the

kernel launch overhead: the more overhead, the more effective the global barrier appears

to be. Additionally, applications and inputs that cause a large number of short kernel

launches also appear to be good candidates for inter-workgroup barrier optimisations.

Such a prescriptive model could have been used in Section 3.6.2 to quickly determine that

these tests were not suitable for barrier optimisations, yet many of the tests of Chapter 4

were suitable.

Complete progress models The work of Chapter 6 was constrained to inter-workgroup

progress guarantees. However, semi-fair scheduling is found at other levels of the GPU

hierarchy. For example, it is well-known that an intra-subgroup spin-lock will hang due

to SIMD thread scheduling on pre-Volta Nvidia GPUs;3 pilot experiments on other GPUs

examined in this work show similar behaviour. However, intra-subgroup mutexes can

be implemented if there is no blocking behaviour in subgroup-divergent blocks. Thus,

a mutex in which all subgroup threads spin at the lock appears to work as intended

on current GPUs. In fact, several applications of Chapter 4 use such a mutex without

issue. Interestingly though, the mutex implementation must use volatile quantifiers,

otherwise several of the compilers transform the convergent spin-lock into a divergent

spin-lock and the application hangs. These experiences show that there is much needed

formalisation in this area.

In addition to intra-subgroup interactions, intra-workgroup (and inter-subgroup) inter-

actions should also be considered. Much like inter-workgroup scheduling, the OpenCL

standard gives no scheduling guarantees at the intra-workgroup level of the GPU hierar-

chy, stating [Khr15, p. 31]:

The work-items within a single work-group execute concurrently but not nec-

essarily in parallel (i.e. they are not guaranteed to make independent forward

progress).

These intra-workgroup scheduling guarantees were not explored in Chapter 6 as we were

unaware of any motivating examples. Many programs use the OpenCL intra-workgroup

barrier primitive instruction, which appears to mostly capture the needed blocking syn-

chronisation at this level of the hierarchy.

3See:
https://stackoverflow.com/questions/2021019/implementing-a-critical-section-
in-cuda

176

Thus, a more complete scheduling model of GPUs should consider interactions at dif-

ferent levels of the hierarchy, much like how prior work on GPU memory models intro-

duced new scopes and provided different semantics depending on the scope of the inter-

action [ABD+15]. Ideally, each scope could be instantiated with a non-scoped progress

model, e.g. the models presented in Chapter 6. Such a framework would be modular and

provide a more complete picture of GPU scheduling.

High impact use case Although the applications studied throughout this thesis, e.g.

BFS and SSSP, provide interesting challenges for GPU acceleration, it is not clear whether

they have impact in high-priority domains where GPUs are vital for high performance,

such as machine-learning or computer vision. The lack of a high impact use case may

be one reason why the GPU language standards have not pursued official support of an

inter-workgroup barrier. To encourage development of a portable impactful use case,

one approach would be to provide a well-documented and approachable library of the

optimised applications of Chapter 4. For example, Nvidia provides the nvGraph CUDA

library [Nvi18d], which includes an API for SSSP and PR routines. Because Nvidia has

dedicated resources to this library, it is likely that developers are using these routines.

Thus, a portable OpenCL equivalent library may be appealing.

More concretely, previous work on Deep Recurrent Neural Networks (RNNs) has shown

that a global barrier optimisation can improve performance by nearly an order of magni-

tude on Nvidia GPUs [DSC+16]. This approach not only avoids the kernel launch over-

head (as seen in Section 4.5.6), but also takes advantage of fast persistent local memory

across barrier calls. None of the applications studied in this work exploit persistent local

memory; there was not a clear path in the algorithms to use such a feature. The barrier-

optimised RNN implementation appears to have been incorporated into CuDNN through

the function cudnnCreatePersistentRNNPlan [Nvi18c, p. 68]. RNNs are used in

state-of-the-art speech recognition systems,4 and a portable optimised OpenCL version

might enable a more diverse range of GPUs to be efficiently used for machine-learning

applications.

4Seen firsthand during the internship at Microsoft while working on Cortana speech recognition system.

177

7.2.2 Fundamental future work

Even under possibly the simplest concurrent programming model, i.e. a sequentially consis-

tent memory model and fair scheduling, bugs such as data races and deadlocks are readily

found. The OBE progress model, as well as the other progress models, add complexities to

the already difficult concurrency model. Although pragmatic, these complicated models

might not be the ideal way forward.

Personal perspective I believe that fundamental future work should take a step back to

examine our GPU programming models and find ways to simplify the model while allowing

for intuitive and performance-enhancing idioms, such as the inter-workgroup barrier. This

future work is not as straightforward as the ideas presented above. To carry this work in a

meaningful way would require in-depth knowledge of GPU applications, GPU architecture,

and programming languages. However, as GPUs (and other accelerators) become more

common, how can we expect them to be programmable by developers who are not domain-

experts with such complicated models?

The idea of aiming for simpler concurrent programming models is not new, and previous

work can provide guidance on how to approach such a daunting task. Another domain

that I am familiar with is weak memory models. In this domain, it appears that there are

three schools of thought about how programming models should address weak memory:

1. The weak memory models on current architectures are difficult, but can be tackled

by sufficient formalisation and exposition, e.g. see [AMT14].

2. Current memory models are weak, yet programmers should not have to deal with

their complex semantics. Thus, a contract model is used whereby programmers

follow certain rules and the architecture must provide intuitive semantics. If the

rules are not followed, then program behaviour is undefined; e.g. the DRF model

of [AH90].

3. An intuitive programming model is the highest priority. Architectures and compilers

should work together to always ensure intuitive semantics, without the programmer

required to follow any certain rules; e.g. see [MMM+15].

I believe research into applying any of these programming model approaches to forward

progress concerns would be fruitful. I, however, am most interested in thinking about a

contract model. For example, a progress contract might state: all blocking behaviours in a

program must be annotated; if properly annotated, then the architecture guarantees that

178

the program will exhibit behaviours as if run under a weakly-fair scheduler. A contract

like this would require a formalisation of blocking behaviours and new annotations that

can intuitively indicate such behaviours. I think that an exploration along these lines

would be very interesting and I hope to pursue such work during my career.

7.3 Summary

Given the small, but growing, presence of GPU programs that contain blocking idioms,

it seems likely that vendors and languages will have to officially support forward progress

guarantees in some form. The longer that the community goes without official guarantees,

the more programs are going to be written relying on empirical and folklore guarantees.

This “wild west” environment is harmful to many central tenants of computer science,

including portability, verification, and abstraction. This thesis has explored one such

blocking idiom: the inter-workgroup barrier. Sufficient guarantees have been formalised

and empirically shown to hold on current GPUs to support such a barrier. Situations where

the barrier provides significant performance improvements have also been shown. Finally,

foundations for future scheduling models have been proposed. These three investigations

make a strong case to carry forward discussions with programmers and vendors about

restoring order to the “wild west” by providing official documentation around progress

guarantees and, hopefully, support for the inter-workgroup barrier.

179

Bibliography

[ABD+15] Jade Alglave, Mark Batty, Alastair F. Donaldson, Ganesh Gopalakrishnan,

Jeroen Ketema, Daniel Poetzl, Tyler Sorensen, and John Wickerson. GPU

concurrency: Weak behaviours and programming assumptions. In ASPLOS,

pages 577–591. ACM, 2015.

[ACKS12] Jacob T Adriaens, Katherine Compton, Nam Sung Kim, and Michael J

Schulte. The case for GPGPU spatial multitasking. In HPCA, pages 1–12,

2012.

[ACW+09] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao, Alan

Edelman, and Saman Amarasinghe. PetaBricks: A Language and Compiler

for Algorithmic Choice. In PLDI, pages 38–49. ACM, 2009.

[AH90] Sarita V. Adve and Mark D. Hill. Weak ordering-a new definition. In ISCA,

pages 2–14. ACM, 1990.

[AKV+14] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley,

Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe. OpenTuner:

An Extensible Framework for Program Autotuning. In PACT, pages 303–316.

ACM, 2014.

[Ama17] Amazon Web Services. The FreeRTOS reference manual: version 10.0.0 issue

1, 2017.

[AMD12] AMD. AMD GRAPHICS CORES NEXT (GCN) ARCHITECTURE, 2012.

Whitepaper.

[AMT14] Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats: Mod-

elling, simulation, testing, and data mining for weak memory. ACM Trans.

Program. Lang. Syst., 36(2):7:1–7:74, 2014.

[And97] Paul Thomas Anderson. Boogie Nights, 1997. New Line Cinema.

[Ash16] Ben Ashbaugh. cl intel subgroups version 4, Aug. 2016.

180

[Bar] Blaise Barney. POSIX threads programming: Condition vari-

ables. https://computing.llnl.gov/tutorials/pthreads/

#ConditionVariables (visited January 2018).

[Bax] Sean Baxter. ModernGPU. Retrieved June 2018 from https://

moderngpu.github.io/intro.html.

[BCD+15] Adam Betts, Nathan Chong, Alastair F. Donaldson, Jeroen Ketema, Shaz

Qadeer, Paul Thomson, and John Wickerson. The design and implementation

of a verification technique for GPU kernels. ACM Trans. Program. Lang. Syst.,

37(3):10, 2015.

[BDG13] Mark Batty, Mike Dodds, and Alexey Gotsman. Library abstraction for

C/C++ concurrency. In POPL, pages 235–248. ACM, 2013.

[BDW16] Mark Batty, Alastair F. Donaldson, and John Wickerson. Overhauling SC

atomics in C11 and OpenCL. In POPL, pages 634–648. ACM, 2016.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The

MIT Press, 2008.

[BNP12] M. Burtscher, R. Nasre, and K. Pingali. A quantitative study of irregular

programs on GPUs. In IISWC, pages 141–151. IEEE, 2012.

[CB13] Charlie Curtsinger and Emery D. Berger. STABILIZER: Statistically Sound

Performance Evaluation. In ASPLOS, pages 219–228. ACM, 2013.

[CBRS13] Shuai Che, Bradford M. Beckmann, Steven K. Reinhardt, and Kevin Skadron.

Pannotia: Understanding irregular GPGPU graph applications. In IISWC,

pages 185–195, 2013.

[CDKQ13] Peter Collingbourne, Alastair F. Donaldson, Jeroen Ketema, and Shaz

Qadeer. Interleaving and lock-step semantics for analysis and verification

of GPU kernels. In ESOP, pages 270–289. Springer, 2013.

[CHR+16] L. W. Chang, I. E. Hajj, C. Rodrigues, J. Gmez-Luna, and W. M. Hwu.

Efficient kernel synthesis for performance portable programming. In MICRO,

pages 1–13. ACM, 2016.

[clS] clSPARSE. Retrieved June 2018 from https://github.com/

clMathLibraries/clSPARSE.

181

[CSW18] Nathan Chong, Tyler Sorensen, and John Wickerson. The semantics of trans-

actions and weak memory in x86, Power, ARMv8, and C++. In PLDI. ACM,

2018.

[CT08] Daniel Cederman and Philippas Tsigas. On dynamic load balancing on graph-

ics processors. In SIGGRAPH, pages 57–64. Eurographics Association, 2008.

[CZF04] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-MAT: A

recursive model for graph mining. In SDM, pages 442–446, 2004.

[DAV+15] Yufei Ding, Jason Ansel, Kalyan Veeramachaneni, Xipeng Shen, Una-May

O’Reilly, and Saman Amarasinghe. Autotuning Algorithmic Choice for Input

Sensitivity. In PLDI, pages 379–390. ACM, 2015.

[DBGO14] Andrew Davidson, Sean Baxter, Michael Garland, and John D. Owens. Work-

efficient parallel GPU methods for single-source shortest paths. In IPDPS,

pages 349–359. IEEE Computer Society, 2014.

[DG15] M. Daga and J. L. Greathouse. Structural agnostic SpMV: Adapting CSR-

adaptive for irregular matrices. In HiPC, pages 64–74. IEEE, 2015.

[dOFD+13] Augusto Born de Oliveira, Sebastian Fischmeister, Amer Diwan, Matthias

Hauswirth, and Peter F. Sweeney. Why you should care about quantile re-

gression. In ASPLOS, pages 207–218. ACM, 2013.

[DSC+16] Greg Diamos, Shubho Sengupta, Bryan Catanzaro, Mike Chrzanowski, Adam

Coates, Erich Elsen, Jesse Engel, Awni Hannun, and Sanjeev Satheesh. Per-

sistent RNNs: Stashing recurrent weights on-chip. In Proceedings of The 33rd

International Conference on Machine Learning (ICML), pages 2024–2033.

PMLR, 2016.

[Gas15] Benedict Gaster. A look at the OpenCL 2.0 execution model. In IWOCL,

pages 2:1–2:1. ACM, 2015.

[GDG+17] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz

Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming

He. Accurate, large minibatch SGD: training ImageNet in 1 hour. CoRR,

abs/1706.02677, 2017.

182

[GHH15] Benedict R. Gaster, Derek Hower, and Lee Howes. HRF-relaxed: Adapting

HRF to the complexities of industrial heterogeneous memory models. Trans.

Archit. Code Optim. (TACO), 12(1):7:1–7:26, 2015.

[GSO12] Kshitij Gupta, Jeff Stuart, and John D. Owens. A study of persistent threads

style GPU programming for GPGPU workloads. In InPar, pages 1–14, 2012.

[HHB+14] Derek R. Hower, Blake A. Hechtman, Bradford M. Beckmann, Bene-

dict R. Gaster, Mark D. Hill, Steven K. Reinhardt, and David A. Wood.

Heterogeneous-race-free memory models. In ASPLOS, pages 427–440, 2014.

[HN07] Pawan Harish and P. J. Narayanan. Accelerating large graph algorithms on

the GPU using CUDA. In HiPC, pages 197–208, 2007.

[HS08] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming.

Morgan Kaufmann Publishers Inc., 2008.

[HSA17] HSA Foundation. HSA programmer’s reference manual: HSAIL virtual ISA

and programming model, compiler writer, and object format (BRIG). (rev

1.1.1), March 2017.

[Hwu11] Wen-mei W. Hwu. GPU Computing Gems Jade Edition. Morgan Kaufmann,

2011.

[Int15a] Intel. The Compute Architecture of Intel Processor Graphics Gen8, 2015.

Version 1.1.

[Int15b] Intel. The Compute Architecture of Intel Processor Graphics Gen9, Version

1.0, Aug. 2015.

[IOOH12] Fumihiko Ino, Akihiro Ogita, Kentaro Oita, and Kenichi Hagihara. Coopera-

tive multitasking for GPU-accelerated grid systems. Concurrency and Com-

putation: Practice and Experience, 24(1), 2012.

[ISO12] ISO/IEC. Standard for programming language C++, 2012.

[Jai91] Raj Jain. The art of computer systems performance analysis - techniques for

experimental design, measurement, simulation, and modeling. Wiley profes-

sional computing. Wiley, 1991.

[Khr15] Khronos Group. The OpenCL specification version: 2.0 (rev. 29), July 2015.

183

[Khr16a] Khronos Group. The OpenCL C specification version 2.0 (rev. 33), April

2016.

[Khr16b] Khronos OpenCL Working Group. The OpenCL extension specification,

November 2016.

[Khr17] Khronos Group. The OpenCL specification version: 2.2 (rev. 2.2-3), May

2017.

[KLRI11] Shinpei Kato, Karthik Lakshmanan, Ragunathan Rajkumar, and Yutaka

Ishikawa. Timegraph: GPU scheduling for real-time multi-tasking environ-

ments. In USENIX ATC, 2011.

[KVP+16] Rashid Kaleem, Anand Venkat, Sreepathi Pai, Mary W. Hall, and Keshav

Pingali. Synchronization trade-offs in GPU implementations of graph algo-

rithms. In IPDPS, pages 514–523, 2016.

[LLH+16] Weifeng Liu, Ang Li, Jonathan Hogg, Iain S. Duff, and Brian Vinter. A

synchronization-free algorithm for parallel sparse triangular solves. In Euro-

Par, pages 617–630. Springer, 2016.

[LLK+14] S. H. Lo, C. R. Lee, Q. L. Kao, I. H. Chung, and Y. C. Chung. Improv-

ing GPU memory performance with artificial barrier synchronization. IEEE

Transactions on Parallel and Distributed Systems, 25(9):2342–2352, 2014.

[LLS+12] Guodong Li, Peng Li, Geof Sawaya, Ganesh Gopalakrishnan, Indradeep

Ghosh, and Sreeranga P. Rajan. GKLEE: concolic verification and test gen-

eration for GPUs. In PPoPP, pages 215–224. ACM, 2012.

[Lok11] Anton Lokhmotov. ARM Midgard architecture, 2011. Retrieved

June 2018 from http://www.heterogeneouscompute.org/

hipeac2011Presentations/OpenCL-Midgard.pdf.

[LPZ85] Orna Lichtenstein, Amir Pnueli, and Lenore Zuck. The glory of the past. In

Logics of Programs, pages 196–218. Springer Berlin Heidelberg, 1985.

[Lub86] Michael Luby. A simple parallel algorithm for the maximal independent set

problem. SIAM Journal on Computing, 15(4):1036–1053, 1986.

[MBP12] Mario Méndez-Lojo, Martin Burtscher, and Keshav Pingali. A GPU imple-

mentation of inclusion-based points-to analysis. In PPoPP, pages 107–116,

2012.

184

[MDHS09] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney.

Producing wrong data without doing anything obviously wrong! In ASPLOS,

pages 265–276. ACM, 2009.

[Mer] Bruce Merry. clogs: C++ library for sorting and searching in OpenCL appli-

cations.

[Mer15] Bruce Merry. A performance comparison of sort and scan libraries for GPUs.

Parallel Processing Letters, 25, 2015.

[MGG12a] Duane Merrill, Michael Garland, and Andrew Grimshaw. Policy-based tuning

for performance portability and library co-optimization. In InPar, pages 1–10,

2012.

[MGG12b] Duane Merrill, Michael Garland, and Andrew Grimshaw. Scalable GPU graph

traversal. In PPoPP, pages 117–128. ACM, 2012.

[MMM+15] Daniel Marino, Todd Millstein, Madanlal Musuvathi, Satish Narayanasamy,

and Abhayendra Singh. The silently shifting semicolon. In SNAPL, LIPIcs,

pages 177–189. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015.

[MO16] Pinar Muyan-Özçelik and John D. Owens. Multitasking real-time embedded

GPU computing tasks. In PMAM, pages 78–87, 2016.

[MRH+16] Saurav Muralidharan, Amit Roy, Mary Hall, Michael Garland, and Piyush

Rai. Architecture-adaptive code variant tuning. In ASPLOS, pages 325–338.

ACM, 2016.

[MSH+14] Saurav Muralidharan, Manu Shantharam, Mary Hall, Michael Garland, and

Bryan Catanzaro. Nitro: A framework for adaptive code variant tuning. In

IPDPS, pages 501–512. IEEE Computer Society, 2014.

[MW47] H. B. Mann and D. R. Whitney. On a test of whether one of two random

variables is stochastically larger than the other. The Annals of Mathematical

Statistics, 18(1):50–60, 1947.

[MYB16] Sepideh Maleki, Annie Yang, and Martin Burtscher. Higher-order and tuple-

based massively-parallel prefix sums. In PLDI, pages 539–552. ACM, 2016.

[MZ16] Micha lMrozek and Zbigniew Zdanowicz. GPU daemon: Road to zero cost

submission. In IWOCL, pages 11:1–11:4. ACM, 2016.

185

[NBF96] Bradford Nichols, Dick Buttlar, and Jacqueline Proulx Farrell. Pthreads Pro-

gramming. O’Reilly & Associates, Inc., 1996.

[NCKB12] Sadegh Nobari, Thanh-Tung Cao, Panagiotis Karras, and Stéphane Bressan.

Scalable parallel minimum spanning forest computation. In PPoPPP, pages

205–214, 2012.

[Nvi] Nvidia. CUB. http://nvlabs.github.io/cub/ (visited January 2018).

[NVI99] NVIDIA. Graphics Processing Unit (GPU), 1999. archived

at https://web.archive.org/web/20160408122443/http:

//www.nvidia.com/object/gpu.html.

[NVI16] NVIDIA. NVIDIA TESLA P100 GPU ARCHITECTURE, 2016. Whitepaper

WP-08019-001 v01.1.

[NVI17] NVIDIA. NVIDIA TESLA V100 GPU ARCHITECTURE, 2017. Whitepaper

WP-08608-001 v1.1.

[Nvi18a] Nvidia. CUDA C Programming Guide, Version 9.1, January 2018.

[Nvi18b] Nvidia. CUDA Code Samples, Version 9.1, January 2018.

[Nvi18c] Nvidia. CuDNN 7.1.2 Developer Guide, May 2018.

[Nvi18d] Nvidia. nvGraph Library User’s Guide v10.0.130, May 2018.

[Nvi18e] Nvidia. Parallel thread execution ISA: Version 6.1, March 2018.

[OCY+15] Marc S. Orr, Shuai Che, Ayse Yilmazer, Bradford M. Beckmann, Mark D.

Hill, and David A. Wood. Synchronization using remote-scope promotion. In

ASPLOS, pages 73–86. ACM, 2015.

[Ope15] OpenMP Architecture Review Board. OpenMP application program interface

version 4.5, 2015.

[PGB+05] Tim Peierls, Brian Goetz, Joshua Bloch, Joseph Bowbeer, Doug Lea, and

David Holmes. Java Concurrency in Practice. Addison-Wesley Professional,

2005.

[PMS17] James Price and Simon McIntosh-Smith. Exploiting auto-tuning to analyze

and improve performance portability on many-core architectures. In High

Performance Computing, pages 538–556. Springer, 2017.

186

[Pol16] Adam Polak. Counting triangles in large graphs on GPU. In IPDPS, pages

740–746. IEEE Computer Society, 2016.

[PP16] Sreepathi Pai and Keshav Pingali. A compiler for throughput optimization

of graph algorithms on GPUs. In OOPSLA, pages 1–19, 2016.

[PPM15] Jason Jong Kyu Park, Yongjun Park, and Scott A. Mahlke. Chimera: Col-

laborative preemption for multitasking on a shared GPU. In ASPLOS, pages

593–606, 2015.

[PTG13] Sreepathi Pai, Matthew J. Thazhuthaveetil, and R. Govindarajan. Improving

GPGPU concurrency with elastic kernels. In ASPLOS, pages 407–418. ACM,

2013.

[RIS] RISC OS. Preemptive multitasking. Retrieved June 2018 from http://

www.riscos.info/index.php/Preemptive multitasking.

[SA16] Ryan Smith and Anandtech. Preemption improved: Fine-grained

preemption for time-critical tasks, 2016. Retrieved June 2018 from

http://www.anandtech.com/show/10325/the-nvidia-geforce-

gtx-1080-and-1070-founders-edition-review/10.

[SD16a] Tyler Sorensen and Alastair F. Donaldson. Exposing errors related to weak

memory in GPU applications. In PLDI, pages 100–113. ACM, 2016.

[SD16b] Tyler Sorensen and Alastair F. Donaldson. The hitchhiker’s guide to cross-

platform OpenCL application development. In IWOCL, pages 2:1–2:12, 2016.

[SDB+16] Tyler Sorensen, Alastair F. Donaldson, Mark Batty, Ganesh Gopalakrishnan,

and Zvonimir Rakamaric. Portable inter-workgroup barrier synchronisation

for GPUs. In OOPSLA, pages 39–58, 2016.

[SED17a] Tyler Sorensen, Hugues Evrard, and Alastair F. Donaldson. Cooperative

kernels: GPU multitasking for blocking algorithms. In FSE, pages 431–441,

2017.

[SED17b] Tyler Sorensen, Hugues Evrard, and Alastair F. Donaldson. Cooperative

kernels: GPU multitasking for blocking algorithms (extended version). CoRR,

2017.

187

[SED18] Tyler Sorensen, Hugues Evrard, and Alastair F. Donaldson. GPU schedulers:

How fair is fair enough? In CONCUR, pages 23:1–23:17. Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik, 2018.

[Sin13] Graham Singer. The history of the modern graphics processor, 2013.

[SK10] Jason Sanders and Edward Kandrot. CUDA by Example: An Introduction to

General-Purpose GPU Programming. Addison-Wesley Professional, 2010.

[SKB+14] Markus Steinberger, Michael Kenzel, Pedro Boechat, Bernhard Kerbl, Mark

Dokter, and Dieter Schmalstieg. Whippletree: task-based scheduling of dy-

namic workloads on the GPU. ACM Trans. Graph., 33(6):228:1–228:11, 2014.

[SKN10] J. Soman, K. Kishore, and P. J. Narayanan. A fast GPU algorithm for graph

connectivity. In IPDPSW, pages 1–8, 2010.

[Sol09] Y. Solihin. Fundamentals of Parallel Computer Architecture: Multichip and

Multicore Systems. Solihin Publishing, 2009.

[Sor14] Tyler Sorensen. Testing and exposing weak GPU memory models. Master’s

thesis, University of Utah, 2014.

[SPD18] Tyler Sorensen, Sreepathi Pai, and Alastair F. Donaldson. When one size

doesnt fit all: Quantifying performance portability of graph applications on

GPUs. 2018. under submission.

[SRD17] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. Lift: A func-

tional data-parallel IR for high-performance GPU code generation. CGO,

pages 74–85. IEEE Press, 2017.

[STT10] Steven Solomon, Parimala Thulasiraman, and Ruppa K. Thulasiram. Ex-

ploiting parallelism in iterative irregular maxflow computations on GPU ac-

celerators. In HPCC, pages 297–304, 2010.

[Tar91] Marc Tarpenning. Cooperative multitasking in C++. Dr. Dobb’s J., 16(4),

April 1991.

[TGC+14] Ivan Tanasic, Isaac Gelado, Javier Cabezas, Alex Ramı́rez, Nacho Navarro,

and Mateo Valero. Enabling preemptive multiprogramming on GPUs. In

ISCA, pages 193–204, 2014.

188

[TGEL11] Y. Torres, A. Gonzalez-Escribano, and D.R. Llanos. Understanding the im-

pact of CUDA tuning techniques for Fermi. In High Performance Computing

and Simulation (HPCS), pages 631–639, 2011.

[TPO10] Stanley Tzeng, Anjul Patney, and John D. Owens. Task management for

irregular-parallel workloads on the GPU. In HPG, pages 29–37, 2010.

[VC13] Narseo Vallina-Rodriguez and Jon Crowcroft. Energy management techniques

in modern mobile handsets. IEEE Communications Surveys and Tutorials,

15(1):179–198, 2013.

[VHPN09] Vibhav Vineet, Pawan Harish, Suryakant Patidar, and P. J. Narayanan. Fast

minimum spanning tree for large graphs on the GPU. In HPG, pages 167–171,

2009.

[VVdL+15] Ana Lucia Varbanescu, Merijn Verstraaten, Cees de Laat, Ate Penders,

Alexandru Iosup, and Henk Sips. Can portability improve performance?: An

empirical study of parallel graph analytics. In ICPE, pages 277–287. ACM,

2015.

[WBSC17] John Wickerson, Mark Batty, Tyler Sorensen, and George A. Constantinides.

Automatically comparing memory consistency models. In POPL, pages 190–

204. ACM, 2017.

[WCL+15] Bo Wu, Guoyang Chen, Dong Li, Xipeng Shen, and Jeffrey S. Vetter. Enabling

and exploiting flexible task assignment on GPU through SM-centric program

transformations. In ICS, pages 119–130, 2015.

[WD98] R. Clint Whaley and Jack J. Dongarra. Automatically Tuned Linear Algebra

Software. In SC, pages 1–27. IEEE Computer Society, 1998.

[WDP+16] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel,

and John D. Owens. Gunrock: A high-performance graph processing library

on the GPU. PPoPP. ACM, 2016.

[Wik18] Wikipedia contributors. OpenCL — Wikipedia, the free encyclopedia.

https://en.wikipedia.org/w/index.php?title=OpenCL&oldid=

842868273, 2018. [Online; accessed 12-June-2018].

189

[WLDP15] Joyce Jiyoung Whang, Andrew Lenharth, Inderjit S. Dhillon, and Keshav Pin-

gali. Scalable data-driven pagerank: Algorithms, system issues, and lessons

learned. In Euro-Par, pages 438–450. Springer, 2015.

[XF10] Shucai Xiao and Wu-chun Feng. Inter-block GPU communication via fast

barrier synchronization. In IPDPS, pages 1–12, 2010.

[YLZ13] Shengen Yan, Guoping Long, and Yunquan Zhang. Streamscan: Fast scan

algorithms for GPUs without global barrier synchronization. In PPoPP, pages

229–238. ACM, 2013.

[ZSC13] Yao Zhang, Mark Sinclair, and Andrew A. Chien. Improving Performance

Portability in OpenCL Programs. In Supercomputing, Lecture Notes in Com-

puter Science, pages 136–150. Springer, 2013.

190

