
TESTING AND EXPOSING WEAK GRAPHICS

PROCESSING UNIT MEMORY MODELS

by

Tyler Rey Sorensen

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

in Computer Science

School of Computing

The University of Utah

December 2014

Copyright c© Tyler Rey Sorensen 2014

All Rights Reserved

The University of Utah Graduate School

STATEMENT OF THESIS APPROVAL

The thesis of Tyler Rey Sorensen
has been approved by the following supervisory committee members:

THIS PAGE IS A PLACE HOLDER ONLY

Please use the updated form on the Thesis Office website

Ganesh Gopalakrishnan , Chair enter date

Date Approved

Zvonimir Rakamaric , Member

Date Approved

Mary Hall , Member

Date Approved

ABSTRACT

Graphics Processing Units (GPUs) are highly parallel shared memory microprocessors,

and as such, they are prone to the same concurrency considerations as their traditional

multicore CPU counterparts. In this thesis, we consider shared memory consistency, i.e.

what values can be read when issued concurrently with writes on current GPU hardware.

While memory consistency has been relatively well studied for CPUs, GPUs present substan-

tially different concurrency systems with an explicit thread and memory hierarchy. Because

documentation on GPU memory models is limited, it remains unclear what behaviors are

allowed by current GPU implementations.

To this end, this work focuses on testing shared memory consistency behavior on NVIDIA

GPUs. We present a format for describing GPU memory consistency tests (dubbed GPU

litmus tests) which includes the placement of testing threads into the GPU thread hierarchy

(e.g. cooperative thread arrays, warps) and memory locations into GPU memory regions

(e.g. shared, global). We then present a framework for running GPU litmus tests under

system stress designed to trigger weak memory model behaviors, that is, executions that do

not correspond to an interleaving of the instructions of the concurrent program. We discuss

GPU specific incantations (i.e. heuristics) which we found to be crucial for observing weak

memory model executions; these include bank conflicts and custom GPU memory stressing

functions.

We then report the results of running GPU litmus tests in this framework and show that

we observe a controversial relaxed coherence behavior on older NVIDIA chips. We present

several examples of published GPU applications which may exhibit unintended behavior

due to the lack of fence synchronization; one such example is a spin-lock published in the

popular CUDA by Example book. We then test several families of tests and compare our

results to a proposed operational GPU memory model and show that the model is unsound

(i.e. disallows behaviors that we observe on hardware). Our techniques are implemented in

a modified version of a memory model testing tool named litmus.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . vi

LIST OF TABLES . viii

ACKNOWLEDGMENTS . ix

CHAPTERS

1. INTRODUCTION . 1

1.1 Thesis Statement and Contributions . 4
1.1.1 Thesis Statement . 4
1.1.2 Contributions . 4

1.2 Prior Work . 5
1.2.1 GPU Memory Models . 6

1.3 Roadmap . 8

2. BACKGROUND . 10

2.1 GPU Programming Model . 10
2.2 GPU Architecture . 13

2.2.1 Hardware Memory Banks . 14
2.3 PTX . 15

2.3.1 CUDA to PTX Mappings . 16
2.4 Memory Models and Litmus Tests . 18
2.5 GPU Litmus Tests . 20

2.5.1 GPU Configurations . 22

3. GPU TESTING FRAMEWORK . 24

3.1 PTX GPU .litmus Format . 25
3.2 GPU Program Skeleton . 27
3.3 Critical Incantations . 29

3.3.1 General Bank Conflicts . 30
3.3.2 Memory Stress . 32

3.4 Extra Incantations . 33
3.4.1 Random Threads . 33
3.4.2 Synchronization . 34

3.5 Effectiveness of Incantations . 35
3.5.1 Inter-CTA Incantations . 35
3.5.2 Intra-CTA Incantations . 36

4. NOTABLE RESULTS AND CASE STUDIES . 39

4.1 Notations and Considerations . 39
4.2 Coherence of Read-Read (CoRR) . 40
4.3 Fermi Memory Annotations . 41

4.3.1 Message Passing Through L1 . 41
4.3.2 Mixing Memory Annotations . 43
4.3.3 CUDA Programming Consequences . 44

4.4 Volatile Operators . 44
4.5 Spin-Locks . 45

4.5.1 CUDA by Example . 46
4.5.2 Efficient Synchronization Primitives for GPUs . 48

4.6 Dynamic Work Balancing . 50
4.6.1 CTA Level Work Stealing Deques . 50
4.6.2 Synchronization Between Owner and Thief . 51
4.6.3 Test Distillation . 53
4.6.4 Test Results . 54

5. BULK RESULTS . 56

5.1 Naming and Synchronization . 56
5.1.1 Different Kinds of Synchronization . 57

5.2 Test Specifications and Results . 59
5.2.1 Message Passing (MP) . 60
5.2.2 Load Delaying (LD) . 61
5.2.3 Store Buffering (SB) . 61
5.2.4 IRIW . 62
5.2.5 Coherence of Independent Writes (2+2W) . 63
5.2.6 Fences and Coherence Version 1 (R) . 64
5.2.7 Fences and Coherence Version 2 (S) . 65

5.3 High-Level Observations . 65
5.4 Comparison to Operational Model . 66

5.4.1 Comparison Results . 68

6. CONCLUSION AND FUTURE WORK . 71

6.1 Additional GPU Configurations . 71
6.2 Herd Model . 72
6.3 OpenCL Compilation . 73
6.4 Summary . 75

APPENDIX: PTX FROM DYNAMIC LOAD BALANCING 76

REFERENCES . 78

v

LIST OF FIGURES

2.1 GPU thread and memory hierarchy of the GPU programming model 12

2.2 Vector addition GPU kernel written in CUDA . 12

2.3 GPU hardware showing CUDA cores, SMs, and the memory hierarchy 14

2.4 Different types of concurrent memory accesses within a warp: a) parallel access
where threads reads different banks, b) broadcast access where threads read
from the same bank and same address, and c) bank conflict access where
threads access the same bank but different addresses . 15

2.5 Store buffering (SB) litmus test . 19

2.6 All interleaving of the store buffering (SB) litmus test 20

2.7 Histogram of results from running the store buffering litmus test on an Intel
i7 x86 processor. 20

2.8 Litmus test example written for GPUs in PTX syntax 21

3.1 High-level flow of the GPU litmus tool . 24

3.2 Example of a GPU .litmus file which specifies the store buffering (SB) test . 25

3.3 Additional examples of scope tree declarations . 26

3.4 Testing loop of the CPU portion of the generated program 28

3.5 The kernel code where GPU threads execute the tests specified in the GPU
.litmus file. 29

3.6 Code snippet of the general bank conflict incantation implementation 31

3.7 High-level structure of the memory stress incantation implementation 33

4.1 Test specification for CoRR . 40

4.2 Test specification for MP-L1 . 42

4.3 Test specification for CoRR-L2-L1 . 43

4.4 Test specification for MP-volatile . 45

4.5 Implementation of lock and unlock given in CUDA by Example 46

4.6 Code snippet from the mutex example given in CUDA by Example 47

4.7 Test specification for CAS-SL . 47

4.8 Test specification for EXCH-SL . 49

4.9 Example configuration of the concurrent deque . 51

4.10 Implementation of push and steal for the concurrent deque 52

4.11 Initial state of the concurrent deque . 52

4.12 Concurrent deque after a single task has been pushed 53

4.13 Test specification for DLB-MP . 53

5.1 Test specification for MP+membar.cta+membar.gl . 57

5.2 Test specification for MP+membar.ctas . 57

5.3 Test specification for LD+datas . 58

5.4 Test specification for MP . 60

5.5 Test specification for LD . 61

5.6 Test specification for SB . 62

5.7 Test specification for IRIW; memory annotations (.cg) and types (.s32) are
omitted in this example for readability. 62

5.8 Test specification for 2+2W . 63

5.9 Test specification for R . 64

5.10 Test specification for S . 65

5.11 High-level view of the data structures and communication in the operational
GPU weak memory model . 67

6.1 Simple scoped RMO Herd axiomatic memory model with a fence parameter-
ized global happens-before and PTX fences . 73

A.1 Annotated PTX code for the steal and push methods produced from com-
piling the dynamic load balancing CUDA code . 77

vii

LIST OF TABLES

2.1 GPU terminology mappings between different vendors and frameworks 10

2.2 Relevant PTX data types, memory annotations, and instructions 17

2.3 CUDA compilation mappings to PTX . 18

3.1 Effectiveness of incantations for inter-CTA GPU configurations 36

3.2 Effectiveness of incantations for intra-CTA GPU configurations 37

4.1 Results for CoRR tests . 41

4.2 Results for MP-L1 tests . 42

4.3 Results for CoRR-L2-L1 tests . 44

4.4 Results for MP-volatile tests . 46

4.5 Results for CAS-SL tests . 48

4.6 Results for EXCH-SL tests . 49

4.7 Results for DLB-MP tests . 54

5.1 Test attributes . 56

5.2 Results for MP tests . 60

5.3 Results for LD tests . 61

5.4 Results for SB tests . 62

5.5 Results for IRIW tests . 63

5.6 Results for 2+2W tests . 64

5.7 Results for R tests . 64

5.8 Results for S tests . 65

5.9 Observed executions and allowed behaviors for operational model 69

6.1 Results for intra-CTA SB tests with different memory regions 72

6.2 Observed executions and allowed behaviors for axiomatic model 74

ACKNOWLEDGMENTS

This work would not have been possible without the following people, to whom I extend

my sincerest of gratitude.

First and foremost, thanks to my professor, mentor, and role model Professor Ganesh

Gopalakrishnan for giving me the amazing opportunity to get involved in research. The

experiences I’ve had over the last few years working with Professor Gopalakrishnan have

given me a love for learning I never thought I could have. His tireless devotion to his

students will not be forgotten. Thanks to my committee members, Professor Zvonimir

Rakamaric and Professor Mary Hall. The mentoring, support, and opportunities they both

have provided me have been essential in shaping my current interests and future goals.

Thanks to Dr. Jade Alglave at University College of London for supervising much

of this work and her detailed feedback during the writing process. In addition to be

being a knowledgeable and motivating mentor, she facilitated collaborations which gave

this work breadth and momentum. Thanks to my UK GPU memory model collaborators,

namely Daniel Poetzle (University of Oxford), Dr. Alastair Donaldson, Dr. John Wickerson

(Imperial College London), Mark Batty (University of Cambridge), and Dr. Luc Maranget

(Inria) for their insights and discussions that contributed to this work.

Thanks to Vinod Grover at Nvidia; his feedback and encouragement from an industry

perspective helped steer us in new and interesting directions. Thanks to Professor Suresh

Venkatasubramanian, Professor Stephen Siegel, and Professor Matt Might for their encour-

agement and invaluable contribution to my education over the last few years.

Thanks to my fellow aspiring researchers: Kathryn Rodgers, Mohammed Al-Mahfoudh,

Bruce Bolick, and Leif Andersen for sharing my struggles and all their help, both academ-

ically and emotionally. Thanks to all the Gauss Group members for providing me with a

stimulating environment and for forcing me to work harder than I ever have in my life trying

to reach the precedence they have set. Thanks to my parents and other family members

whose unwavering support and patience throughout my life has led me to where I am today.

Lastly, and not exclusive from the aforementioned, thanks to my friends for their generous

support throughout my education and consistent reminders that life is meant to be enjoyed.

I am grateful for the funding for this work which was provided by the following NSF awards:

CCF 1346756, ACI-1148127, CCF-1241849, CCF 1255776, and CCF 7298529.

x

CHAPTER 1

INTRODUCTION

Much of the implementation work for this project was conducted during a three-month

visit to University College London under the supervision of Dr. Jade Alglave. During

that time, we met several other researchers interested in GPU memory models and began

collaborating on a thorough study on the subject. This work presents one aspect of the larger

study, namely running GPU litmus tests on hardware. However, this work was conducted

in close collaboration with the larger project and draws heavy inspiration from discussions

and work with the larger group, namely: Daniel Poetzl (University of Oxford), Dr. Alastair

Donaldson, Dr. John Wickerson (Imperial College London), and Mark Batty (University of

Cambridge).

A Graphics Processing Unit (GPU) is an accelerated co-processor (a processor used to

supplement the primary processor often for domain-specific tasks) designed with many cores

and high data bandwidth [1, pp. 3-5]. These devices were originally developed for graphics

acceleration, particularly in 3D games; however, the high arithmetic throughput and energy

efficiency of these microprocessors had potential to be used in other applications. In late

2006, NVIDIA released the first GPU that supported the CUDA framework [2, p. 6]. CUDA

allowed programmers to develop general purpose code to execute on a GPU.

Since then, the use of GPUs has grown in many aspects of modern computing. For

example, these devices have now been used in a wide range of applications, including medical

imaging [3], radiation modeling [4], and molecular simulations [5]. Current research is

developing innovative new GPU algorithms for efficiently solving fundamental problems in

computer science, e.g. Merrill et al. [6] recently published an optimized graph traversal

algorithm specifically to run on GPUs.

The most recent results (November 2013) of the TOP500 project, which ranks and

documents the current most powerful 500 computers1 in terms of performance, states that

1see http://www.top500.org

2

a total of 53 the computers on the list are using accelerators or co-processor technology,

including the top two. A similar list known as the Green5002 ranks super computers in

terms of energy efficiency; GPU accelerated systems dominate this list and occupy all top

ten spots.

Statistics from a popular online GPU research hub (www.hgpu.org) show how GPUs

research has increased over the years. For example, less than 600 papers were published

in 2009 describing applications developed for GPUs; in 2010 this rose to 1000 papers and

years 2011 through 2013 each saw over 1200 papers. GPUs are also becoming common in

the mobile market; popular tablets and smart phones, such as the iPad Air [7] and Samsung

Galaxy S [8] series, now contain GPU accelerators.

GPUs are concurrent shared memory devices and as such, they share many of the

concurrency considerations as their traditional multicore CPU counterparts including no-

torious concurrency bugs. One example of a concurrency bug is a data race in which

shared memory is accessed concurrently without sufficient synchronization; data races cause

undefined behavior in many instances (e.g. C++11 [9]). Another example of a concurrency

bug is a deadlock, in which two processes are waiting on each other, causing the system to

hang indefinitely. Concurrency bugs can be difficult to detect and reproduce due to the

nondeterministic execution of threads. That is, a bug may appear in one run and not in

another even with the exact same input data [10]. In some cases, concurrency bugs have

gone completely undetected until deployment and have caused substantial damage. Notable

examples include:

• The Therac-25 radiation machine, in which a data race caused at least six patients to

be given massive overdoses of radiation [11].

• The Northeastern blackout of 2003, which left an estimated ten million people power-

less for up to two days, was primarily due to a race condition in the alarm system [12].

• The 1997 Mars Pathfinder, in which a deadlock caused a total system reset during the

first few days of its landing on Mars. Luckily the spacecraft was able to be patched

from earth once the problem was debugged [13].

A related source of nondeterminism which can cause subtle and unintended (i.e. buggy)

behaviors in concurrent programs is the shared memory consistency model, which is what

values can be read from shared memory when issued concurrently with other reads and

2see http://www.green500.org

3

writes [14, p. 1]. A developer may expect every concurrent execution to be equivalent to a

sequential interleaving of the instructions, a property known as sequential consistency [15].

This however, is not always the case as many modern architectures (e.g. x86, PowerPC,

and ARM [16]) weaken sequential consistency for substantial performance and efficiency

gains [17]. These architectures are said to have weak memory models and the underlying

architecture is allowed to execute certain memory instructions out of the order in which

they are given in the syntax of the program. We refer to executions that do not correspond

to an interleaving of the instructions as weak or relaxed behaviors. To enable developers to

enforce orderings not provided by the architecture, special instructions known as memory

fences can be used to guarantee certain orderings and properties. If a programmer is to

avoid costly and elusive concurrency bugs, he or she must understand the architecture’s

shared memory consistency model and the guarantees (or lack thereof) provided.

Shared memory consistency models for traditional CPUs have been relatively well stud-

ied over the years [14, 16, 18] and continue to be a rich area of research. However, GPUs have

a hierarchical concurrency model that is substantially different from that of a traditional

CPU. GPU developers have explicit access to the location of threads in the GPU thread

hierarchy and can design programs using this information; threads that share finer grained

levels of the hierarchy enjoy accelerated interactions and additional functionality. For

example, one level of the hierarchy is called a CTA (Cooperative Thread Array). A GPU

program often has many CTAs, and threads residing in the same CTA have access to a

fast region of memory called shared memory3. Threads in different CTAs cannot access the

same shared memory region and must use the slower global memory region to communicate

data. Additionally, there are built-in synchronization barrier primitives and a memory

fence that only apply to threads residing in the same CTA [19, p. 95]. These features are a

noticeable departure from traditional CPU models where generally only one memory space

is considered and memory fences apply to all threads.

Unfortunately, GPU vendor documentation on shared memory consistency remains

limited and incomplete. The CUDA 6 manual provides only 3 pages of documentation on

the subject, which largely covers memory model basics and shows one complicated example

[19, pp. 92-95]. While NVIDIA does not release machine code documentation or tools,

they provide a low-level intermediate language called PTX (Parallel Thread eXecution).

The PTX 4.0 ISA gives only one page of shared memory consistency documentation with

3We use the term shared memory in this document to refer to the specialized GPU memory region as
opposed to any region of memory that is accessible to multiple threads

4

no examples [20, p. 169]. Both CUDA and PTX documentation are written in prose and

lack the mathematical rigor required to reason about complicated interactions. It remains

unclear to us what behavior GPU developers can safely rely on when using current NVIDIA

hardware.

1.1 Thesis Statement and Contributions

Due to the lack of a rigorous specification for the weak memory behaviors allowed by

GPUs, it remains unclear what memory relaxations current GPUs allow. This issue can

be systematically approached by developing formally-based testing methods that explore

the behaviors observable on GPUs. These testing methods are able to experimentally

investigate corner cases left underspecified by the documentation as well as rigorously test

classic memory consistency properties (e.g. coherence); additionally this approach promotes

the development of abstract formal models of the architecture, thus helping designers and

developers agree on what user programs may rely upon. Without this understanding

between designers and developers, GPU applications may be prone to elusive bugs due to

weak memory orderings. While these testing approaches have been employed successfully

for CPU architectures, GPUs contain an explicit hierarchical concurrency model with subtle

scoped properties unseen on CPU architectures; additionally, the throughput oriented

hardware of GPUs require innovative new testing heuristics in order to effectively reveal

weak behaviors.

1.1.1 Thesis Statement

Systematic memory model explorations are greatly aided by developing formally-based

testing methods that reveal experimentally the extent to which the memory orderings are

relaxed. In addition to helping corroborate with intentionally designed relaxations, these

approaches also help expose unintended weak behaviors (bugs), and also help set allowed

weakenings for the architectural family.

1.1.2 Contributions

To better understand and test GPU memory models, this work presents a GPU hardware

memory model testing framework which runs simple concurrent tests (known as litmus tests)

thousands of times under complex system stress designed to trigger weak memory model

behavior. The results are recorded and checked for weak memory model behaviors and how

often they occurred. We present a format for describing GPU litmus tests which account

for the explicit placement of threads into the GPU thread hierarchy and memory locations

5

into GPU memory regions. The framework reads a GPU litmus test and creates executable

CUDA or OpenCL code with inline PTX which will run the test and display the results.

We develop GPU-specific heuristics without which we are unable to observe many weak

model behaviors. These heuristics include purposely placing poor memory access patterns

(known as bank conflicts) on certain memory accesses in the tests and randomly placing

the testing threads throughout the GPU. For example, if the GPU litmus test specifies two

testing threads are in different CTAs, the framework will then randomly assign a distinct

CTA ID to the testing thread for each run of the test. Our testing framework also uses the

nontesting threads on the GPU to create memory stress by constantly reading and writing

to nontesting memory locations. These heuristics have a substantial impact on if, and how

many times, weak behaviors are observed.

We then report the results of running GPU litmus tests in this framework. We observe

a controversial and unexpected relaxed coherence behavior, in which a read instruction is

allowed to observe stale data w.r.t. an earlier read from the same address. We observe

this behavior on older NVIDIA chips, but not the newest architecture (named Maxwell).

We present several examples of published GPU applications which may exhibit unintended

behavior due to the lack of fence synchronization. These examples include a spin-lock pub-

lished in the popular CUDA by Example book and a dynamic GPU load balancing scheme

published as a chapter in GPU Computing GEMs - Jade Edition. We test many classical

CPU litmus tests under different GPU configurations and show that GPUs implement weak

memory models with subtle scoped properties unseen in CPU models. Finally, we compare

our testing results to a proposed operational GPU memory model and show that it is

unsound, i.e. disallows behaviors that we observe on hardware.

Our techniques are implemented in a modified version of the litmus tool of the DIY

memory model testing tool suite (see http://diy.inria.fr/).

1.2 Prior Work

The work presented in this thesis draws heavy inspiration from the original litmus

tool [21] of the DIY memory model testing tool suite4 which runs litmus tests on several

different CPU architectures, including x86, PowerPC, and ARM. It takes a litmus test

written in pseudo assembly code as input and creates executable C code which will execute

and record the outcomes of the input litmus test. The litmus tool uses heuristics to

make weak behaviors show up more frequently which include affinity assignments and

4see http://diy.inria.fr/

6

custom synchronization barriers. The work presented in this thesis modifies the litmus

tool to take GPU litmus tests as input and creates executable CUDA or OpenCL code

with GPU-specific heuristics. TSOTool [22] is another memory model testing tool which

exclusively targets architectures which implement the Total Store Order (TSO) memory

model. The ARCHTEST tool [23] is an earlier memory model testing tool which only tests

for certain behaviors and cannot easily run new tests as the tests are hard coded in the tool.

Using litmus tests are an intuitive way to understand memory consistency models and

are used in official industry documentation [24]. Litmus tests have been studied formally

and have been shown to describe important properties of memory systems such as model

equivalence [25]. Alglave et al. have developed a method for generating litmus tests [26]

based on cycles and present large families of litmus tests in [16]. This thesis expands

the traditional CPU litmus test with additional GPU unique specifications (described in

Section 3.1).

1.2.1 GPU Memory Models

The past two years have seen a noticeable push in both academia and industry to

understand and document GPU memory models. We consider this work part of that effort

and hope to see same level of rigorous testing and modeling applied to GPU memory models

as CPU memory models have enjoyed (for example, in [16, 18, 14]).

We present here the history as we know it of GPU memory models in prior literature

and how this work on testing contributes to them:

• In June 2010, Feng and Xiao revisited their GPU device-wide synchronization method [27]

to repair it with fences [28]. They report on the high overhead cost of GPU fences,

which in some cases removes the performance gain of their original barrier. They ap-

pear skeptical that GPUs exhibit weak memory behaviors, illustrated by the following

quote [28, p. 1]:

In practice, it is infinitesimally unlikely that this will ever happen given
the amount of time that is spent spinning at the barrier, e.g., none of
our thousands of experimental runs ever resulted in an incorrect answer.
Furthermore, no existing literature has been able to show how to trigger
this type of error.

We consider our work to be a response to that quote in that we show heuristics which

trigger weak memory effects on GPUs (see Chapter 3).

• In June 2013, Hower et al. proposed a SC (Sequential Consistency) for race-free

memory model for GPUs [29]. This model uses acquire/release [14, pp. 68–69] syn-

7

chronization; however, to allow efficient use of the explicit GPU thread hierarchy, the

acquire and release atomic operations may be annotated with a scope (i.e. level) in

the GPU hierarchy which restricts the ordering constraints to that scope. Using these

atomics and program order, they construct a happens-before relation which they use

to define a particular type of data race they dub a heterogeneous data race. They

state that hardware satisfying this memory model must give sequentially consistent

behavior for programs free of heterogeneous data races. While this model is intuitive,

it is unclear if or how this is to be implemented on current hardware.

• Also in June 2013, work by Hechtman and Sorin [30] showed that in a particular

model of GPU and for programs run on GPUs, weak memory consistency has a

negligible impact on performance and efficiency. Because of this, the authors suggest

that sequential consistency is an attractive choice for GPUs. In our work, we show

that regardless of the benefits (or lack thereof) of weak memory consistency on GPUs,

current GPUs do in fact implement weak memory models.

• Continuing in June 2013, Sorensen et al. [31] proposed an operational weak GPU

memory model based on the limited available documentation and communication with

industry representatives. This model was implemented in a model checker and gave

semantics to simple scoped GPU fences over shared and global memory regions. More

complex interactions were left unspecified. In our work (Section 5.4), we compare

the behaviors allowed under this model against behaviors observed on hardware and

show that this model is unsound (i.e. the model disallows behaviors that we observe

on hardware).

• In January 2014, Hower et al. [32] continued their work and present two SC for data

race free GPU memory models using scoped acquire/release semantics again. The

first model, dubbed HRF-direct, is suited for traditional GPU programs and current

language standards model. The second model, dubbed HRF-indirect, is forward-

looking to irregular GPU programs and new standards. Much like their previous

work in [30], this work describes intuitive models, but it still remains unclear if or

how this relates to memory models on current GPUs.

At this point, we have only discussed NVIDIA specific industry documentation. How-

ever, non-NVIDIA proprietary GPU languages and frameworks have begun to explore GPU

memory models. The new OpenCL 2.0 [33] GPU programming language specification

released in November of 2013 has adopted a memory model similar to C++11 [9]. However,

8

to enable developers to take advantage of the explicit GPU thread hierarchy, the OpenCL

2.0 specification has introduced new memory scope annotations to atomic operations which

restricts ordering constraints to certain levels in the GPU thread hierarchy. Similarly, the

HSA low-level intermediate language [34] provides scoped acquire/release memory opera-

tions and fences similar to the previously mentioned work by Hower et al. [32]. Our work

empirically investigates the current GPU hardware memory models, which must be well

understood if these new specifications are to be efficiently implemented.

1.3 Roadmap

Chapter 2 presents the required background for the proper understanding of the rest

of this document. This includes a primer on GPU architectures and programming models

including the relevant low-level PTX instructions. Furthermore, we discuss some prerequi-

sites on shared memory consistency and litmus tests. We conclude this chapter by formally

discussing our notation for GPU litmus tests.

In Chapter 3, we discuss our testing framework, starting with the format of a GPU

.litmus test for the PTX architecture. We then discuss critical incantations, without

which we are unable to observe any weak memory model behaviors. We continue to present

additional heuristics and report on their effectiveness.

Chapter 4 presents several notable results that we have gathered from running tests

with the framework. We show a controversial relaxed coherence behavior observable on

older NVIDIA GPUs, but not on the most recent architecture. We discuss interesting

behaviors with PTX memory instruction annotations, and show examples where we observed

behaviors that we did not expect from reading the documentation. We then shift our focus

to CUDA applications (two of them published in CUDA books) which contain interesting

concurrent idioms, namely two mutex implementations and a concurrent data structure. We

show that these implementations may allow unintended (i.e. buggy) executions but may be

experimentally repaired with memory fences.

In Chapter 5, we present the results of running families of different tests under several

GPU configurations. We show that GPUs implement weak memory models with subtle

scoped properties unseen in CPU models. These families of tests provide intuition about

what types of re-orderings are allowed on GPUs and what memory fences will experimentally

restore orderings. We compare our observations to an operational GPU model presented

in [31] and show that the model is unsound (i.e. disallows behaviors that we observe on

hardware).

9

We end with a conclusion in Chapter 6 which discusses ongoing work and future work.

Specifically, we discuss different GPU configurations that we were unable to test in this

document and interesting results they could yield. Additionally, we show new features

being added to the Herd [16] axiomatic memory model framework to reason about GPU

memory models. We finish with a summary of the document.

CHAPTER 2

BACKGROUND

In this chapter, we discuss the necessary background required for this work, including an

overview of GPU programming and hardware models (in Section 2.1 and 2.2, respectively).

Section 2.3 discusses the NVIDIA low-level intermediate PTX language and the instructions

we consider in this document. We provide a table of CUDA to PTX compilation mappings in

Section 2.3.1 which enables us to reason about CUDA code using PTX test cases. Section 2.4

then contains a primer on memory consistency models and litmus tests. We more formally

define the litmus test format, naming conventions and GPU configurations we consider in

Section 2.5.

Different GPU frameworks and vendors use different terminology and often overload

terms that have established meanings in traditional concurrent programming (e.g. shared

memory). Because this work focuses largely with NVIDIA GPU hardware, we use similar

terminology to that in the PTX ISA [20]. Table 2.1 shows a mapping from other GPU

terminologies to the ones we use; recall HSA is a new standard for heterogeneous computing,

including GPUs [34].

2.1 GPU Programming Model

Programs that execute on GPUs are called GPU kernels and consist of many threads

which are partitioned in the GPU thread hierarchy. Threads that share finer grained levels

of the hierarchy have additional functionality which developers can design their GPU kernels

Table 2.1. GPU terminology mappings between different vendors and frameworks

PTX CUDA OpenCL HSA

thread thread work-item work-item
warp warp subgroup wavefront
CTA thread-block work-group work-group
shared memory shared memory local memory group memory
global memory global memory global memory global memory

11

to exploit. There are four levels of the GPU thread hierarchy that are considered in this

work:

• Thread: Much like a CPU thread, a GPU thread executes a sequence of instructions

specified in the GPU kernel.

• Warp: For all available NVIDIA architectures, a warp consists of 32 threads. Threads

in the same warp are able to quickly perform reductions and share variables via the

warp vote and warp shuffle CUDA function [19, pp. 114–118].

• CTA: A Cooperative Thread Array or CTA consists of a variable number of warps

which can be programmed at run-time. Depending on the GPU generation, a CTA

can contain up to 16 or 32 warps (512 or 1024 threads). Threads in the same CTA

are able to efficiently synchronize via a built-in synchronization barrier called with

the syncthreads command in CUDA [19, pp. 95–96].

• Kernel: A kernel (or GPU program) consists of a variable number of CTAs, which

may be in the millions. Distinct CTAs share the slowest memory region (global

memory) and have very limited support for interacting. There is no synchronization

barrier for all CTAs; however, there is a memory fence [19, p. 93] and read-modify-

write atomics [19, p. 111] which are supported to work across distinct CTAs. It should

be noted that CTAs are not guaranteed to be scheduled concurrently and deadlocks

may occur if a CTA is waiting for another CTA that is not scheduled [19, p. 12].

In addition to the functionality available at different levels of the GPU hierarchies, GPUs

also provide different memory regions that are only shared between threads in common

hierarchy levels. These memory regions are:

• Global Memory: This region of memory is shared between all threads in the GPU

kernel.

• Shared Memory: This region of memory is shared only between threads in the same

CTA; it is considerably faster and smaller than the global memory region.

Many GPUs additionally provide read-only memory regions (e.g. known as constant and

texture memory in CUDA). These memory regions are not considered in this work because

they are uninteresting with respect to shared memory consistency, i.e. the set of values a

read can return from read-only memory region is simply the memory value with which it

was initialized. The GPU thread and memory hierarchy are shown in Figure 2.1.

12

Figure 2.1. GPU thread and memory hierarchy of the GPU programming model

GPU kernels are written as a single function which all threads in the kernel execute.

Threads are able to query special variables (or registers in PTX) to determine the ID of

the CTA to which they belong, the size of their CTA, and their thread ID within the CTA.

Using this information, threads are able to compute a unique global ID and can then access

unique data to operate on. For example, a GPU kernel to add two vectors x and y and

store the result in vector z written in CUDA is shown in Figure 2.2. This program assumes

that the kernel has exactly as many threads as elements in the vector.

A GPU kernel is called from a CPU function using triple chevron style syntax, where

the two arguments inside the chevrons are the number of CTAs and threads per CTA. For

example, to launch the GPU kernel shown in Figure 2.2 with c CTAs and t threads per

1 //__global__ specifies that this function starts a GPU kernel

2 __global__ void add_vectors(int *x, int *y, int *z) {

3

4 int cta_id = blockIdx.x; //special variable for cta ID

5 int cta_size = blockDimx.x; //special variable for cta size

6 int thread_id = threadIdx.x; //special variable for thread ID

7

8 //A unique global ID can be computed from the above values as:

9 int global_id = (cta_id * cta_size) + thread_id;

10

11 //Now each thread adds its own array index

12 z[global_id] = x[global_id] + y[global_id];

13 }

Figure 2.2. Vector addition GPU kernel written in CUDA

13

CTA would be written as: add vectors<<<c,t>>>(x,y,z);. Finally, the CPU may not

directly access GPU memory; it must be explicitly copied to and from the GPU through a

built-in CUDA function named cudaMemCpy.

2.2 GPU Architecture

The GPU hardware architecture consists of physical processing units and a cache hier-

archy onto which the programming model maps. The architecture white papers published

by NVIDIA provide detailed information about the different features of the hardware. In

this document, we focus on the Fermi, Kepler, and Maxwell (GTX 750 Ti) architectures,

whose white papers are [35], [36], and [37], respectively.

A GPU consists of several streaming multiprocessors (or SMs). Larger GPUs designed

for HPC and heavy gaming may contain up to 15 SMs (e.g. GTX Titan) while smaller

GPUs may have much fewer; for example, the GTX 540m GPU has only 3 SMs. Each SM

contains a number of CUDA cores with pipelined arithmetic and logic units. The Fermi

architecture contains 32 CUDA cores per SM while the Kepler architecture features 192

CUDA cores per SM. All threads in the same CTA are mapped to CUDA cores in the same

SM and are executed in groups of 32 (i.e. a warp) in a model known as single instruction,

multiple threads (or SIMT) [19, pp. 66–67]. In this model, all threads in the warp are

given the same instruction to execute similar to the SIMD model in Flynn’s taxonomy [38].

However, the SIMT model differs from the SIMD model in that all threads have unique

registers and not all threads must execute the instruction (e.g. if a conditional only allows

some threads of a warp into a program region, then the other threads in the warp simply

do not execute until the conditional block of code ends). The Fermi architecture has a dual

warp scheduler that may issue instructions from two independent warps concurrently while

the Kepler architecture features a quad warp scheduler. The maximum number of threads

that can be assigned to an SM at any given time is 1536 and 2048 for Fermi and Kepler,

respectively. GPUs are attached to the main CPU through the PCI bus.

GPUs contain a physical cache hierarchy for the memory regions of the programming

model to map onto. A GPU contains a large region of DRAM to which all SMs have access;

it houses global and constant memory. This memory is usually 1 to 6 GBs in size. The

entire GPU then shares an L2 cache which is typically 1 to 2 MB in size and accelerates

global and constant memory accesses. Each SM contains a region for shared memory and

also a L1 cache for global and constant memory. In the Fermi and Kepler architectures,

this region of memory is the same and developers are free to configure this region to have

14

more shared memory or more L1 cache. In the Maxwell architecture, the shared memory

region and L1 cache are separate. This region of memory is typically 64 KB in size. It is

documented that the L2 cache is coherent (see Section 4.2 for a discussion of coherence), but

multiple interacting L1 caches are not coherent, e.g. two SMs accessing global memory via

their respective L1 caches are not guaranteed to have coherent interactions. GPU memory

instructions can be annotated to enforce which cache is targeted; these annotations are

documented in Section 2.3.

A figure of the GPU hardware model is shown in Figure 2.3. Notice the similarities to

the programming model shown in Figure 2.1, i.e. threads map to CUDA cores, CTAs map

to SMs, shared memory maps to the L1/shared memory cache, and global memory maps

to the L2/DRAM memory.

2.2.1 Hardware Memory Banks

One aspect of the GPU architecture that is used in this work is the different ways that

the hardware handles concurrent memory accesses. The shared memory region on a GPU

is organized in 32 4-byte banks on each SM [39, p. 118]. When threads in a warp issue a

Figure 2.3. GPU hardware showing CUDA cores, SMs, and the memory hierarchy

15

memory access from shared memory, three things may happen which are shown in Figure 2.4

and described below:

• Parallel Access: In a parallel access, each thread in the warp accesses a unique

hardware bank and memory requests are able to be serviced in parallel.

• Broadcast: In a broadcast access, only one memory load is issued and the result

is broadcast to all threads. This access only applies to load operations and happens

when threads load from the same address.

• Bank Conflict: In a bank conflict access, the hardware serializes the accesses which

causes a performance slowdown. This access is similar to a broadcast access except

that threads access different addresses from the same bank.

Additionally, GPUs are sensitive to the alignment of global memory accesses. Cache

lines are 128 bytes, and warps that access across multiple cache lines result in unnecessary

data movement (i.e. entire cache lines) which causes a loss of performance. Avoiding these

types of poorly aligned accesses is known as memory coalescing [39, pp. 125–127].

2.3 PTX

We have previously mentioned that GPUs may be programmed using CUDA language;

however, the goal of this work is to test GPU hardware, and as such it is convenient to

program as close to the hardware as possible. The CUDA compilation process takes a file

Figure 2.4. Different types of concurrent memory accesses within a warp: a) parallel access
where threads reads different banks, b) broadcast access where threads read from the same
bank and same address, and c) bank conflict access where threads access the same bank
but different addresses

16

with a program written in the CUDA language as input and compiles it into a GPU binary

file known as a cubin which contains GPU machine code. As part of this process, a low-level

intermediate representation known as Parallel Thread eXecution (or PTX) is generated.

NVIDIA provides very limited access to the machine code, which is very sparsely

documented [40]. Additionally, there is no available method to write inline GPU machine

code or even assemble machine code programs. The sole access to GPU machine code is

through the application cuobjdump which provides the assembly code of a cubin file. To

this end, our framework tests the hardware by using inline PTX in CUDA or OpenCL code

which is supported [41].

PTX syntax requires each instruction to contain a type annotation specifying the data

type the instruction is targeting. For example, an unsigned 32 bit type carries an annotation

of .u32. Additionally, memory instructions may be annotated to specify different caching

behaviors. For example, a load instruction (ld) may be annotated to read from the L2 cache

with annotation .cg. As a complete example, to load an unsigned 32 bit value from the

L2 cache, the following instruction would be used: ld.cg.u32. Table 2.2 shows the types,

annotations, and instructions that this work targets with a brief description interpreted

from the PTX ISA [20] to the best of our understanding.

2.3.1 CUDA to PTX Mappings

In Chapter 4, we discuss several case studies where we evaluate published CUDA code

in our testing framework. Because our framework evaluates PTX code, CUDA instructions

must first be mapped to PTX instructions. Table 2.3 shows the relevant instruction

mappings from CUDA to PTX for these case studies which we have discovered by examining

CUDA code and generated PTX code1. We have taken precautions to ensure that loads and

stores are compiled with the L2 memory annotation. This is done because Section 4.3 shows

that is not possible to restore orderings to operations that target the L1 cache (the default

for the CUDA compiler) on the Fermi architecture. We are interested in experimentally

examining which fences are required to restore orderings to the examples, thus instructions

to which we are unable to restore order are not interesting. The L2 annotation can be set

to the default with the following compiler flags: -Xptxas -dlcm=cg -Xptxas -dscm=cg.

The focus of this document is to show the behaviour of these examples at the hardware

level; as such, we ignore the effects of potential compiler optimizations. For the CUDA case

studies we examine, we have verified by manually inspecting the PTX output that the CUDA

1We used CUDA release 5.5 V5.5.0

17

Table 2.2. Relevant PTX data types, memory annotations, and instructions

PTX Data Types

.u32 unsigned 32 bit integer type

.s32 signed 32 bit integer type

.b32 generic 32 bit type

.b64 generic 64 bit type

.pred predicate (contains either true or false)

PTX Memory Operation Annotation

.ca
annotates load instructions, loads values
from the L1 cache

.wb

annotates store instructions, stores values to
L2 cache, but future architectures may use it
to store to L1 cache

.cg
annotates both load and store instructions,
accesses will target L2 cache

.volatile

annotates both load and store instructions,
inhibits optimizations and may be used to
enforce sequential consistency

PTX Instructions

ld{.ann}{.type} r1, [r2]

loads value at address in register r2 into
register r1 of data type type with annotation
ann

st{.ann}{.type} [r1], r2

stores value in register r2 of data type type
to the address in register r1 with annotation
ann

membar{.scope} memory fence for scope of .cta or .gl for
inter-CTA and interdevice, respectively

atom{.op}{.type} r1, [r2], r3

atomically perform operator op with
memory at address r2 and value in register
r3 and stores the previous memory value in
register r1. op may be .add to atomically
add or .exch to exchange etc.

setp{.comp}{.type} p1, r1, r2

sets the value of the predicate register p1 to
the value of comparing registers r1 and r2

with comp where comp might be .gt

(greater than), .eq (equal to) etc.

PTX Predicates

@p1 {ins} execute instruction ins only if predicate
register p1 is true

18

Table 2.3. CUDA compilation mappings to PTX

CUDA Instruction PTX Instruction

atomicCAS atom.cas.b32

atomicExch atom.exch.b32

threadfence membar.gl

threadfence block membar.cta

store global int st.cg.u32

load global int ld.cg.u32

store global volatile int st.volatile.u32

load global volatile int ld.volatile.u32

control flow (e.g. while, if) setp with predicate (e.g. @r1)

compiler does not reorder or otherwise optimize the memory accesses (e.g. hold memory

accesses in registers). For PTX tests, we have again manually inspected the assembly code,

using cuobjdump, to ensure that the PTX compiler does not reorder or otherwise optimize

the memory accesses; future work will attempt to automate this validation. Because of this

manual work, we can ignore compiler optimizations for the examples we present and be sure

that we are indeed testing the hardware behavior.

2.4 Memory Models and Litmus Tests

For a given program and architecture, a memory model defines the set of values that

the load instructions are allowed to return. That is, it specifies all possible behaviors of

shared memory interactions. Memory models may be described in an operational style

in which the system is described as an abstract machine. Given the current state of the

system, the operational model will provide all possible transitions the system could take and

how the system state is updated based on the transition; examples of operational models

include [42, 18]. Memory models may alternatively be defined in an axiomatic style where

constraints are described on sets and relations over memory actions; for examples of this

type of model, see [43, 44, 16]. Our work does not propose any memory model; instead,

we examine the observable effects of the memory model implemented on current GPUs. In

Section 5.4, we compare our results to a proposed operational GPU memory model and

show that the model is unsound (i.e. disallows behaviors that we observe on hardware). In

Section 6.2, we briefly discuss future work to extend the herd axiomatic memory model tool

[16] of the DIY tool suite for GPU memory models.

An intuitive way to understand memory models is through litmus tests, i.e. short con-

current programs with an assertion about the final states of registers and memory. Litmus

19

tests are evaluated under a memory model and can be allowed (the assertion sometimes

passes) or disallowed (the assertion never passes). Figure 2.5 shows a litmus test known as

store buffering (or abbreviated to SB) written in C-like syntax. In this test, x and y are

memory locations initialized to 0. Thread 0 first stores the value 1 to location x then reads

from location y and stores the result in local register r1. Thread 1 writes to location y and

then reads from x and stores the result in local register r2. The assertion asks if r1 and r2

are allowed to both equal 0 after both threads finish executing.

Many programmers are taught to reason about concurrent programs under the sequen-

tially consistent memory model (or simply SC), first defined by Lamport in 1979 [15].

That is, a concurrent execution must correspond to some interleaving of the instructions.

Figure 2.6 shows how one would reason about the SB litmus test (shown in Figure 2.5)

under SC; that is, the interleavings are enumerated and executed as a sequential program.

There are six possible interleavings and the assertion (r1 = 0 ∧ r2 = 0) is not satisfied for

any of them, thus the SB litmus test is disallowed under the SC memory model.

Modern multiprocessors (e.g. x86, ARM) implement weak memory models, where ex-

ecutions may not correspond to an interleaving. Using the original litmus tool [21] to

run the store buffering litmus test on an Intel i7 processor one million times yields the

histogram of results shown in Figure 2.7 (the output has been slightly modified from the

actual litmus output to correspond to the register syntax used throughout in this section).

This shows that empirically we can observe that the Intel i7 processor allows weak behaviors

(executions that do not correspond to an interleaving of the instructions) in 119 out of a

million iterations.

Weak architectures provide fence instructions to restore orderings. For example, consid-

ering the store buffering litmus test shown in Figure 2.5, if we place the x86 fence instruction

mfence between instructions a and b and instructions c and d and execute the test again,

we do not observe any weak behaviors and the litmus test becomes disallowed.

initial state: x = 0, y = 0

Thread 0 Thread 1
a: x ← 1;

b: r1 ← y;

c: y ← 1;

d: r2 ← x;

assert: r1 = 0 ∧ r2 = 0

Figure 2.5. Store buffering (SB) litmus test

20

Interleaving 1 Interleaving 2 Interleaving 3
a: x ← 1;

b: r1 ← y;

c: y ← 1;

d: r2 ← x;

a: x ← 1;

c: y ← 1;

b: r1 ← y;

d: r2 ← x;

a: x ← 1;

c: y ← 1;

d: r2 ← x;

b: r1 ← y;

Final: r1 = 0 ∧ r2 = 1 Final: r1 = 1 ∧ r2 = 1 Final: r1 = 1 ∧ r2 = 1

Interleaving 4 Interleaving 5 Interleaving 6
c: y ← 1;

a: x ← 1;

b: r1 ← y;

d: r2 ← x;

c: y ← 1;

a: x ← 1;

d: r2 ← x;

b: r1 ← y;

c: y ← 1;

d: r2 ← x;

a: x ← 1;

b: r1 ← y;

Final: r1 = 1 ∧ r2 = 1 Final: r1 = 1 ∧ r2 = 1 Final: r1 = 1 ∧ r2 = 0

Figure 2.6. All interleaving of the store buffering (SB) litmus test

2.5 GPU Litmus Tests

Here we formally define our notation for the presentation of GPU litmus tests and show

a concrete example of a PTX litmus test. Additionally, we present the three different GPU

configurations on which we focus throughout this document.

A test specification, such as the one shown in Figure 2.8, consists of several columns,

each headed by a global thread ID. Each thread scheduled on the GPU has a unique global

thread ID. In practice, a global thread ID can be computed using a combination of the

built-in GPU values, i.e. thread ID, CTA ID, and CTA size. However, in our examples,

we use symbolic global thread IDs, such as T0 and T1, for ease of presentation. A brief

description of each major part of the test specification follows.

Test SB Allowed

Histogram (4 states)

119 *> r1=0; r2=0;

499580 :> r1=1; r2=0;

500248 :> r1=0; r2=1;

53 :> r1=1; r2=1;

Ok

Witnesses

Positive: 119, Negative: 999881

Condition exists (r1=0 /\ r2=0) is validated

Figure 2.7. Histogram of results from running the store buffering litmus test on an Intel
i7 x86 processor.

21

initial state: x = 0, y = 0

T0 T1
st.cg.s32 [x], 1 ;

st.cg.s32 [y], 1 ;

ld.cg.s32 r1 , [y] ;

ld.cg.s32 r2 , [x] ;

assert: 1:r1=1 ∧ 1:r2=0

Figure 2.8. Litmus test example written for GPUs in PTX syntax

In each test, the initialization of memory will be explicitly provided at the top of the

test. In the example shown in Figure 2.8, the memory locations are initialized to 0.

Under each global thread ID is a program, i.e. the sequence of instructions executed

by that thread. In GPU programming, every thread executes the same program; however,

we can arrange for each thread to execute a different program by having threads branch

to different parts of the program based on their global thread IDs (we discuss this more

fully in Section 3.2). Consider the example in Figure 2.8, which implements a message

passing idiom and is known as MP (this test is analyzed in Section 5.2.1; it is given here

for explanatory reasons only). Here, the global thread IDs are T0 and T1. We assume

that each kernel is launched with a sufficient number of CTAs and threads such that each

program in the test will eventually be executed on the GPU. In the example, the two store

instructions will be executed by thread T0, and the two load instructions will be executed

by thread T1.

We deviate from concrete PTX syntax in that we allow direct stores of immediate

values to memory (e. g. st.cg.s32 [x],1 as seen in T0’s program in Figure 2.8), instead

of moving the value first to a register (via a mov instruction), and then storing the register

contents to memory. Thread local registers are denoted by rn where n is a non-negative

integer. Locations are given by single lower-case letters, e. g. x,y,z. In Figure 2.8, there

are two memory locations x and y, and thread T1 loads memory values to registers r1 and

r2.

Questions about the executions of a test are given as an assertion on the final values of

registers or memory locations. In Figure 2.8, the constraint is given as:

Assert: 1:r1=1 ∧ 1:r2=0

to ask if it is possible to observe T1’s private registers r1 to be 1 and r2 to be 0 in the

final state of the GPU after having executed all testing threads. Here, registers in the final

constraint are denoted n:reg, where reg is a register and n is the ID of the thread to which

the register belongs.

22

2.5.1 GPU Configurations

Regarding Figure 2.8, the test may yield different behaviors depending on whether T0

and T1 are in the same CTA or in different CTAs. Similarly with memory regions, the

behaviors allowed may be different depending on which GPU memory region x and y are

located in (shared or global). We refer to the placement of testing threads into the thread

hierarchy and memory locations into memory regions as a GPU configuration.

Although in Section 3.1 we show that our testing framework can execute most GPU

configurations, in this document, we largely only consider three simple GPU configurations.

We refer to them as D-warp:S-cta-Shared, D-warp:S-cta-Global, and D-cta:S-ker-Global;

they are defined as follows:

• D-warp:S-cta-Shared: In this GPU configuration, all programs in the test are

mapped to threads in different warps (D-warp stands for different warps), but in the

same CTA (S-cta stands for same CTA). Additionally, all testing memory locations

are located in the shared memory region.

• D-warp:S-cta-Global: Similar to D-warp:S-cta-Shared, in this GPU configuration,

all programs in the test are mapped to threads in different warps (D-warp), but in the

same CTA (S-cta). However, all testing memory locations are located in the global

memory region.

• D-cta:S-ker-Global: In this GPU configuration, all programs in the test are mapped

to different CTAs (D-cta) but the same kernel (S-ker). There is no shared memory

region variant of this GPU configuration because threads in different CTAs have

disjoint shared memory regions.

2.5.1.1 Limitations

We note that these are not a complete set of GPU configurations. For example, in

3+ threaded tests, some threads may be in the same CTA and others may be in different

CTAs. Similarly the same test may contain both shared and global memory locations.

However, because the three configurations we examine are explicitly discussed in the PTX

ISA [20, p. 165], we believe these configurations serve as a good basis for our exploration. In

ongoing work discussed in Section 6.1 we consider more complicated GPU configurations,

which show interesting initial results.

In this document, we do not test intrawarp interactions. This is largely because of the

essential role that warps have in our testing frameworks incantations, supporting intrawarp

23

testing becomes very difficult to develop and maintain. For example, in the synchronization

incantation described in Section 3.4.2, we note that only one thread per-warp can execute

the synchronization barrier; if multiple threads within a warp are executing tests with

the synchronization incantation, then the high-level kernel design (shown in Section 3.2)

will deadlock, and a much more complicated high-level design will be needed. We instead

chose to spend our energy developing other features, such as read modify write atomics and

conditionals, which produced interesting results as seen in Chapter 4.

Some applications contain multiple kernels which run on multiple GPUs concurrently. In

this document, we do not consider multi-GPU interactions because different GPU chips may

implement different memory models, e.g. in Chapter 5, it can be seen that different GPU

chips experimentally allow different behaviors. One of the goals of this work is to provide

empirical benchmarks to compare putative GPU memory models against. Composing

different memory models deserves careful treatment, and given that we do not even have a

memory model for single GPU interactions, we believe such a study is outside the scope of

this document.

CHAPTER 3

GPU TESTING FRAMEWORK

In this chapter, we discuss in detail the GPU testing framework. The high-level flow of

the framework is shown in Figure 3.1. First, the GPU litmus tool is given a GPU litmus

test in the GPU .litmus format which we describe in Section 3.1. This test specification is

used to create CUDA or OpenCL code which can be compiled and executed on a GPU. The

program will create a histogram of the results of running the test many times and check if

any of the outcomes satisfied the assertion given in the GPU .litmus file.

Most of this section is devoted to discussing the GPU program which is produced by the

litmus tool and the heuristics (we dub incantations) that we use to expose weak behaviors.

Section 3.3 presents critical incantations, which are the incantations without which we are

unable to observe any weak behaviors. Section 3.4 presents additional heuristics which

greatly increases the number of weak behaviors we are able to observe. We end this chapter

by showing the effectiveness of these heuristics in Section 3.5.

Figure 3.1. High-level flow of the GPU litmus tool

25

3.1 PTX GPU .litmus Format

Figure 3.2 shows a complete example of PTX GPU .litmus test which is able to be

parsed by the litmus tool to produce CUDA or OpenCL code. This test encodes the store

buffering (SB) litmus test first discussed in Section 2.4. We proceed to discuss each section

of the GPU .litmus test in detail. We note that the style and syntax of the GPU .litmus

borrows heavily from the .litmus format of the original litmus tool [21] and at each section,

we describe the differences from the GPU and original .litmus format.

Line 1 starts the test with the name of the architecture and a test name (we dub the

PTX architecture GPU PTX) and the test is SB. Lines 2–11 make up the register declarations

and initialization. As noted in Section 2.3, PTX has typed registers and as such, we require

all registers to be declared in this section. The syntax for declaration is: {tid}:.reg {type}

{register} where tid is an integer thread identifier (e.g. 0 for T0), type is a PTX type (listed

in Table 2.2), and register is a string of the form r{n} where n is an integer from zero to

nine. It is also required that registers requiring a non-zero initialization be initialized here.

1 GPU_PTX SB

2 {

3 0:.reg .s32 r0;

4 0:.reg .s32 r2;

5 0:.reg .b64 r1 = x;

6 0:.reg .b64 r3 = y;

7 1:.reg .s32 r0;

8 1:.reg .s32 r2;

9 1:.reg .b64 r1 = y;

10 1:.reg .b64 r3 = x;

11 }

12

13 T0 | T1 ;

14 mov.s32 r0,1 | mov.s32 r0,1 ;

15 st.cg.s32 [r1],r0 | st.cg.s32 [r1],r0 ;

16 ld.cg.s32 r2,[r3] | ld.cg.s32 r2,[r3] ;

17

18 ScopeTree

19 (device (cta (warp T0) (warp T1)))

20

21 y: global, x: shared

22

23 exists

24 (0:r2=0 /\ 1:r2=0)

Figure 3.2. Example of a GPU .litmus file which specifies the store buffering (SB) test

26

In lines 5 and 6, we initialize T0’s registers r1 and r3 to the memory locations x and y,

respectively. We initialize T1’s registers r1 and r3 similarly in lines 9 and 10. The original

.litmus format also has the initialization section, but does not require register declarations,

because it deals exclusively with architectures which do not have typed registers.

Lines 13–16 describe the concurrent program to be run by the test. The concurrent

program consists of several sequential programs (to be ran concurrently) given in vertical

columns and separated with a pipe (|) character. Each sequential program starts with a

thread identifier of the form T{n} where n is a integer from zero to nine. Following the

thread identifier is a sequence of PTX instructions. We support all instructions listed in

Table 2.2 along with several other basic binary operations (e.g. add, xor). The original

.litmus format specified programs in the same manner, but did not have a parser for PTX

programs.

As discussed in Section 2.5.1, a GPU litmus test must specify the location of testing

threads in the GPU thread hierarchy. Recent literature has referred to these hierarchy levels

as scopes [29, 32]; we adhere to that terminology here and require each GPU .litmus file

to contain a scope tree declaration which specifies the testing threads locations in the GPU

thread hierarchy. Syntactically this declaration begins with the keyword ScopeTree followed

by an S-expression [45] representing a tree of depth four where each level corresponds to

a level in the GPU thread hierarchy. Each list begins with an identifier for the level of

the hierarchy. From top to bottom, these identifiers are device, cta, and warp. A warp

list is simply a list of testing thread IDs (e.g. T0, T1). In the concrete example shown in

Figure 3.2, the scope tree is declared on lines 18 and 19; threads T0 and T1 are in the same

CTA but different warps. More scope tree examples are shown in Figure 3.3. The original

.litmus format did not test GPUs and hence had no need for a scope tree.

//scope tree for a 2 threaded test where T0 and T1 are in different ctas

(device (cta (warp T0)) (cta (warp T1)))

//scope tree for a 2 threaded test where T0 and T1 are in different

//warps, but the same CTA

(device (cta (warp T0) (warp T1)))

//more involved scope tree for a 3 threaded test where T0 and T1 are

//in different warps, but the same CTA but T2 is in a different CTA

(device (cta (warp T0) (warp T1)) (cta (warp T2))))

Figure 3.3. Additional examples of scope tree declarations

27

A GPU .litmus test must also specify in which region of memory testing locations

are, shared or global. To this end, a memory map declaration that appears immediately

following the scope tree declaration is required. The syntax is: {loc}:{region} where loc is

a memory location and region is either shared or global. This specifies that location loc

will be in the region memory region. All memory locations used in the test must be placed

in a memory region in this style. In the concrete example shown in Figure 3.2, the memory

map is given on line 21 and specifies that location y is in the global memory region and

location x is in the shared memory region. The original .litmus format did not test GPUs

and hence had no need for a memory map.

The GPU .litmus test ends with an assertion about the final state of registers or

memory locations. Syntactically, this begins with the keyword exists followed by an

assertion in parenthesis. Registers are referred to with the following syntax {n}:{reg}

where n is a thread integer identifier (e.g. 0 for thread T0) and reg is the name of a register

declared in the initialization portion of the test. Memory locations are simply referred to

by their name (e.g. x). We use the characters /\ to refer to the conjunction operator and

the equality symbol (=) to refer to equality. In the concrete example shown in Figure 3.2,

the assertion on lines 23 and 25 asks if it is possible for register r2 in thread T0 to equal

0 and register r2 in thread T1 to equal 0. The original .litmus has the same syntax for

specifying assertions.

3.2 GPU Program Skeleton

The GPU program produced by litmus can be split into two parts, the CPU code and the

kernel (i.e. GPU) code. While the GPU litmus tool can produce either CUDA or OpenCL

code, for ease of presentation, we show only CUDA code in this section. We begin our

discussion with the CPU code. Figure 3.4 shows the main loop executed by the CPU in

the form of high-level functions. From top to bottom (and noted with the line number), we

step through this loop:

• line 3 : This loop runs the GPU litmus test ITERATIONS times. The ITERATIONS value

can be controlled with a command line argument to the GPU litmus tool.

• line 4 : The initialize gpu kernel initializes all global memory used in the test.

Recall that GPU memory cannot explicitly be accessed on the CPU and must either

be initialized with a special CUDA function or in a separate kernel; we chose the latter

and launch the GPU with a single thread in a single CTA to initialize global values.

28

1 ...

2 //main CPU loop

3 for(int i = 0; i < ITERATIONS; i++) {

4 initialize_gpu<<<1,1>>>();

5 test_kernel<<<ctas,threads>>>(*device_results);

6 record_global<<<1,1>>>(*device_results);

7 cudaMemcpy(*cpu_results, *device_results, cudaMemcpyDeviceToHost);

8 record_results(cpu_results);

9 }

10 display_results();

11 ...

Figure 3.4. Testing loop of the CPU portion of the generated program

• line 5 : The test kernel kernel runs the concurrent PTX test specified by the GPU

.litmus file. The final contents of registers are placed in the global memory array

device results so that they may be copied back. It is launched with a variable

number of CTAs and threads which we discuss in Section 3.4.1.

• line 6 : The record global GPU kernel records any global memory locations needed

for the GPU litmus test assertion by placing them in the global memory array device results

so that they may be copied back to the CPU. Similar to the initialization kernel, this

kernel is launched with a single thread in a single CTA as only several locations will

ever need to moved.

• line 7 : Here the final contents of registers and memory (which were copied to the

global memory array device results) are copied back to the CPU with the built-in

CUDA cudaMemcpy function.

• line 9 : Next the results are recorded in a histogram and checked against the assertion

in the GPU litmus test.

• line 11 : After running the test ITERATIONS times, A histogram of results with an

emphasis on the results that satisfied the assertion is displayed. An example of the

output for a CPU test is seen in Figure 2.7.

Next we discuss the high-level implementation of the GPU kernel which runs the con-

current PTX program specified in the GPU .litmus file. This kernel was referred to as

test kernel in Figure 3.4. The high level code is shown in Figure 3.5 which we discuss for

the rest of this section.

29

1 //Inside the kernel test_kernel

2 ...

3 if (tid == T0_tid && wid == T0_wid && cid == T0_cid) {

4 //Execute T0’s test

5 ...

6 //Record T0’s registers

7 }

8 else if (tid == T1_tid && wid == T1_wid && cid == T1_cid) {

9 //Execute T1’s test

10 ...

11 //Record T1’s registers

12 }

13 ...

Figure 3.5. The kernel code where GPU threads execute the tests specified in the GPU
.litmus file.

Recall that GPU threads all execute the same kernel and in order for certain threads to

execute distinct code, they must branch on a conditional related to their thread ID, warp

ID, and CTA ID (tid, wid, and cid, respectively) as seen in lines 3 and 8. Once testing

threads (e.g. T0, T1) are filtered into their respective conditional code, they execute their

program that is specified in the GPU .litmus file. After the program is executed, the

threads record the values of their registers into a global memory array that the CPU can

copy and record.

The testing thread IDs, testing warp IDs, and testing CTA IDs (e.g. T0 tid, T0 wid,

and T0 cid, respectively) are determined by the GPU litmus tool and set such that the

scope tree in the GPU .litmus test is satisfied. For example, if the scope tree specifies that

T0 and T1 are in different CTAs, then T0 cid and T1 cid are never equal. Conversely if

T0 and T1 are in the same CTA, then T0 cid and T1 cid must always be equal.

3.3 Critical Incantations

The code presented in Section 3.2 is quite simple and, if executed as is, does not expose

any weak behaviors for any GPU litmus tests we ran. Speaking candidly, we had a difficult

time observing weak behaviors on GPUs; this project suffered several failed attempts over

the course of two years before we found success. We were finally able to observe weak

behaviors when we developed two critical incantations, called such because without at least

one of these incantations present, we are unable to observe weak behaviors. We dub these

two incantations general bank conflicts and memory stress.

30

3.3.1 General Bank Conflicts

Recall from Section 2.2.1 that concurrent memory accesses on GPU hardware are sus-

ceptible to bank conflicts due to poor memory accesses patterns within a warp. CUDA

documentation states that when a bank conflict occurs, memory accesses are serialized.

We are not concerned with the performance consequences of these memory access patterns;

rather we use them to cause stress on the memory system which we (correctly) hypothesized

could cause executions revealing weak memory behaviors. Official documentation only refers

to bank conflicts applying to the shared memory region. However, we observe that this

incantation works just as well for memory locations in the global memory region; as such,

we refer to this incantation as general bank conflicts.

This incantation lets all threads in the testing thread’s warp execute the testing threads

program. While the extra threads in the warp execute the same instructions as the testing

thread, they are provided with dummy addresses for each memory access instruction. These

dummy addresses are computed to be one of the following:

• Parallel: All threads in the warp will access their own memory bank for this memory

access instruction.

• Broadcast: All threads in the warp access the same memory location as the testing

thread for this memory access instruction. Note that this option is only computed

for read memory accesses; nontesting threads writing to testing locations would cause

corrupt results.

• Bank Conflict: All threads in the warp will cause a bank conflict with the testing

thread on this memory access instruction.

In order to test many different GPU access patterns for a given test, the access type (i.e.

parallel, broadcast, or bank conflict) for each memory access instruction is randomized for

each iteration of the GPU test.

The implementation of this incantation is largely in the testing kernel and happens

as we filter testing threads into their testing code. Figure 3.6 shows a snippet of code

implementing this general bank conflict for a specific testing thread T0 in the GPU testing

kernel. We describe in detail this code snippet next.

• Line 3 : Here the testing thread is filtered only by warp ID wid and CTA ID cid, thus

the entire warp of the testing thread enters this code.

31

1 ...

2 //T0’s entire warp executes test

3 if (wid == T0_wid && cid == T0_cid) {

4 //Assign unique address that potentially cause bank conflicts

5 bc_x = compute_address(access_type_x, T0_tid, x, tid);

6 bc_y = compute_address(access_type_y, T0_tid, y, tid);

7 ...

8 //Execute T0’s test with new addresses

9 ...

10 if (tid == T0_tid) {

11 //Record T0’s registers

12 ...

13 }

14 }

15 ...

Figure 3.6. Code snippet of the general bank conflict incantation implementation

• Line 5-6 : The example shows two memory locations x and y. New addresses bc x and

bc y are computed (bc stands for bank conflict) via the compute address function

which will return the original x and y location for the testing thread, but different

addresses for other threads in the warp. The access type argument (i.e. access type x

and access type x) indicate what type of access (i.e. bank conflict, parallel, broad-

cast) will happen for each address. They are randomized per iteration.

• Line 8 : All threads in the warp execute T0’s test using their newly computed ad-

dresses.

• Line 10-13 : Only the testing thread (T0) records the results.

While this incantation is one of our key ingredients for observing weak behaviors on

GPUs, it does carry some consequences. Specifically, there must now be enough continuous

memory space starting at the testing locations to allow all 32 threads in the warp to cause

bank conflicts with the testing thread. Given that bank conflicting addresses are 32 words

apart, this requires 32 ∗ 32 ∗ 4 = 4096 bytes of memory per testing location as opposed to

simply four bytes before. Given the amount of memory on current GPUs (over 1 GB for

global memory and 64 KB for shared memory), this is not an issue for tests with a small

number of testing locations.

32

3.3.2 Memory Stress

Memory systems implemented on modern multiprocessors have complicated caching

protocols which implement involved eviction and write-back policies [14]. Our hypothesis

is that stressing this system with relentless memory accesses will put these protocols in

interesting states and, in turn, trigger weak memory model executions. For example, a

memory bus may be more likely to transfer data out of order when it is under heavy stress

then if it is only servicing several requests. To this end, all nontesting threads are employed

to read and write from nontesting memory locations for an incantation we dub memory

stress.

We implement two functions, mem stress write() and mem stress read(), which re-

peatedly write and read to nontesting memory locations, respectively. These functions

implement efficient GPU access patterns by ensuring accesses contain no bank conflicts

and are largely optimally aligned; additionally, we make sure that warps do not diverge.

This allows memory to be written to and read from as rapidly and by as many threads as

possible.

The general bank conflict incantation described in Section 3.3.1 discusses that each

testing memory location now uses 4096 bytes of memory where most of it is padding to allow

for bank conflicts. Here, we take advantage of that padding memory, which is targeted by

the memory stressing functions. We emphasize that these stressing functions do not touch

the actual testing locations as that would interfere with the GPU litmus test. As a fail safe,

the mem stress write() function writes chaotic values which would easily be recognizable

as unwanted interference in the histogram of results.

The high-level code of how this incantation is implemented is shown in Figure 3.7. First,

it is shown that testing threads are filtered off to perform the PTX program specified in the

GPU .litmus file in lines 2–10. The remaining threads enter the memory stress region in

lines 13–19. In our implementation, half of the warps (i.e. warps with even numbered warp

ids) write to the memory, while the other warps read from memory.

We admit that there are many different ways to stress the memory system and due to the

lack of intimate documentation about caching protocols implemented on these chips, we are

unable to rigorously explain why these access patterns work as well as they do. However, we

are able to observe that this technique is crucial for exposing weak behaviors and provide

results which facilitate interesting observations and discussions about GPU memory models

(e.g. see Chapter 4).

33

1 ...

2 //Filter off T0

3 if (wid == T0_wid && cid == T0_cid) {

4 ...

5 }

6 //Filter off T1

7 else if (wid == T1_wid && cid == T1_cid) {

8 ...

9 }

10 ...

11 //All threads not testing, stress the memory system

12 else {

13 //Even number warps do the writes

14 if (wid % 2 == 0)

15 mem_stress_write();

16

17 //Odd numbered warps do the reads

18 else

19 mem_stress_read();

20 }

21 ...

Figure 3.7. High-level structure of the memory stress incantation implementation

3.4 Extra Incantations

In this section, we present two additional incantations that we call random threads and

synchronization. While these incantations are not critical (i.e. weak behaviors are observed

without them), their presence dramatically increases the number of weak memory behaviors

we observe. We report on the effectiveness of these incantations in Section 3.5.

3.4.1 Random Threads

To test many different physical locations of testing threads on the GPU, the launch

parameters (i.e. how many threads and CTAs with which the kernel is launched) and global

IDs of testing threads are randomized for each iteration of the test. We call this incantation

random threads. To implement this, global IDs (a combination of thread ID, warp ID,

and CTA ID) are randomly assigned to testing threads such that the scope tree given in

the specification remains valid. The memory model described in NVIDIA documentation

[19, 20] (which is what we hope to test and eventually formalize) is unaware of concrete

global IDs (e.g. thread ID = 1, CTA ID = 2); the model simply cares about the relationship

between global IDs. That is, the model gives ordering guarantees based on if threads are

interacting within the same CTA or across different CTAs. This incantation attempts to

34

get a good sampling of different concrete IDs over the relationships specified in the scope

tree of the GPU .litmus file.

Randomizing global IDs and launch parameters can have several consequences for how

the testing threads are executed on hardware. For example, multiple CTAs may be sched-

uled on an SM (streaming multiprocessor) if there is enough resources. By randomly

selecting the number of threads per CTA (one of the limiting factors in how many CTAs

are scheduled on an SM) and the CTA ID of testing threads, we allow the opportunity for

testing threads to be mapped to a variety of SM assignments across the GPU. This may

even allow some threads to be executed on the same SM, while others are on different SM.

Documentation states that when a bank conflict happens, memory accesses are serialized

[19, p. 187]. Given that the general bank conflict incantation is a critical incantation, we

believe that this serialization may facilitate weak memory model executions. For example,

we hypothesize that two memory instructions may be reordered if one access is issued com-

pletely concurrently while the other must be completely serialized. By randomly assigning

the thread ID of testing threads, our hope is that the testing thread is placed in a variety

of places in the serialization order, thus exposing more weak behaviors.

3.4.2 Synchronization

To allow testing threads to execute their respective tests closely in sync with one

another, and hence promote interactions while memory values are actively moving through

the memory system, testing threads synchronize immediately before the PTX programs

specified in the GPU .litmus file are executed. This incantation is borrowed directly from

the original litmus tool and is called synchronization.

As a notable difference, GPUs do not guarantee forward-progress for interactions at

certain levels of the GPU thread hierarchy, and naive synchronization implementations are

prone to deadlock. Specifically, CTAs are not guaranteed to be scheduled concurrently

[19, p. 12] and threads in the same warp do not have forward progress guarantees with

respect to each other [46]. To ensure that CTAs will be scheduled concurrently, we adopt

the persistent thread model presented in [47] in which the number of CTAs launched is

limited to be at most the number of SMs on the GPU. Because each SM can run at least

one CTA, this ensures all CTAs will be ran concurrently. To ensure threads within a warp do

not deadlock, only a single thread per warp (i.e. the testing thread) is allowed to execute the

synchronization barrier; this method was presented in [27]. Due to the warp synchronous

execution model of the GPU, the other threads in the warp will not continue execution until

the testing thread has been released from the barrier.

35

Because only one instance of the GPU litmus test is executed per kernel, the barrier

implementation needs only to synchronize testing threads once. This is accomplished via

an atomic add instruction and a spin loop. The barrier values are reset at each iteration in

the initialize kernel called in the main CPU loop.

3.5 Effectiveness of Incantations

In this section, we discuss the effectiveness of the incantations described in Sections 3.3

and 3.4. We benchmark all combinations of critical and extra incantations by running

several tests which attempt to expose different reorderings and find the most effective

incantations for different GPU configurations (see Section 2.5.1 for the configurations we

test). We run each test 100,000 times on three different GPU chips across three generations

of architectures; from oldest to newest, these chips are Tesla C2075 (Fermi), GTX Titan

(Kepler), and GTX 750 (Maxwell). We report the average the number of weak behaviors

observed per set of incantations.

3.5.1 Inter-CTA Incantations

We first consider how effective incantations are for inter-CTA GPU configurations. We

benchmark three tests, chosen for the different reorderings they attempt to expose. These

tests are:

• Message Passing (MP): This test is described in Section 5.2.1 and tests a handshake

idiom.

• Load Delaying (LD): This test (also known as load buffering) is described in

Section 5.2.2 and tests if load operations may be reordered with program order later

write operations.

• Store Buffering (SB): This test is described in Section 5.2.3 and tests if store

operations may be reordered with program order later read operations.

These benchmarks are provided to give a general idea of how effective incantations are and

not as an exhaustive study on how to most effectively run individual tests. Therefore, we

limit our benchmarking to these basic tests and do not consider tests with fences or other

synchronization constructs (e.g. dependencies).

Table 3.1 shows the results of running these tests under different incantation com-

binations. The first column specifies the critical incantation used. Notice that if no

critical incantation is present, no weak behaviors are observed despite the presence of

36

Table 3.1. Effectiveness of incantations for inter-CTA GPU configurations

Critical Incantations Extra Incantations MP LD SB

None 0 0 0
Randomization 0 0 0
Sync 0 0 0

None

Randomization + Sync 0 0 0

General Bank Conflicts

None 836 0 0
Randomization 1984 0 3
Sync 0 0 0
Randomization + Sync 2867 0 2
None 234 653 760
Randomization 290 313 291
Sync 6614 211 268

Memory Stress

Randomization + Sync 4878 2838 3328

Memory Stress +
General Bank Conflicts

None 73 28 6
Randomization 368 92 93
Sync 202 223 35
Randomization + Sync 2901 636 716

extra incantations. For extra incantations, we write randomization for the random thread

incantation discussed in Section 3.4.1 and sync for the synchronization incantation described

in Section 3.4.2. We use the plus (+) symbol between two incantations when both are

present.

We observe from the results in Table 3.1 that the number of weak behaviors observed

is highly dependent on both the test and incantations used. For example, for MP with

general bank conflicts, we are unable to observe weak behaviors with the only the sync

extra incantation. We observe that the memory stress critical incantation with both sync

and randomization seems to be the most effective set of incantations; however, LD and SB

are greatly reduced if sync or randomization are used exclusively as the extra incantations.

3.5.2 Intra-CTA Incantations

We now consider how effective incantations are for intra-CTA GPU configurations.

While in Section 3.5.1, we were able to use different tests to show the effectiveness of

incantations, the only one of the three tests (MP, LB, SB) that we are able to observe for

intra-CTA configurations is MP. This may be because for intra-CTA configurations, our

incantations are still not enough to expose weak behaviors, or because there is a stronger

memory model implemented at this level. Because we are only able to observe MP, we only

show results for this test. We have two variants of the MP test at this GPU configuration

which are:

37

• Message Passing Global (MP-Global): This is the same message passing test

used in Section 3.5.1, except that under this GPU configuration, all threads are in the

same CTA and target the global memory region.

• Message Passing Shared (MP-Shared): This is the same message passing test

as MP-global, but in this GPU configuration, all memory accesses target the shared

memory region.

Table 3.2 shows the results of running these tests under different incantation combina-

tions. Similar to the inter-CTA tests, we observe that critical incantations are required for

observing any weak behaviors and that the number of weak behaviors observed is highly

dependent on both the test and incantations used. In the intra-CTA tests, the general bank

conflict incantation is by far the most effective; in fact, the memory stress incantation by

itself produces very few if any weak behaviors. This is the opposite of what we observed

for the inter-CTA tests where memory stress was the most effective critical incantation.

Additionally, for intra-CTA tests, the sync incantation without the randomization will

produce no weak behaviors.

This section shows that the effectiveness of incantations depends heavily on the GPU

configuration of the test. Currently, all incantations are controllable via command line

Table 3.2. Effectiveness of incantations for intra-CTA GPU configurations

Critical Incantations Extra Incantations MP-Global MP-Shared

None 0 0
Randomization 0 0
Sync 0 0

None

Randomization + Sync 0 0

General Bank Conflicts

None 877 0
Randomization 2150 2061
Sync 0 0
Randomization + Sync 1989 2223
None 7 0
Randomization 7 0
Sync 2 0

Memory Stress

Randomization + Sync 0 0

Memory Stress +
General Bank Conflicts

None 0 0
Randomization 336 1249
Sync 0 0
Randomization + Sync 1360 1722

38

arguments. Future work may analyze tests and dynamically configure incantations based

on the GPU configuration in the test.

CHAPTER 4

NOTABLE RESULTS AND CASE STUDIES

In this chapter, we discuss notable testing results and case studies of CUDA applications.

We go over some initial notations and considerations in Section 4.1. The first results

that we discuss are interesting with respect to general memory consistency properties (e.g.

coherence) and documentation in the PTX ISA manual [20]. Specifically, Section 4.2 shows

that some deployed GPUs implement controversial relaxed coherence behaviors. Section 4.3

discusses the L1 cache memory annotation on Fermi architectures and how it cannot be

used reliably for any inter-CTA interactions; this has programming consequences as it is

the default memory annotation for the CUDA compiler. Section 4.4 tests the .volatile

memory annotation and compares our observations with vendor documentation.

The second half of this chapter presents CUDA case studies where developers have

made assumptions about the GPU memory model which may lead to erroneous behaviors.

Section 4.5 discusses two GPU spin-locks which do not use fences: one from the popular

CUDA by Example book [2] and the other from Owens and Stuart’s paper entitled Efficient

Synchronization Primitives for GPUs [48]. Both of these lock implementations assume that

read-modify-write atomics provide sequentially consistent behavior; however, we show that

this is not the case. We conclude by examining a GPU concurrent deque appearing in both

a publication [49] and the book GPU Computing Gems: Jade Edition [50, pp. 485–499].

We show that the provided fence-less implementation could lead to the undesirable case of

stale data being read from the deque.

4.1 Notations and Considerations

In the tests presented in this chapter, we use a parameterizable fence instruction that

we note membar.{scope}. This fence is then instantiated for the different membar scopes,

namely .cta and .gl (the third scope .sys is used only a few times in this document for

reasons given in Section 5.1). We say that the membar has scope None for tests with no

fence. Some tests have more than one fence instruction; however, in this chapter, we only

40

consider tests where both fences have the same scope annotation. That is, for scope .cta

all membars will have the .cta annotation. While this does not test all possible combination

of fences, this chapter is largely concerned with testing if weak behaviors are observed, and

if so, is it possible to experimentally disallow them. To that end, we do not enumerate all

fence combinations. All testing results come from running 100,000 iterations.

Additionally, we observe far fewer weak behaviors on the GTX 750 (Maxwell) chip than

the other chips. We hypothesize several reasons for this. The GTX 750 is a substantially

smaller chip than the others (having only 5 SMs); this means there are less physical resources

to run threads that stress the memory system in the crucial memory stress incantation (see

Section 3.3.2). Another reason might be that we have not fine tuned our tool to test this

chip, given that it has only been available for a few months at the time of writing. Finally,

this chip may simply implement a stronger model than the others.

4.2 Coherence of Read-Read (CoRR)

Coherence is a property of memory consistency that applies only to single address

behaviors. It has been defined as SC for a single address [14, p. 14]. Nearly all modern CPU

memory models guarantee coherence, with the exception of Sparc RMO [51, pp. 265–267]

which allows reads from the same address to be reordered. This behavior can be seen in

the coherence of read-read (or CoRR) litmus test; a PTX instance of this test is shown in

Figure 4.1. In this test, T1 is able to read the updated value from memory followed in

program order by a read which returns stale data. If this behavior is allowed, we would

like to investigate which memory fence (i.e. membar) placed in between the loads in T1 is

required to disallow it.

This weak behavior (i.e. CoRR) has been controversial in CPU memory models as it is

observable on many ARM chips but confirmed as buggy behavior [16, 52]. Additionally,

new language level memory models (e.g. OpenCL 2.0 [53] and C++11 [9]) disallow this

behavior and it is unclear how to efficiently implement such languages on hardware with

initial state: x = 0

T0 T1
st.cg.s32 [x], 1 ; ld.cg.s32 r1, [x] ;

membar .{scope} ;

ld.cg.s32 r2, [x] ;

assert: 1:r1=1 ∧ 1:r2=0

Figure 4.1. Test specification for CoRR

41

this relaxation. We test this behavior on GPUs and show that older architectures (Fermi

and Kepler) allow this behavior, but newer chips (Maxwell) experimentally do not.

Table 4.1 shows the results of running the CoRR test on three GPUs with all different

architectures (Fermi, Kepler, and Maxwell). We test all three GPU configurations de-

scribed in Section 2.5.1. We observe that CoRR is indeed observable on Kepler and Fermi

architectures for all GPU configurations but is not observable at all on the newer Maxwell

architecture. We observe that only the smallest scoped fence membar.cta is required to

experimentally disallow this test for any of the tested GPU configurations.

4.3 Fermi Memory Annotations

Recall that the .ca memory annotation loads from the L1 cache (see Table 2.2) and

that separate CTAs may have separate L1 caches if they are mapped to different SMs (see

Section 2.2). The PTX manual [20, p. 121] explicitly states that multiple L1 caches are

incoherent by stating:

Global data is coherent at the L2 level, but multiple L1 caches are not coherent
for global data. If one thread stores to global memory via one L1 cache, and a
second thread loads that address via a second L1 cache with ld.ca, the second
thread may get stale L1 cache data, rather than the data stored by the first
thread.

In this section, we test the L1 memory annotation (i.e. .ca) across CTAs to determine what

extent this operator can be used reliably for inter-CTA interactions.

4.3.1 Message Passing Through L1

Consider the test shown in Figure 4.2. This type of test is named message passing (MP)

and describes a handshake idiom. Specifically, T0 writes some data to location x followed

Table 4.1. Results for CoRR tests

Fermi Kepler Maxwell
GPU Configuration Fence Tesla C2075 GTX Titan GTX 750

None 7356 8572 0
.cta 0 0 0D-warp:S-cta-Shared
.gl 0 0 0
None 3668 10047 0
.cta 0 0 0D-cta:S-ker-Global
.gl 0 0 0
None 3246 4769 0
.cta 0 0 0D-cta:S-ker-Global
.gl 0 0 0

42

initial state: x = 0, y = 0

T0 T1
st.cg.s32 [x], 1 ;

membar .{scope} ;

st.cg.s32 [y], 1 ;

ld.ca.s32 r1, [y] ;

membar .{scope} ;

ld.ca.s32 r2, [x] ;

assert: 1:r1=1 ∧ 1:r2=0

Figure 4.2. Test specification for MP-L1

by a flag to location y. We test if T1 is allowed to read the updated flag followed by a read

in program order that returns stale data. Notice that we use the .ca memory annotation

for all load operations; we dub this test MP-L1. Because our aim here is to test multiple

L1 caches, we only consider the GPU configuration where T0 and T1 are in different CTAs

and thus, x and y must be in the global memory region. This corresponds to the GPU

configuration D-cta:S-ker-Global.

We report the results of running MP-L1 in Table 4.2. We observe that on Fermi

architectures, no fence is strong enough to disallow the MP-L1 test. To emphasize this

point, we include the .sys fence in our tests which we largely exclude from this document

for reasons explained in Section 5.1. We emphasize that the .sys is documented to be the

strongest fence in the PTX documentation, as it enforces orderings across all interactions

including multidevice interactions [20, p. 169]. We observe that not even the .sys fence

restores orderings to this example on Fermi architecture; however, this behavior is able

to be experimentally disallowed on Kepler and Maxwell with what we interpret to be the

appropriately scoped fence (i.e. membar.gl). This behavior not appearing on Kepler and

Maxwell is possibly because the documentation states that the L1 cache has been disabled

for global memory accesses on these architectures and global memory is cached in the L2

cache regardless of the memory annotation [19, p. 194]. That is, we believe this issue to be

Table 4.2. Results for MP-L1 tests

Fermi Kepler Maxwell
GPU Configuration Fence Tesla C2075 GTX Titan GTX 750

D-cta:S-ker-Global

None 11648 8129 3
.cta 455 3087 0
.gl 208 0 0
.sys 201 0 0

43

the result of multiple L1 caches interacting; if the L1 cache is disabled for global memory

accesses, then we will not see the symptoms of their interactions.

4.3.2 Mixing Memory Annotations

The previous section showed that inter-CTA interactions cannot implement a message

passing (MP, or handshaking) protocol reliably (i.e. disallow stale values from being read

from memory) using the .ca exclusively for loads. In this section, we mix memory annota-

tions in an attempt to restore orderings between multiple L1 caches. We hypothesize that

perhaps we may be able to propagate values up from the L2 cache to the L1 cache by reading

the cache line first from the L2. We get this hypothesis from the PTX ISA manual which

states that after an L2 load (i.e. .cg), “... existing cache lines that match the requested

address in L1 will be evicted” [20, p. 121]. While it is not clear what guarantees (if any)

are provided in this quote, it seems to suggest that a read from the L2 will somehow effect

the L1 cache (e.g. by evicting values).

The most basic test we could think of to examine this behavior is a variation of CoRR

(see Section 4.2) where we first read data from the L2 cache via the .cg memory annotation

and then attempt to read the same data from the L1 cache via the .ca annotation. This

would correspond to the memory value being propagated up the cache hierarchy (from the

L2 to L1) after it is first read from the L2. This test, which we dub CoRR-L2-L1, can be

seen in Figure 4.3.

The results of running this test are shown in Table 4.3. We observe that in the Fermi

architecture, no fence is strong enough to guarantee that updated values will be read reliably

from the L1 cache even when they are first read from a shared cache. Similar to Section 4.3.1,

to emphasize this point, we include the .sys fence in our tests which we largely exclude

from this document for reasons explained in Section 5.1.

initial state: x = 0

T0 T1
st.cg.s32 [x], 1 ; ld.cg.s32 r1, [x] ;

membar .{scope} ;

ld.ca.s32 r2, [x] ;

assert: 1:r1=1 ∧ 1:r2=0

Figure 4.3. Test specification for CoRR-L2-L1

44

Table 4.3. Results for CoRR-L2-L1 tests

Fermi Kepler Maxwell
GPU Configuration Fence Tesla C2075 GTX Titan GTX 750

D-cta:S-ker-Global

None 10247 4739 0
.cta 1989 0 0
.gl 1669 0 0
.sys 1706 0 0

4.3.3 CUDA Programming Consequences

Because of the two previous results, we are convinced that on Fermi architectures, the

.ca memory annotation cannot be used for reliable inter-CTA communication at all (i.e.

it is not possible to disallow stale values from being read from memory). Interestingly,

the .ca memory annotation is the default annotation for the CUDA compiler [20, p. 121].

Therefore, any programmer who wishes to develop GPU code with inter-CTA interactions

needs to explicitly specify that the L2 memory annotation (i.e. .cg) be used. This can

be accomplished with the nvcc command line argument: -Xptxas -dlcm=cg -Xptxas

-dscm=cg. We show throughout Chapter 5 that we are able to reliably use fences to disallow

stale values from being read when the L2 memory annotation is used.

As a further consequence, the (single) memory consistency example provided in the

CUDA manual [19, p. 95] computes a reduction (i.e. summing the values of a vector) and

uses a memory load to retrieve values across CTAs. Even though the example provides a

fence, we have shown in this section that no fence is sufficient under default compilation

schemes (i.e. .ca memory annotations) to disallow stale values from being read. Thus this

example is broken on Fermi architectures if compiled without explicitly specifying the .cg

annotation to be used, of which the CUDA guide makes no mention.

4.4 Volatile Operators

The PTX ISA provides the .volatile memory annotation with the following documen-

tation [20, p. 136]: “st.volatile may be used with .global and .shared spaces to inhibit

optimization of references to volatile memory. This may be used, for example, to enforce

sequential consistency between threads accessing shared memory”.

It is not clear to us which GPU configurations (i.e. inter or intra CTA and memory

regions) to which this documentation is extending sequential consistency guarantees (or

if fences are additionally required to provide sequential consistency); we see this phrasing

as a potential source of confusion and test the behavior of this annotation in this section.

45

Figure 4.4 presents a simple MP style test using the .volatile annotation which we dub

MP-volatile.

Table 4.4 shows the results of running this test on all GPU configurations discussed in

Section 2.5.1. We observe that without fences, the .volatile annotation does not enforce

sequentially consistent behavior at any GPU configuration. However, weak behaviors can

be experimentally disallowed when (what we interpret to be) the appropriate fences are

included (.cta or .gl for intra-CTA configurations and .gl for the inter-CTA configura-

tion). While the exact intention of the documentation is unknown, we suggest a rewording to

alleviate potential confusion. Tentatively, we suggest amending the original documentation

as such:

st.volatile may be used with .global and .shared spaces to inhibit opti-
mization of references to volatile memory. This may be used in conjunction
with the appropriate memory fence to enforce sequentially consistent executions
between threads.

4.5 Spin-Locks

In this section, we test two GPU spin-lock mutex implementations; the first is given

in the book CUDA by Example [2], the second is given by Jeff Stuart and John Owens

in their paper Efficient Synchronization Primitives for GPUs [48]. We show that these

implementions do not satisfy what is generally considered to be the correct specification

for a mutex. Specifically, we show that a critical section may read data values that are

stale w.r.t. the previous critical section for inter-CTA interactions. We then show that the

addition of memory fences experimentally provides the expected behavior. We document

these behaviors in terms of short litmus tests and the results of running them in our testing

framework.

initial state: x = 0, y = 0

T0 T1
st.volatile.s22 [x],1 ;

membar .{scope} ;

st.volatile.s32 [y],1 ;

ld.volatile.s32 r0, [y] ;

membar .{scope} ;

ld.volatile.s32 r2, [x] ;

assert: 1:r0=1 ∧ 1:r2=0

Figure 4.4. Test specification for MP-volatile

46

Table 4.4. Results for MP-volatile tests

Fermi Kepler Maxwell
GPU Configuration Fence Tesla C2075 GTX Titan GTX 750

None 2007 3078 0
.cta 0 0 0D-warp:S-cta-Shared
.gl 0 0 0
None 822 3025 0
.cta 0 0 0D-cta:S-ker-Global
.gl 0 0 0
None 699 7948 7
.cta 219 3120 0D-cta:S-ker-Global
.gl 0 0 0

4.5.1 CUDA by Example

CUDA by Example presents a mutex implementation for combining CTA-local partial

sums [2, pp. 251–254]. The mutex implementation is a simple atomic compare-and-swap (i.e.

CAS) spin-lock with an atomic exchange release. We reproduce a simplified version of the

lock and unlock functions in Figure 4.5 for reference. Note that the original implementation

had an error which we have repaired as given in the official errata for the book (see https:

//developer.nvidia.com/cuda-example-errata-page).

The locks are used to update a global value c with the CTA-local partial sums located

in cacheIndex[0]. Only one thread per CTA executes this code. This part of the imple-

mentation is shown in Figure 4.6.

While the book does not explicitly mention memory consistency issues, the following

paragraph suggests that the behavior typically expected from a lock can be obtained by

only using atomic operations. For context, it is explaining why unlock must be an atomic

exchange rather than simply a store [2, p. 254].

1 __device__ int mutex;

2

3 __device__ void lock(void) {

4 while(atomicCAS(mutex, 0, 1) != 0);

5 }

6

7 __device__ void unlock(void) {

8 atomicExch(mutex, 0);

9 }

Figure 4.5. Implementation of lock and unlock given in CUDA by Example

47

1 ...

2 //cacheIndex is equal to tid

3 if (cacheIndex == 0) {

4 lock.lock();

5 *c += cache[0];

6 lock.unlock();

7 }

Figure 4.6. Code snippet from the mutex example given in CUDA by Example

Atomic transactions and generic global memory operations follow different paths
through the GPU. Using both atomics and standard global memory operations
could therefore lead to an unlock() seeming out of sync with a subsequent
attempt to lock() the mutex. The behavior would still be functionally correct,
but to ensure consistently intuitive behavior from the application’s perspective,
it’s best to use the same pathway for all accesses to the mutex.

We distill this mutex implementation into a GPU litmus test named CAS spin-lock

(abbreviated to CAS-SL) shown in Figure 4.7. The reader may wish to refer back to

Table 2.2 for a description of some of the PTX instructions used in this test. This test

describes two threads interacting via a CAS spin-lock. The y memory location is the mutex

and x is the global data accessed in the critical section. The test begins in a state where T0

has the mutex (y = 1). T0 stores a value to x and then releases the mutex with an atomic

exchange. T1 attempts to acquire the lock with a CAS instruction, then checks if the lock

was acquired successfully via the setp command. If the lock was acquired, i.e. r0 = 0, then

T1 attempts to read the global data in x. This is enforced using PTX predicated execution

[20, p. 160]; that is, instructions annotated with @r1 will only execute if the setp command

was satisfied. The final constraint describes an execution where T1 successfully acquires

the lock (i.e. 1:r0 = 0) yet does not see the updated value in x (i.e. 1:r2 = 0).

Table 4.5 shows the test outcomes for variants of the CAS-SL test for three different

chips. We only test GPU configuration D-cta:S-ker-Global because that is the interaction

initial state: x = 0, y = 1

T0 T1
st.cg.u32 [x], 1 ;

membar .{scope} ;

atom.exch.b32 r0 ,[y],0 ;

atom.cas.b32 r0 ,[y],0,1 ;

setp.eq.u32 r1 , r0 , 0 ;

@r1 membar .{ scope} ;

@r1 ld.cg.u32 r2 ,[x] ;

assert: 1:r0=0 ∧ 1:r2=0

Figure 4.7. Test specification for CAS-SL

48

Table 4.5. Results for CAS-SL tests

Fermi Kepler Maxwell
GPU Configuration Fence Tesla C2075 GTX Titan GTX 750

D-cta:S-ker-Global
None 86 1607 0
.cta 17 692 0
.gl 0 0 0

that is described in the CUDA by Example application (it is an inter-CTA mutex). We

observe that without fences, T1 can indeed load stale values. While the .cta fence scope

reduces the number of times we observe the weak behavior, the (.gl) fence is required to

completely disallow the behavior based on our experimental results.

The CAS-SL test distills the locking behavior in CUDA by Example to a simple message

passing idiom. If T1 is able to see a stale value, then the total sum could be computed

without considering T0’s contribution; this will lead to an incorrect summation result.

The implementation in CUDA by Example has inter-CTA interactions and is lacking fence

instructions which leaves the code vulnerable to this error.

4.5.2 Efficient Synchronization Primitives for GPUs

In their paper Efficient Synchronization Primitives for GPUs, Stuart and Owens provide

synchronization primitives for GPUs [48]. They include a spin-lock that is similar to the one

presented in Section 4.5.1, with the difference being that they use atomic exchange instead

of compare-and-swap for the locking function. They continue to discuss how to optimize the

mutex functions by reducing contention for a memory location using a method they refer to

as a backoff strategy, which does not introduce any additional memory ordering operations

(e.g. memory fences). The authors explicitly make the assumption that an atomic exchange

can be used in place of a store and memory fence by stating [48, p. 3]: “Also, we use

atomicExch() instead of a volatile store and threadfence() because the atomic queue has

predictable behavior, threadfence() does not (i.e. it can vary greatly in execution time if

other memory operations are pending)”.

We were unable to locate unambiguous justifications for the above assumptions in any

NVIDIA documentation (CUDA or PTX). The following paragraph from the PTX ISA may

be related, but seems to be restricted to atomicity and single address interactions; it does

not seem to account for memory accesses inside the critical section [20, pp. 166–167]:

Atomic operations on shared memory locations do not guarantee atomicity with
respect to normal store instructions to the same address. It is the programmer’s
responsibility to guarantee correctness of programs that use shared memory

49

atomic instructions, e.g., by inserting barriers between normal stores and atomic
operations to a common address, or by using atom.exch to store to locations
accessed by other atomic operations.

We distill this mutex implementation to a litmus test named exchange spin-lock (ab-

breviated to EXCH-SL) shown in Figure 4.8 which describes two threads interacting via

an atomic exchange spin-lock. The description is identical to the CAS-SL test described

in Section 4.5.1, except here atomic exchange is used for the locking mechanism instead of

atomic compare-and-swap. The final constraint describes an execution where T1 success-

fully acquires the lock (1:r0 = 0), yet does not see the updated value in x (1:r2 = 0).

Table 4.6 shows the test outcomes for variants of the CAS-SL test for three different

chips. We only test GPU configuration D-cta:S-ker-Global because that is the interaction

that is described in the paper. We observe that without fences, T1 can indeed load stale

values. The .cta fence reduces the number of times we observe the weak behavior; however,

the (.gl) fence is required to disallow the behavior based on our experimental results.

While the paper Efficient Synchronization Primitives for GPUs does not provide con-

crete examples using the locking mechanisms, this test distills a simple locking message

passing idiom one might implement using this mutex. Traditionally, lock implementations

have provided sufficient synchronization to ensure that critical sections observe the most

recent values computed in previous critical sections [14, p. 64]; that is, values protected

by locks should have sequentially consistent behavior (sequential consistency is described

initial state: x = 0, y = 1

T0 T1
st.cg.u32 [x], 1 ;

membar .{scope} ;

atom.exch.b32 r0 ,[y],0 ;

atom.exch.b32 r0 ,[y],1 ;

setp.eq.u32 r1 , r0 , 0 ;

@r1 membar .{ scope} ;

@r1 ld.cg.u32 r2 ,[x] ;

assert: 1:r0=0 ∧ 1:r2=0

Figure 4.8. Test specification for EXCH-SL

Table 4.6. Results for EXCH-SL tests

Fermi Kepler Maxwell
GPU Configuration Fence Tesla C2075 GTX Titan GTX 750

D-cta:S-ker-Global
None 98 1468 0
.cta 12 638 0
.gl 0 0 0

50

in Section 2.4). As seen in our results in Table 4.6, this is not the case without fences.

Although the paper makes no claims about formal synchronization properties, given the

traditional properties of locks, we feel that it may not have been intentional to allow such

behaviors.

4.6 Dynamic Work Balancing

In this section, we test certain behaviors of a concurrent deque used in dynamic load

balancing on GPUs as seen in [49] and again presented in the book GPU Computing Gems

Jade Edition (Applications of GPU Computing Series) [50, pp. 485–499]. This technique is

used in two applications: octree partitioning and four-in-a-row game simulation. We show

that the provided implementations allow threads to read partial or stale data from the work

deque in certain situations due to weak memory orderings on the hardware. We could not

find any mention of weak memory model considerations in either publication documenting

these concurrent deques.

Specifically, the dynamic load balancing is set up in the form of work-stealing deques

(one per CTA) containing abstract task types. We show that in the case when one thread

steals a task immediately after it was pushed by another thread, the stealing thread may

not observe the recently pushed task, yet the deque will be updated as if the recently

pushed task was correctly stolen. This can lead to several undesirable situations, including

skipping tasks or loading partial tasks if tasks are large enough to be split into several load

instructions (as is the case in both provided applications).

While the provided implementations of the octree partitioning and four-in-a-row simu-

lator are advertised as being for architectures with compute capability sm 13, our testing

framework largely targets generic address instructions which are not supported earlier than

sm 20. As such, we are unable to test on the advertised architecture. However, we believe

this remains a substantial issue given that memory fences are supported on all architectures

and the book GPU Computing Gems Jade Edition is used as a reference for modern GPU

computing.

4.6.1 CTA Level Work Stealing Deques

Here we briefly describe the dynamic load balancing technique. This is achieved through

concurrent work-stealing deques, one per CTA. The particular concurrent deque, described

in [54], avoids expensive read-modify-write instructions in the common case.

In this deque, there is a separate global head and tail index value; tasks are added and

removed by the deque owner from the tail index (leaving the head pointer on the opposite

51

side of the deque, see Figure 4.9). The tail points to an empty cell and is decremented to

find a task.

If there are no tasks remaining in the deque, the CTA may try to steal a task from

another CTA’s deque at the head index. Because the deque owner and thieves are accessing

the deque from different ends, expensive synchronization is not needed when the deque

contains more than 1 element. Synchronization may be required between multiple thieves

accessing the same deque, but stealing is claimed to be the less common case.

4.6.2 Synchronization Between Owner and Thief

We now describe in detail the interaction when an owner pushes a task and a thief

immediately steals the task. We first reproduce the code for the push and steal functions

(adapted from [50, pp. 485–499]) in Figure 4.10. Note that head is a structure that contains

an index and a counter. The counter is provided to avoid the ABA problem [55], which

does not arise in our simple interaction.

The purpose of this discussion is not to examine all possible interactions between a deque

owner and a thief, but rather to examine and then test one particular interaction. This

interaction starts with an empty deque (in this simplified interaction, all tasks are simply

integers and locations are initialized to 0). This means that the head and tail indexes

point at the same location as seen in Figure 4.11.

The deque owner then pushes a task to the deque (say the integer value 1) via the push

function presented above. Now head points to the value 1 and tail has been incremented

as seen in Figure 4.12

At this point, another CTA attempts to steal from the deque by calling the steal

function. First, it checks for an empty deque. As we can see, the deque is not empty. Next,

the task pointed to by head (copied into the value oldHead) at location 0 is loaded which

is the value 1. Finally, the thief checks if another thief has already stolen the task using

Figure 4.9. Example configuration of the concurrent deque

52

1 /* only 1 thread ever calls this function, therefore

2 no RMW required (e.g. atomic add) */

3 __device__ void push(task) {

4 tasks[tail] = task;

5 tail++;

6 }

7

8 //steal function

9 __device__ Task steal(void) {

10 int oldHead = head;

11

12 /* Check for empty deque */

13 if (tail <= oldHead.index)

14 return EMPTY;

15

16 task = tasks[oldHead.index];

17 newHead = oldHead;

18 newHead.index++;

19 if (CAS(&head, oldHead, newHead))

20 return task;

21

22 /* Unable to steal because of another thief */

23 return FAILED;

24 }

Figure 4.10. Implementation of push and steal for the concurrent deque

Figure 4.11. Initial state of the concurrent deque

53

Figure 4.12. Concurrent deque after a single task has been pushed

the compare-and-swap function. We assume no other thief in this interaction, thus the task

which contains 1 is returned and the head pointer is updated.

The above description is a correct execution of the deque. However, if the thief observed

a nonempty deque and updated the head pointer, yet returned a stale value (i.e. 0), we

believe that would be a erroneous execution. This would correspond to the task that was

just pushed by the owner being skipped, as the deque is updated to believe that task was

correctly stolen, yet the thief has a stale task.

4.6.3 Test Distillation

We now distill this behavior into a simple litmus test that we can run using our tools.

We call this test Dynamic Load Balancing Message-Passing (which we abbreviate DLB-MP)

because it has a message passing style where T0 stores two values and we test if T1 may

read stale values. Its specification is given in Figure 4.13.

Here we describe the DLB-MP test. First, there are two global variables t and d where

t is the tail variable and d is the memory location at index 0 being pushed to and stolen

from. Both are initialized to 0.

initial state: t = 0, d = 0

T0 T1
st.cg.u32 [d], 1 ;

membar .{scope} ;

ld.volatile.u32 r2 , [t] ;

add.s32 r2 , r2 , 1 ;

st.volatile.u32 [t], r2 ;

ld.volatile.u32 r0, [t] ;

setp.eq.u32 r1 , r0 , 0 ;

@r1 membar .{ scope} ;

@r1 ld.cg.u32 r2 ,[d] ;

assert: 1:r0=1 ∧ 1:r2=0

Figure 4.13. Test specification for DLB-MP

54

T0 is the deque owner and T1 is the thief. Via the push function, T0 stores the task 1

to d. The provided implementations declare tail as volatile, which means that tail++

will be compiled to a volatile load, followed by an increment, and a volatile store (as

seen in T0’s program).

T1 captures only the instructions of the thief that access tasks in the array and the tail

index. We do not include accesses of the head index and instead provide the concrete value

of 0 in the distilled test. We include the read of tail in line 5 of steal (the conditional

on line 13 in Figure 4.10) as the first instruction in T1. Recall that tail is volatile which

means the access will go to memory with the .volatile annotation. Next T1 includes a

test of the value read from tail, corresponding to the emptiness check, again on line 5 (the

conditional on line 13 in Figure 4.10). The last instruction in T1 is a conditional load of d,

dependent on the outcome of the check. That is, we only load from the array if we saw the

owner increment t, meaning that the deque is not empty. The thief would then return the

result of loading from the array as a task while updating the head pointer.

We check the condition that if the thief sees the incremented t value (i.e. 1:r0=1) and

then loads the task from d, the task should not be the value 0. An execution satisfying

these conditions would mean that the thief loaded a stale value, yet updated the deque to a

state in which the correct task was stolen. As a consequence, the task pushed by the owner

would be skipped or only partially loaded.

We have hand checked that our PTX test is similar to the PTX code generated from

compiling the provided implementation in terms of memory access types and conditionals;

we provide a snippet of the relevant PTX code compiled from the application in Appendix A.

4.6.4 Test Results

Table 4.7 shows the test outcomes for variants of the DLB-MP test for three different

chips. We only test GPU configuration D-cta:S-ker-Global because that is the interaction

described in the dynamic load balancing applications. We observe that without fences,

T1 can indeed load stale values. While the .cta fence reduces the number of times we

Table 4.7. Results for DLB-MP tests

Fermi Kepler Maxwell
GPU Configuration Fence Tesla C2075 GTX Titan GTX 750

D-cta:S-ker-Global
None 5 750 0
.cta 0 51 0
.gl 0 0 0

55

observe the weak behavior, the (.gl) fence is required to disallow the behavior based on

our experimental results.

Completely repairing concurrent data structures on architectures with weak memory

models is notoriously difficult, especially when the vendor documentation is sparse and

unclear (as is often the case). As such, a fix to the entire load balancing deque is outside the

scope of this document; we simply show that membar.gl on each thread will experimentally

outlaw the specific execution described above.

CHAPTER 5

BULK RESULTS

In this chapter, we report the results of running a wide range of tests on GPUs with

different synchronization constructs. We first describe our notations for tests in Section 5.1,

which closely resembles the notations used in [16]. Using these notations, we report on

running large families of tests (i.e. base tests plus variants with different synchronization

attributes) in Section 5.2 and make observations about the tests in Section 5.3. We then

use these results to invalidate a previously proposed GPU model [31] in Section 5.4. The

tests ran in this section were generated by Daniel Poetzl’s GPU extensions to the DIY test

generation tool [43].

5.1 Naming and Synchronization

To avoid having to give a code listing for all of the variants of tests in this document,

we employ a naming convention that indicates attributes of the tests. First, test names

are assigned to simple tests (e. g. MP is short for message passing). Then, synchronization

attributes are indicated after a plus (+) sign. A table of synchronization attributes we

consider can be found in Table 5.1. For example, the base MP test (shown earlier in

Figure 2.8) can be modified to include a membar.cta in between the two memory accesses

on T0 and a membar.gl in between the two memory accesses in T1. This modification

yields the new test we call MP+membar.cta+membar.gl (shown in Figure 5.1).

Table 5.1. Test attributes

Attribute Description

membar.cta intra-CTA fence
membar.gl intradevice fence
addr address dependency
data data dependency

57

initial state: x = 0, y = 0

T0 T1
st.cg.s32 [x], 1 ;

membar.cta ;

st.cg.s32 [y], 1 ;

ld.cg.s32 r1, [y] ;

membar.gl ;

ld.cg.s32 r4, [x] ;

assert: 1:r1=1 ∧ 1:r4=0

Figure 5.1. Test specification for MP+membar.cta+membar.gl

We use the convention that names like MP+membar.cta+membar.cta are shortened to

MP+membar.ctas (shown in Figure 5.2). Finally, we use the notation +* to refer to all

possible variants.

The base test names are often given as an acronym describing the behavior they test.

For example, SB stands for store buffering, and the SB test (Section 5.2.3) checks for store

buffering behavior. However, some tests do not have such simple descriptions and intuitive

acronyms have not yet been developed. For these tests, we simply use the names that have

been used in past literature (e.g. for the POWER memory model in [16]). These tests are:

2+2W, R, and S in Sections 5.2.5, 5.2.6, and 5.2.7, respectively. To alleviate confusion,

every base test is presented with an informative title (possibly separate from its name), a

test specification, and a brief description.

5.1.1 Different Kinds of Synchronization

We consider the following PTX fences for synchronization:

• membar.cta: The PTX ISA manual [20, p. 165] describes this barrier as follows:

“Waits until all prior memory writes are visible to other threads in the same CTA.

Waits until prior memory reads have been performed with respect to other threads in

the CTA”.

Initial state: x = 0, y = 0

T0 T1
st.cg.s32 [x], 1 ;

membar.cta ;

st.cg.s32 [y], 1 ;

ld.cg.s32 r1, [y] ;

membar.cta ;

ld.cg.s32 r4, [x] ;

assert: 1:r1=1 ∧ 1:r4=0

Figure 5.2. Test specification for MP+membar.ctas

58

• membar.gl: The PTX ISA manual [20, p. 165] describes this barrier as follows:

“Waits until all prior memory requests have been performed with respect to all other

threads in the GPU. For communication between threads in different CTAs or even

different SMs, this is the appropriate level of membar”.

The PTX ISA manual describes a third barrier, membar.sys, as being appropriate for

interdevice interactions. Because we have not yet tested interdevice behaviors and have

not seen any counterintuitive behavior with this fence, we omit our membar.sys results

for most of this document, including this entire chapter. We use this fence for two tests

in Section 4.3 simply to show that no available fence can restore orderings with certain

memory annotations.

Dependencies from load operations to program order later load or store operations have

been given ordering properties in CPU memory models (e.g. the POWER model in [16]).

In this document, we explore two types of dependencies:

• Data Dependency: This dependency is between a load and a store if there is a

data-flow path through registers and instructions from the value loaded to the value

written.

• Address Dependency: This dependency is between a load and a load or store if

there is a data-flow path through registers and instructions from the value loaded to

the address of the load/store.

An example of the load delaying (LD) test with a data dependency in both threads (referred

to as LD+datas) is shown in Figure 5.3. Address dependency tests are computed similarly.

Implementation for control dependencies (i.e. a dependency through a conditional branch)

have not been implemented and we leave for future work.

We have observed the PTX assembler removing some of the trivial dependencies. For

example, in Figure 5.3, the PTX assembler recognizes that a value XOR’ed with itself is

initial state: x = 0, y = 0

T0 T1
ld.cg.s32 r0, [x] ;

xor.b32 r1 , r0 , r0 ;

add.s32 r2 , r1 , 1 ;

st.cg.s32 [y], r2 ;

ld.cg.s32 r0 , [y] ;

xor.b32 r1 , r0 , r0 ;

add.s32 r2 , r1 , 1 ;

st.cg.s32 [x], r2 ;

assert: 0:r0=1 ∧ 1:r0=1

Figure 5.3. Test specification for LD+datas

59

0 and will remove the dependency. Daniel Poetzl has developed a technique using higher

order bits in some values to ensure that the dependency will not be optimized out. Because

our tests use only small values (e.g. 0, 1), we are able to do simple bit-wise operations on

the higher order bits of these values which result in 0; yet because the compiler does not

know the range of values we use, it will not remove the dependency. We have checked via

the cuobjdump output that the dependencies are still present in the machine-level assembly.

Furthermore, all memory access instructions use the same L2 memory annotation (.cg).

This is because results presented in Section 4.3 show that fences cannot prevent weak

behaviors when using the default L1 memory annotation (.ca). One of the goals of this

section is to test which fences disallow weak behaviors; this should aid developers in knowing

what synchronization (if any) is experimentally required to restore enough ordering for their

programs to be correct. Given this, operations in which order cannot be enforced with

synchronization are of little interest.

5.2 Test Specifications and Results

In the following sections, we describe families of tests which are generated from cycles

described in [16] and their outcomes. Each test section contains a test specification of the

base test and a brief description. A summary of the results is shown in a table that is split

into three sections, one for each GPU configuration discussed in Section 2.5.1. For each test,

the table states how often the tested behavior (specified by the final condition) occurred

when the test was executed 100 000 times. We test three GPU chips over three generations.

From oldest to newest, these chips are a Tesla C2075 (Fermi), a GTX Titan (Kepler), and

a GTX 750 (Maxwell). For readability, our results label these chips after their respective

generation; for example, Fermi refers to the Tesla C2075 chip, Kepler refers to the GTX

Titan chip, and Maxwell refers to the GTX 750 chip.

Naturally, there is no guarantee that our heuristics are sufficient to make all behaviors

show up. Also, the frequency of a certain outcome may change when new or different

heuristics are used during testing (see Section 3.5). The numbers in all of our tables should

be considered with these points in mind.

Because of the large number of variants of each test, we do not list them all. Rather our

presentation is driven by several criteria, namely: is the weak behavior observed? Can it be

disallowed by what we interpret to be the appropriate fence (i.e. membar.cta for intra-CTA

interactions and membar.gl for inter-CTA interactions)? And what ordering properties

do dependencies have, if any? Because of this, we largely focus on tests where the same

60

synchronization is used on all threads; that is, if one thread has a membar.cta attribute,

then all threads will as well.

5.2.1 Message Passing (MP)

The message passing MP test checks how one can correctly implement a message passing

(or handshaking) idiom; the specification is given in Figure 5.4. We are interested in what

fence is required to disallow this behavior and thus successfully implement the handshake.

This test has been analyzed with different memory annotations in Sections 4.4 and 4.3.1.

The results for running this test with the L2 cache annotation (the default for this chapter)

are shown in Table 5.2. We observe this behavior for all GPU configurations. To exper-

imentally disallow this test, both T0 and T1 need synchronization. The synchronization

required on T0 is a fence (membar.gl for inter-CTA and membar.cta or membar.gl for

intra-CTA). The synchronization required on T1 is either a matching fence or an address

dependency.

initial state: x = 0, y = 0

T0 T1
st.cg.s32 [x], 1 ;

st.cg.s32 [y], 1 ;

ld.cg.s32 r1 , [y] ;

ld.cg.s32 r2 , [x] ;

assert: 1:r1=1 ∧ 1:r2=0

Figure 5.4. Test specification for MP

Table 5.2. Results for MP tests

GPU
Configuration Test Name Fermi Kepler Maxwell

MP 4903 2232 0
MP+membar.ctas 0 0 0
MP+membar.gls 0 0 0

D-warp:S-cta-Shared

MP+membar.cta+addr 0 0 0
MP 3174 3393 0
MP+membar.ctas 0 0 0
MP+membar.gls 0 0 0

D-warp:S-cta-Global

MP+membar.cta+addr 0 0 0
MP 3750 3380 216
MP+membar.ctas 0 595 0
MP+membar.gl+membar.cta 0 19 0
MP+membar.gls 0 0 0

D-cta:S-ker-Global

MP+membar.gl+addr 0 0 0

61

5.2.2 Load Delaying (LD)

The load delaying (LD) test (also known as load buffering) checks whether loads are

allowed to be reordered with stores that occur later in program order. The base test is

shown in Figure 5.5 and the results for running the test are shown in Table 5.3. We do not

observe this test for intra-CTA interactions; however, the behavior is allowed for inter-CTA

interactions. For inter-CTA interactions, the membar.cta fences reduce the number of

times weak behaviors are observed; however, either address dependencies or membar.gl

fences are required to experimentally disallow this behavior. It is interesting to note that

for GPU configuration D-cta:S-ker-Global, LD+membar.ctas is observable but LD+datas

and LD+addrs is not observable. This suggests that dependencies have stronger ordering

properties than the fence membar.cta; we are unaware of any CPU memory models where

dependencies give stronger orderings than any memory fence.

5.2.3 Store Buffering (SB)

The store buffering (SB) test checks whether stores are allowed to be reordered with

loads that occur later in program order; its specification is given in Figure 5.6. This

test was first presented in the introduction and shown to observed on x86 architectures

in Section 2.4. Results for running this test on GPUs are presented in Table 5.4. We

initial state: x = 0, y = 0

T0 T1
ld.cg.s32 r0, [x] ;

st.cg.s32 [y], 1 ;

ld.cg.s32 r0, [y] ;

st.cg.s32 [y], 1 ;

assert: 0:r0=1 ∧ 1:r0=1

Figure 5.5. Test specification for LD

Table 5.3. Results for LD tests

GPU
Configuration Test Name Fermi Kepler Maxwell

D-warp:S-cta-Shared LD+* 0 0 0
D-warp:S-cta-Global LD+* 0 0 0

LD 120 296 174
LD+membar.ctas 0 186 0
LD+addrs 0 0 0
LD+datas 0 0 0

D-cta:S-ker-Global

LD+membar.gls 0 0 0

62

initial state: x = 0, y = 0

T0 T1
st.cg.s32 [x], 1 ;

ld.cg.s32 r2, [y] ;

st.cg.s32 [y], 1 ;

ld.cg.s32 r2, [x] ;

assert: 0:r2=0 ∧ 1:r2=0

Figure 5.6. Test specification for SB

Table 5.4. Results for SB tests

GPU
Configuration Test Name Fermi Kepler Maxwell

D-warp:S-cta-Shared SB+* 0 0 0
D-warp:S-cta-Global SB+* 0 0 0

SB 144 497 263
SB+membar.ctas 85 373 1D-cta:S-ker-Global
SB+membar.gls 0 0 0

do not observe this behavior for intra-CTA configurations; however, we do observe it for

inter-CTA configurations. While membar.cta fences reduce the number of times that the

weak behavior is observed, membar.gl fences are required to experimentally disallow this

behavior for inter-CTA interactions.

5.2.4 IRIW

The independent reads of independent writes (IRIW) test checks whether threads are

allowed to see memory updates in different orders; architectures that disallow this behavior

are said to have the property of write atomicity [14, p. 69]. The test specification is shown

in Figure 5.7 and the results are shown in Table 5.5. We observe that this test is observable

at all GPU configurations and can be experimentally disallowed for intra-CTA tests with

either address dependencies, membar.cta fences, or membar.gl fences. For inter-CTA tests,

initial state: x = 0, y = 0, z = 0

T0 T1 T3 T4
st [x], 1 ; ld r0 ,[x] ;

ld r2 ,[y] ;

st [y], 1 ; ld r0 ,[y] ;

ld r2 ,[x] ;

assert: 1:r0=1 ∧ 1:r2=0 ∧ 3:r0=1 ∧ 3:r2=0

Figure 5.7. Test specification for IRIW; memory annotations (.cg) and types (.s32) are
omitted in this example for readability.

63

Table 5.5. Results for IRIW tests

GPU
Configuration Test Name Fermi Kepler Maxwell

IRIW 1580 496 0
IRIW+membar.ctas 0 0 0
IRIW+membar.gls 0 0 0

D-warp:S-cta-Shared

IRIW+addrs 0 0 0
IRIW 1458 1206 0
IRIW+membar.ctas 0 0 0
IRIW+membar.gls 0 0 0

D-warp:S-cta-Global

IRIW+addrs 0 0 0
IRIW 1010 1206 0
IRIW+membar.ctas 0 26 0
IRIW+membar.gls 0 0 0

D-warp:S-cta-Shared

IRIW+addrs 0 0 0

membar.cta fences reduce the number of times we observe the weak behavior; however,

address dependencies or membar.gl fences are needed to experimentally disallow this test.

5.2.5 Coherence of Independent Writes (2+2W)

The coherence of independent writes (2+2W) test checks whether stores to different

memory locations are allowed to be reordered; its specification is given in Figure 5.8. Notice

that the final constraint deals with values in memory, not in registers which is a departure

from the previous tests in this section. Table 5.6 shows the results of running this test. We do

not observe this test intra-CTA interactions; however, the behavior is allowed for inter-CTA

interactions. While membar.cta fences reduce the number of times that the weak behavior

is observed, membar.gl fences on both threads are required to experimentally disallow this

behavior for inter-CTA interactions.

initial state: x = 0, y = 0

T0 T1
st.cg.s32 [x],2 ;

st.cg.s32 [y],1 ;

st.cg.s32 [y],2 ;

st.cg.s32 [x],1 ;

assert: x=2 ∧ y=2

Figure 5.8. Test specification for 2+2W

64

Table 5.6. Results for 2+2W tests

GPU
Configuration Test Name Fermi Kepler Maxwell

D-warp:S-cta-Shared 2+2W+* 0 0 0
D-warp:S-cta-Global 2+2W+* 0 0 0

2+2W 51 112 235
2+2W+membar.ctas 22 66 1D-cta:S-ker-Global
2+2W+membar.gls 0 0 0

5.2.6 Fences and Coherence Version 1 (R)

The fences and coherence version 1 (R) test checks to what extent coherence and order-

ings provided by fences compose. The specification is shown in Figure 5.9. Interestingly,

a variant of this test (with attributes unique to the POWER architecture) proved difficult

to correctly model throughout the history of the POWER memory model (this is discussed

in detail in [16]). Table 5.7 shows the results of running this test on GPUs. While we

do not observe this behavior for intra-CTA configurations, we do observe it for inter-CTA

configurations. We observe that membar.cta fences reduce the number of times the weak

behavior is observed; however, membar.gl fences are required to experimentally disallow

this behavior for inter-CTA interactions.

initial state: x = 0, y = 0

T0 T1
st.cg.s32 [x], 1 ;

st.cg.s32 [y], 1 ;

st.cg.s32 [y], 2 ;

ld.cg.s32 r1, [x] ;

assert: x=1 ∧ y=2 ∧ 1:r1=0

Figure 5.9. Test specification for R

Table 5.7. Results for R tests

GPU
Configuration Test Name Fermi Kepler Maxwell

D-warp:S-cta-Shared R+* 0 0 0
D-warp:S-cta-Global R+* 0 0 0

R 82 363 182
R+membar.ctas 29 307 3D-cta:S-ker-Global
R+membar.gls 0 0 0

65

5.2.7 Fences and Coherence Version 2 (S)

Similar to Section 5.2.6, the fences and coherence version 2 (S) test checks another aspect

of what extent coherence and fences compose. Again, the interaction between coherence

and fence orderings and the complications provided thereof are documented in [16]. The

specification for the S test is shown in Figure 5.10. Table 5.8 shows the results of running this

test. We do not observe this behavior for intra-CTA configurations; however, we do observe

it for inter-CTA configurations. While membar.cta fences reducee the number of times it is

observed, membar.gl fences are required to experimentally disallow this behavior for inter-

CTA interactions. Additionally, we observe that any dependency on T1 and membar.gl on

T0 also disallows this behavior.

5.3 High-Level Observations

A higher level view of the testing results reveals some noteworthy observations. Firstly,

we observe that for all tests families we ran, we are able to experimentally disallow weak

behaviors with what we interpret to be the appropriate fence (i.e. membar.cta for intra-CTA

interactions and membar.gl for inter-CTA interactions) on each thread. We also observe

that for intra-CTA tests, the memory region does not influence whether we observe the

weak behavior or not. That is, for the two tests, we observe weak behaviors for intra-CTA

initial state: x = 0, y = 0

T0 T1
st.cg.s32 [x],2 ;

st.cg.s32 [y],1 ;

ld.cg.s32 r1 ,[y] ;

st.cg.s32 [x],1 ;

assert: x=2 ∧ y=1 ∧ 1:r1=1

Figure 5.10. Test specification for S

Table 5.8. Results for S tests

GPU
Configuration Test Name Fermi Kepler Maxwell

D-warp:S-cta-Shared S+* 0 0 0
D-warp:S-cta-Global S+* 0 0 0

S 113 149 185
S+membar.ctas 0 87 0
S+membar.gls 0 0 0
S+membar.gl + data 0 0 0

D-cta:S-ker-Global

S+membar.gl + addr 0 0 0

66

tests (MP and IRIW), we observe it both when memory locations are in the shared memory

region and in the global memory region.

The next observation which we found surprising is that dependencies experimentally

provide more ordering guarantees than membar.cta for inter-CTA interactions. For ex-

ample, LD+membar.ctas is observable but LD+datas and LD+addrs is not observable for

GPU configuration D-cta:S-ker-Global. This is in contrast to CPU models where there are

no fences that are weaker than dependencies [16].

Experimentally, we observe that intra-CTA interactions experimentally allow far fewer

weak behaviors than inter-CTA interactions. For example, we do not observe store buffering

(SB) or load delaying (LD) for intra-CTA interactions, but we observe both for inter-CTA

interactions. This may mean that a stronger memory model is implemented for intra-CTA

interactions then for inter-CTA interactions; this would have interesting consequences for

formal models as this scoped behavior is unseen on CPU memory models. A hypothesized

explanation for this behavior deals with the physical location of the testing threads. For

example, intra-CTA threads are executed on the same physical SM, while inter-CTA threads

may be executed on different SMs. Threads that interact across SMs may have different

hardware (e.g. memory buses) through which memory values must propagate.

A related observation is that fences have scoped properties where fences have ordering

properties only at certain scopes (i.e. levels in the GPU thread hierarchy). For example,

membar.cta is able to provide orderings for intra-CTA interactions, but not inter-CTA

interactions (although it does reduce the number of weak executions we observe). These

scoped properties of fences are unseen in CPU models and provide a unique aspect to GPUs.

5.4 Comparison to Operational Model

Here we describe the weak GPU memory model proposed in [31]. There was no claim

that this model was endorsed to be the actual NVIDIA hardware memory model; rather,

it simply explores how to capture the semantics of some of the scoped properties of GPU

memory models. This model only considers basic memory accesses (stores and loads) as

well as two fences threadfence and threadfence block instructions. Recall that the

CUDA fences are mapped to the PTX fences membar.gl and membar.gl for threadfence

and threadfence block, respectively (we use the PTX syntax in this document). In-

terestingly, this model allows the CoRR behavior (discussed in Section 4.2). Figure 5.11

shows the data structures and communication in the model. Specifically, this figure shows

two threads in the same block where (G1, G2) are global addresses and (S1, S2) are shared

addresses. Each thread contains:

67

Figure 5.11. High-level view of the data structures and communication in the operational
GPU weak memory model

• Global and Shared Address Queues: A queue for each address. When a thread

executes a load or store instruction from the program, the instruction is enqueued in

the queue for the address it references. Instructions are dequeued to memory nondeter-

ministically allowing memory accesses from different addresses to be re-ordered. When

a fence is executed, a special instruction denoting which type of fence (membar.cta or

membar.gl) is enqueued in all address queues of the issuing thread. Fence instructions

are not allowed to dequeue unless they are at the head of all the queues.

• Load Array: An unordered array of load instructions. This allows for relaxed

coherence in which loads from the same address can be reordered. To enforce full

coherence (e.g. disallow the CoRR test), this structure simply needs to be removed

and the loads will be ordered by the above queues.

• Shared Memory: An array of shared memory. The shared memory is connected to

all threads in the block.

68

• Global Memory: An array of global memory. The global memory is connected all

threads in the device.

Each thread has its own view of memory to allow write atomicity violations [14, p. 69];

i.e. threads may see updates to memory in different orders. This can be illustrated by the

IRIW test we show in Section 5.2.4.

Memory locations have flags which enforce consistency and coherence (similar to a MESI

protocol [56]). Fence instructions use these flags to determine which values need to be

distributed to which scope. These flags are:

• Locally Modified (LM) - The location has been modified and needs to be dis-

tributed within the block.

• Globally Modified (GM) - The location has been modified and needs to be shared

globally. Not needed on shared memory as blocks have disjoint shared memory.

These flags on global memory give the model its scoped properties. For example, when a

thread issues a fence that provides intrablock ordering constraints (membar.cta), the thread

must distribute all locally modified memory locations within the block. The membar.gl

fence distributes both globally and locally modified values to all threads in the GPU. In

the case where the data values are globally, but not locally modified, the membar.gl fence

distributes the memory to all threads not in the same block; this preserves coherence. Being

locally modified, but not globally modified, is an invalid state as this would indicate that

values were distributed interblock before intrablock and there is no NVIDIA GPU fence

that enforces such behavior.

5.4.1 Comparison Results

The operational model is implemented in the Murphi model checker [57] which can check

simple GPU litmus tests. Here we compare the results of our testing with behaviors allowed

on the model. Because the operational model cannot easily parse our litmus test format,

we select a subset of tests that exercise various reorderings and scoped properties. These

are the same base tests that we discussed in Section 3.5 to test the effectivess of our testing

heuristics.

Note that the model is not necessarily wrong if it allows behavior unobserved on hard-

ware as testing may not produce all behaviors; additionally, it may be the architectural

intent that these behaviors are not observable on current chips but might be implemented

on future chips. If this is the case, the programmer should expect and defend against these

69

behaviors to ensure portable code. However, if the model disallows tests that we observe

on hardware, then the model is unsound as it provides guarantees that the hardware does

not give. Our comparison results are shown in Table 5.9. If the litmus test is observed on

any of the chips that we tested, then we say the behavior is observed in the table; if the

test is allowed on the model, we say it is allowed in the table.

We observe that this operational model is indeed unsound with respect to our observa-

tions as the test LD+membar.ctas is disallowed in the model, but observable on hardware;

we bold font this test in Table 5.9 for emphasis. The operational model does not allow this

behavior because while load operations may be reordered with program-later stores (i.e. the

base LD test is allowed), this reordering is not sensitive to the GPU hierarchy and may be

repaired with any fence (including membar.cta). In this model, scoped properties of the

Table 5.9. Observed executions and allowed behaviors for operational model

GPU Configuration Test Name Observed Allowed

MP YES YES
MP+membar.ctas NO NO
MP+membar.gls NO NO
SB NO YES
SB+membar.ctas NO NO
SB+membar.gls NO NO
LD NO YES
LD+membar.ctas NO NO

D-warp:S-cta-Shared

LD+membar.gls NO NO
MP YES YES
MP+membar.ctas NO NO
MP+membar.gls NO NO
SB NO YES
SB+membar.ctas NO NO
SB+membar.gls NO NO
LD NO YES
LD+membar.ctas NO NO

D-warp:S-cta-Shared

LD+membar.gls NO NO
MP YES YES
MP+membar.ctas YES YES
MP+membar.gls NO NO
SB YES YES
SB+membar.ctas YES YES
SB+membar.gls NO NO
LD YES YES
LD+membar.ctas YES NO

D-warp:S-cta-Shared

LD+membar.gls NO NO

70

model are implemented solely in how memory values are propagated to other threads; loads

simply retrieve the value they observe in memory and thus are not aware of scopes.

To repair this model, scoped properties would have to be extended to load operations

such that load operations are not required to return values written by inter-CTA threads

unless followed by a membar.gl. At this time, we believe the fix to this issue would require

either another flag for each memory location, or another layer (i.e. array) of memory values,

both of which are nontrivial additions to the model.

CHAPTER 6

CONCLUSION AND FUTURE WORK

In this chapter, we first discuss directions for future work and conclude with a summary

of this document. Section 6.1 discusses testing more complicated GPU configurations and

how they can reveal behaviors not seen in the GPU configurations on which we focused in

this document. Section 6.2 presents early work on adding scoped primitives to the Herd

axiomatic memory model framework [16] and how they can be used to reason about memory

models with scoped properties. A simple scoped model in this framework is shown to be

sound with respect to the tests presented in Section 6.3. We briefly mention the OpenCL 2.0

memory model and plans to produce a formal compilation mapping to PTX for memory

instructions. We end with a summary of this document.

We note that much of this future work is done in close collaboration with the larger

GPU memory model research group mentioned in Chapter 1.

6.1 Additional GPU Configurations

This document has largely focused on three simple GPU configurations defined in

Section 2.5.1. While these are not a complete set of configurations to consider for GPU

litmus tests, they served as a good starting point and yielded many interesting results, as

seen in Chapter 4.

However, consider the SB test (see Section 5.2.3) which has two memory locations x

and y. Recall that we were unable to observe any weak behaviors for the intra-CTA GPU

configurations. However, if we execute tests where the memory locations x and y are

placed into different memory regions, we are able to observe weak behaviors on the Maxwell

architecture. We show the results for SB where x and y are parameterized over global and

shared memory regions in Table 6.1. We observe that when x and y are in the same region,

we see no weak behavior; however, when they are in different regions, we do observe weak

behaviors on Maxwell. This may be caused because the Maxwell architecture has different

physical locations for global and shared memory regions while Fermi and Kepler simply use

72

Table 6.1. Results for intra-CTA SB tests with different memory regions

Fermi Kepler Maxwell
x Region y Region Tesla C2075 GTX Titan GTX 750

shared shared 0 0 0
shared global 0 0 6715
global shared 0 0 6454
global global 0 0 0

the L1 cache to house the shared memory region (see Section 2.2). This test shows that

more complicated GPU configurations can yield results not seen in the basic configurations

on which we focused in this document. We plan to more fully explore how to efficiently

generate and run these more complicated configurations.

6.2 Herd Model

The Herd axiomatic memory model specification language and tool is part of the DIY

tool suite and presented in [16]. We plan to incorporate scopes and memory regions into

this tool which will allow us to specify axiomatic GPU memory models and compare them

with our testing results seamlessly.

While the complete background for understanding Herd and axiomatic memory models

is outside the scope of this document, we briefly discuss initial work in this area. Axiomatic

memory models are given as sets and relations over memory instructions (e.g. load, store,

etc). In Herd, executions are allowed or disallowed based on the acyclicity of certain relations

(often called the global happens-before relations and abbreviated GHB). To allow scoped

behaviors in Herd, we propose new primitive relations:

• internal-CTA (int-cta): This relation is between all pairs of memory instructions

that occur within the same CTA.

• internal-dev (int-dev): This relation is between all pairs of memory instructions

that occur within the same device.

Now we may intersect existing global happens-before relations (as constructed in [16]) with

these new relations to provide orderings only at a specific scope.

For example, consider the existing memory model of RMO [51, pp. 265–267]). A GHB

for RMO was derived in [58, p. 48]. The formalization contains a fence relation which

contains instructions separated by a fence in program order and provides fence orderings

to the instructions. If we parameterize the fence in the RMO GHB formalization, i.e. with

73

the function RMO ghb(fence), then two GHB relations at different scopes with different

fences corresponding to scope may be constructed. We show this model in Figure 6.1. The

ampersand symbol (&) is used for intersection and the pipe symbol (|) is union. Note that

the cta fence is both membar.cta and membar.gl as membar.gl gives orderings both inter

and intra CTA. The acyclic keyword specifies that valid executions do not contain cycles

in the relations that follow. That is, cta ghb and device cta must be acyclic relations.

While the above model has many shortcomings (notably with more complicated config-

urations as discussed in Section 6.1) and the Herd implementation of new scoped primitives

is preliminary, we are still able to compare this model to our testing results in a similar

manner to our comparison to the operational model in Section 5.4. Our results are seen

in Table 6.2. If the litmus test is observed on any of the chips that we tested, then we

say the behavior is observed in the table; if the test is allowed on the model, we say it is

allowed in the table. We observe that for this subset of tests and GPU configurations, our

axiomatic model is sound with respect to our results; that is we do not observe any behaviors

that are disallowed by the model. Recall that the model we examined in Section 5.4 was

unsound with our observations and thus, we consider this axiomatic model (as basic as it

is) an improvement. We note that this model does allow several behaviors unobserved on

hardware, e.g. SB and LD for intra-CTA tests; future work will explore these behaviors and

strengthen the model as needed. Additionally, we intend to explore how to model more

complicated GPU configurations in this framework and hope to present a more complete

model.

6.3 OpenCL Compilation

The new OpenCL 2.0 [33] GPU programming language specification released in Novem-

ber of 2013 has adopted a memory model similar to C++11 [9]. However, to enable devel-

1 let cta_fence = membar.cta | membar.gl

2 let device_fence = membar.gl

3

4 let cta_ghb = RMO_ghb(cta_fence) & int-cta

5 let device_ghb = RMO_ghb(device_fence) & int-dev

6

7 acyclic cta_ghb

8 acyclic device_ghb

Figure 6.1. Simple scoped RMO Herd axiomatic memory model with a fence parameterized
global happens-before and PTX fences

74

Table 6.2. Observed executions and allowed behaviors for axiomatic model

GPU Configuration Test Name Observed Allowed

MP YES YES
MP+membar.ctas NO NO
MP+membar.gls NO NO
SB NO YES
SB+membar.ctas NO NO
SB+membar.gls NO NO
LD NO YES
LD+membar.ctas NO NO

D-warp:S-cta-Shared

LD+membar.gls NO NO
MP YES YES
MP+membar.ctas NO NO
MP+membar.gls NO NO
SB NO YES
SB+membar.ctas NO NO
SB+membar.gls NO NO
LD NO YES
LD+membar.ctas NO NO

D-warp:S-cta-Shared

LD+membar.gls NO NO
MP YES YES
MP+membar.ctas YES YES
MP+membar.gls NO NO
SB YES YES
SB+membar.ctas YES YES
SB+membar.gls NO NO
LD YES YES
LD+membar.ctas YES YES

D-warp:S-cta-Shared

LD+membar.gls NO NO

opers to take advantage of the explicit GPU thread hierarchy, the OpenCL 2.0 specification

has introduced new memory scope annotations to atomic operations which restrict ordering

constraints to certain levels in the GPU thread hierarchy. Both OpenCL 2.0 and PTX have

complicated memory models which allow many reorderings and subtle scoped properties not

seen on CPU models. Because of this, it remains a nontrivial task to map the OpenCL 2.0

memory model to PTX. Furthermore, compilation correctness is crucial for the production

of correct code.

We plan to explore a formalization of both PTX and OpenCL 2.0 in Herd axiomatic

framework and propose a provably safe compilation mapping from OpenCL 2.0 to PTX.

This will allow developers to create safe, portable, and efficient programs in the higher level

OpenCL 2.0 language.

75

6.4 Summary

In this thesis, we have presented a GPU memory consistency testing tool and shown that

current GPUs do in fact implement weak memory models with subtle scoped properties

unseen in CPU models. The testing framework uses GPU specific incantations without

which we are unable to observe weak executions as much if at all. We have shown notable

examples, including a controversial relaxed coherence behavior that is observable on Kepler

and Fermi architectures.

Without precise documentation about which reorderings are allowed on hardware, de-

velopers cannot know when it is necessary to use memory fences to ensure correct and

portable programs. This issue is biting developers even now as we have shown that several

case studies of CUDA code in observable weak behaviors could lead to erroneous outcomes,

including examples in two common GPU books, CUDA by Example and GPU Computing

Gems, Jade Edition.

While vendor documentation on GPU memory consistency is sparse, we have presented

bulk results of running many different types of tests whose results can be used to provide

intuition about the GPU memory model. Using these results, we show that the only formal

weak GPU memory model that we know of is flawed with respect to current NVIDIA

hardware.

Our future work includes testing more complicated GPU configurations, as these can

lead to weak behaviors unseen in the simple configurations on which we focused in this

document. We plan to more fully explore scoped relations in the Herd axiomatic memory

model specification tool and create a GPU memory model that is sound with respect to these

test results. Once a formal model has been established, we can focus on formal compilation

schemes from higher level languages (e.g. OpenCL 2.0) to PTX which will allow developers

to create efficient and correct GPU applications.

APPENDIX

PTX FROM DYNAMIC LOAD

BALANCING

Here we show annotated PTX code from compiling the dynamic load balancing code

discussed in Section 4.6. The code is available from: http://www.cse.chalmers.se/

research/group/dcs/gpuloadbal.html. We compiled this application with compiler ver-

sion: release 5.5, V5.5.0. We comment the lines of code we include in our distilled GPU

litmus test. Figure A.1 shows the annotated compiled PTX starting with snippets from the

steal method and next, showing snippets from the push method. While our analysis only

considers these two methods, to guarantee correctness, all the methods of the concurrent

deque should be considered.

77

1 //From the steal method in the octree partitioning application

2 ...

3 ld.volatile.u32 %r8, [%rd32+4];

4 and.b32 %r9, %r8, 65535;

5 ld.volatile.u32 %r33, [%rd32]; //Load tail

6 setp.gt.s32 %p5, %r33, %r9; //Compare tail

7 @%p5 bra BB16_9; //branch on comparison

8 mov.u32 %r44, 0;

9 bra.uni BB16_10;

10 BB16_9:

11 ld.u32 %r35, [%rd1+8];

12 mad.lo.s32 %r36, %r35, %r7, %r9;

13 ld.u64 %rd33, [%rd1+-8];

14 mul.wide.u32 %rd34, %r36, 48;

15 mul.wide.u32 %rd9, %r9, 48;

16 add.s64 %rd10, %rd8, %rd9;

17 ld.u32 %r10, [%rd10];

18

19 //Loading the task is broken into several vector loads

20 //which we model as 1 regular load in our tests

21 ld.v4.u8 {%rs1, %rs2, %rs3, %rs4}, [%rd10+8];

22 ld.v4.u8 {%rs5, %rs6, %rs7, %rs8}, [%rd10+12];

23 ...

24 //From the push method in the octree partitioning application

25 ...

26 //Storing the task is broken into several vector stores

27 //which we model as 1 regular store in our tests

28 st.v4.u8 [%rd9+12], {%rs5, %rs6, %rs7, %rs8};

29 st.v4.u8 [%rd9+8], {%rs1, %rs2, %rs3, %rs4};

30 ld.u64 %rd10, [%rd1+8];

31 add.s64 %rd11, %rd10, %rd5;

32 ld.volatile.u32 %r10, [%rd11]; //Load tail

33 add.s32 %r11, %r10, 1; //Increment tail

34 st.volatile.u32 [%rd11], %r11; //Store tail

35 ld.u64 %rd12, [%rd1+8];

36 ...

Figure A.1. Annotated PTX code for the steal and push methods produced from
compiling the dynamic load balancing CUDA code

REFERENCES

[1] D. B. Kirk and W.-m. W. Hwu, Programming Massively Parallel Processors: A Hands-
on Approach. Morgan Kaufmann Publishers Inc., 2010.

[2] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to General-Purpose
GPU Programming. Addison-Wesley Professional, 2010.

[3] S. S. Stone, J. P. Haldar, S. C. Tsao, W.-m. W. Hwu, Z.-P. Liang, and B. P. Sutton,
“Accelerating advanced MRI reconstructions on GPUs,” ser. CF ’08. ACM, 2008, pp.
261–272.

[4] A. Humphrey, Q. Meng, M. Berzins, and T. Harman, “Radiation modeling using the
uintah heterogeneous cpu/gpu runtime system,” ser. XSEDE ’12. ACM, 2012, pp.
1–4.

[5] W. M. Brown, P. Wang, S. J. Plimpton, and A. N. Tharrington, “Implementing
molecular dynamics on hybrid high performance computers - short range forces,”
Computer Physics Communications, vol. 182, no. 4, pp. 898–911, 2011.

[6] D. Merrill, M. Garland, and A. Grimshaw, “Scalable GPU graph traversal,” SIGPLAN
Not., vol. 47, no. 8, pp. 117–128, 2012.

[7] Wikipedia, “iPad,” http://en.wikipedia.org/wiki/IPad, accessed: May 2014.

[8] ——, “Samsung galaxy S,” http://en.wikipedia.org/wiki/Samsung Galaxy S, ac-
cessed: May 2014.

[9] ISO/IEC, “Standard for programming language C++,” 2012.

[10] Wikipedia, “Race condition,” http://en.wikipedia.org/wiki/Race condition, accessed:
May 2014.

[11] N. G. Leveson and C. S. Turner, “An investigation of the Therac-25 accidents,”
Computer, vol. 26, no. 7, pp. 18–41, Jul. 1993.

[12] U.S.-Canada Power System Outage Task Force, “Final report on the August 14, 2003
blackout in the United States and Canada: Causes and recommendations,” 2004.

[13] M. B. Jones, “What really happened on Mars?” http://research.microsoft.com/en-us/
um/people/mbj/mars pathfinder/, 1997, accessed: May 2014.

[14] D. J. Sorin, M. D. Hill, and D. A. Wood, A Primer on Memory Consistency and Cache
Coherence, ser. Synthesis Lectures on Computer Architecture. Morgan & Claypool
Publishers, 2011.

[15] L. Lamport, “How to make a multiprocessor computer that correctly executes multi-
process programs,” IEEE Trans. Comput., pp. 690–691, Sep. 1979.

79

[16] J. Alglave, L. Maranget, and M. Tautschnig, “Herding cats: modelling, simulation,
testing, and data-mining for weak memory,” 2014, to appear in TOPLAS.

[17] K. Gharachorloo, A. Gupta, and J. Hennessy, “Performance evaluation of memory
consistency models for shared-memory multiprocessors,” SIGARCH Comput. Archit.
News, vol. 19, no. 2, pp. 245–257, Apr. 1991.

[18] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen, “X86-tso: A rigorous
and usable programmer’s model for x86 multiprocessors,” CACM, pp. 89–97, 2010.

[19] NVIDIA, “CUDA C programming guide, version 6,” http://docs.nvidia.com/cuda/
pdf/CUDA C Programming Guide.pdf, February 2014, accessed: May 2014.

[20] ——, “Parallel Thread Execution ISA: Version 4.0 (Feb. 2014),” http://docs.nvidia.
com/cuda/parallel-thread-execution.

[21] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell, “Litmus: Running tests against
hardware,” ser. TACAS’11. Springer-Verlag, pp. 41–44.

[22] S. Hangal, D. Vahia, C. Manovit, and J.-Y. J. Lu, “TSOtool: A program for veri-
fying memory systems using the memory consistency model,” ser. ISCA ’04. IEEE
Computer Society, 2004, pp. 114–.

[23] W. W. Collier, Reasoning About Parallel Architectures. Prentice-Hall, Inc., 1992.

[24] ARM, “Barrier litmus tests and cookbook,” http://infocenter.arm.com/help/topic/
com.arm.doc.genc007826/Barrier Litmus Tests and Cookbook A08.pdf, November
2009, accessed: May 2014.

[25] S. Mador-Haim, R. Alur, and M. M. K. Martin, “Litmus tests for comparing memory
consistency models: how long do they need to be?” ser. DAC ’11. ACM, 2011, pp.
504–509.

[26] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell, “Fences in weak memory models
(extended version),” Formal Methods in System Design, vol. 40, no. 2, pp. 170–205,
2012.

[27] S. Xiao and W. chun Feng, “Inter-block GPU communication via fast barrier synchro-
nization,” ser. IPDPS’10. IEEE Computer Society, April 2010, pp. 1–12.

[28] W. chun Feng and S. Xiao, “To GPU synchronize or not GPU synchronize?” ser.
ISCAS. IEEE Computer Society, May 2010, pp. 3801–3804.

[29] D. R. Hower, B. M. Beckmann, B. R. Gaster, B. A. Hechtman, M. D. Hill, S. K.
Reinhardt, and D. A. Wood, “Sequential consistency for heterogeneous-race-free,” ser.
MSPC’13. ACM, 2013.

[30] B. A. Hechtman and D. J. Sorin, “Exploring memory consistency for massively-
threaded throughput-oriented processors,” ser. ISCA’13. ACM, 2013, pp. 201–212.

[31] T. Sorensen, G. Gopalakrishnan, and V. Grover, “Towards shared memory consistency
models for GPUs,” ser. ICS’13. ACM, 2013, pp. 489–490.

[32] D. R. Hower, B. A. Hechtman, B. M. Beckmann, B. R. Gaster, M. D. Hill, S. K. Rein-
hardt, and D. A. Wood, “Heterogeneous-race-free memory models,” ser. ASPLOS’14.
ACM, 2014, pp. 427–440.

80

[33] Khronos OpenCL Working Group, “The OpenCL C specification, version: 2.0,”
November 2013.

[34] H. Foundation, “Hsa programmers reference manual, version 0.95,” http://www.
hsafoundation.com/standards/, May 2013, accessed: May 2014.

[35] NVIDIA, “NVIDIA’s next generation CUDA compute architecture: Fermi v1.1,”
http://www.nvidia.com/content/PDF/fermi white papers/NVIDIA Fermi Compute
Architecture Whitepaper.pdf, 2009, accessed: May 2014.

[36] ——, “NVIDIA’s next generation CUDA compute architecture:
Kepler GK110 v1.0,” http://www.nvidia.com/content/PDF/kepler/
NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf, 2012, accessed: May 2014.

[37] ——, “Nvidia GeForce GTX 750 ti v1.1,” http://international.download.nvidia.
com/geforce-com/international/pdfs/GeForce-GTX-750-Ti-Whitepaper.pdf, 2014, ac-
cessed: May 2014.

[38] M. J. Flynn, “Some computer organizations and their effectiveness,” Computers, IEEE
Transactions on, vol. C-21, no. 9, pp. 948 –960, sept. 1972.

[39] R. Farber, CUDA Application Design and Development. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2012.

[40] NVIDIA, “CUDA binary utilites v6.0,” http://docs.nvidia.com/cuda/pdf/CUDA
Binary Utilities.pdf, February 2014, accessed: May 2014.

[41] ——, “Inline PTX assembly in CUDA,” http://docs.nvidia.com/cuda/pdf/Inline
PTX Assembly.pdf, February 2014, accessed: May 2014.

[42] S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams, “Understanding power
multiprocessors,” ser. PLDI ’11. ACM, 2011, pp. 175–186.

[43] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell, “Fences in weak memory models,”
ser. CAV’10. Springer-Verlag, 2010, pp. 258–272.

[44] S. Mador-Haim, L. Maranget, S. Sarkar, K. Memarian, J. Alglave, S. Owens, R. Alur,
M. M. K. Martin, P. Sewell, and D. Williams, “An axiomatic memory model for power
multiprocessors,” ser. CAV’12. Springer-Verlag, 2012, pp. 495–512.

[45] Wikipedia, “S-expression,” http://en.wikipedia.org/wiki/S-expression, accessed: May
2014.

[46] A. Habermaier and A. Knapp, “On the correctness of the SIMT execution model of
GPUs,” ser. ESOP’12. Springer-Verlag, 2012, pp. 316–335.

[47] K. Gupta, J. A. Stuart, and J. D. Owens, “A study of persistent threads style GPU
programming for GPGPU workloads,” ser. InPar’12. IEEE Computer Society, 2012,
pp. 1–14.

[48] J. A. Stuart and J. D. Owens, “Efficient synchronization primitives for GPUs,” CoRR,
2011, http://arxiv.org/pdf/1110.4623.pdf.

[49] D. Cederman and P. Tsigas, “On dynamic load balancing on graphics processors,” ser.
GH ’08. Eurographics Association, 2008, pp. 57–64.

81

[50] W.-m. W. Hwu, GPU Computing Gems Jade Edition. Morgan Kaufmann Publishers
Inc., 2011.

[51] D. L. Weaver and T. Germond, “The SPARC Architecture Manual: Version 9 (1994),”
http://www.sparc.com/standards/SPARCV9.pdf, accessed: May 2014.

[52] ARM, “Cortex-A9 MPCore, programmer advice notice, read-after-read haz-
ards,” ARM Reference 761319. http://infocenter.arm.com/help/topic/com.arm.doc.
uan0004a/UAN0004A a9 read read.pdf, accessed: May 2014.

[53] Khronos Group, “OpenCL: Open Computing Language,” http://www.khronos.org/
opencl.

[54] N. S. Arora, R. D. Blumofe, and C. G. Plaxton, “Thread scheduling for multipro-
grammed multiprocessors,” ser. SPAA ’98. ACM, 1998, pp. 119–129.

[55] Wikipedia, “ABA problem,” http://en.wikipedia.org/wiki/ABA problem, accessed:
May 2014.

[56] M. S. Papamarcos and J. H. Patel, “A low-overhead coherence solution for multipro-
cessors with private cache memories,” ser. ISCA ’84. ACM, 1984.

[57] D. Dill, “The Murphi verification system,” in Computer Aided Verification, ser. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 1996, vol. 1102, pp. 390–393.

[58] J. Alglave, “A shared memory poetics,” Ph.D. dissertation, Universit Paris Diderot,
2010.

