One Size Doesn't Fit All:

Quantifying Performance Portability of Graph Applications on GPUs

Tyler Sorensen
Princeton University
UC Santa Cruz

Sreepathi Pai *University of Rochester*

Alastair F. Donaldson
Imperial College London

November 4, 2019
International Symposium on Workload
Characterization (IISWC)

GPUs and graph applications are important emerging domain.

- We perform a massive empirical study (240 hours across 6 different GPUs)
- Using a GPU graph application DSL and optimizing compiler, we find:

GPUs and graph applications are important emerging domain.

- We perform a massive empirical study (240 hours across 6 different GPUs)
- Using a GPU graph application DSL and optimizing compiler, we find:

Compiler optimizations can provide **speedups** of up to **16x** and a geomean across the domain of **1.5x**

GPUs and graph applications are important emerging domain.

- We perform a massive empirical study (240 hours across 6 different GPUs)
- Using a GPU graph application DSL and optimizing compiler, we find:

Compiler optimizations can provide **speedups** of up to **16x** and a geomean across the domain of **1.5x**

These optimizations can also provide **slowdowns** of up to **22x**

Traditional *performance portability* fall short for graph applications on GPUs

Previous approaches produce trivial or biased results

Traditional *performance portability* fall short for graph applications on GPUs

Previous approaches produce trivial or biased results

All optimization combinations cause slowdowns **AND** speedups across the domain.

Magnitude-based approaches are **biased** towards more sensitive GPUs

Rank-based statistical procedures offer a new way of thinking about performance portability

Rank-based statistical procedures offer a new way of thinking about performance portability

Produces non-trivial performance portable optimization combination yielding a max speedups of 6x

Analysis can create **semi- specialized** optimization
strategies, which yield greater
speedups and **performance critical insights**.

What is a GPU? (1999 Edition)

The technical definition of a GPU is "a single chip processor with integrated <u>transform</u>, <u>lighting</u>, triangle setup/clipping, and <u>rendering</u> engines that is capable of processing a minimum of 10 million <u>polygons</u> per second."

https://web.archive.org/web/20160408122443/http://www.nvidia.com/object/gpu.html

What is a GPU? (2019 Edition)

 20 years later, Nvidia's homepage advertises GPUs without the ability to output graphics!

Still used for high-end graphics

Still used for high-end graphics

Use in data centers for AI and scientific computing

Still used for high-end graphics

Use in data centers for AI and scientific computing

Increasingly used in mobile devices

- Programmable vector lanes?
 - Nvidia GPUs have 32 threads per lane
 - Intel GPUs have 8 threads per lane
 - ARM GPUs have 1 thread per lane

- Highly parallel?
 - Nvidia GPUs execute over 10K threads concurrently
 - ARM GPUs execute 500 threads concurrently

What is a GPU?

My best definition:

- High computational efficiency goals
- SIMT programming abstraction (OpenCL)

What is a GPU?

My best definition:

- High computational efficiency goals
- SIMT programming abstraction (OpenCL)

The GPU is:

An exemplar of the architectural Cambrian explosion predicted by Hennessy and Patterson's 2017 Turing award lecture "The New Golden Age of Computer Architecture"

Graphs (1736 Edition)

• Euler's Königsberg Bridges

Modern day

Abstract View

As a Graph

Graphs in 2019

Size/Growth of modern graphs

Graphs in 2019

Size/Growth of modern graphs

Applications:

recommendation systems

Graphs in 2019

Size/Growth of modern graphs

Applications:

- recommendation systems
- (mis)information spread

Performance Portability: Graphs and GPUs

- Privacy at the edge
 - Recommendation systems require intimate shopping/viewing data

- Data collection and latest models in the cloud
 - Community monitoring requires constant computation and model updating

Increasingly support for both will be required!

This Work

Characterizing performance portability of Graph applications on GPUs

We Developed:

A portable backend for a GPU graph application DSL and optimizing compiler

We Conducted:

A large empirical study, collecting 240 hours of runtime data across 6 GPU

We Characterized:

Performance portability in this domain using a rank-based statistical method

A GPU Graph DSL and Compiler

- IrGL: Pai and Pingali, OOPSLA 2016
 - Original work targets only Nvidia GPUs

 First class support for nodes, edges, worklists

- Optimizing compiler
 - Load balancing
 - On-chip synchronization
 - Atomic RMW coalescing

IrGL Optimizations

Load Balancing

Graphs have irregular parallelism leading to load imbalance

Threads

IrGL has 3 transformations to perform load balancing at 3 levels of the GPU hierarchy: Local, Subgroup, Workgroup

IrGL Optimizations

Atomic RMW Coalescing

Graph applications require atomic RMWs to update the worklist for the next iteration

IrGL Optimizations

On-chip Synchronization

Many graph apps are iterative, requiring a global sync between iterations (epochs)

Our Empirical Study

Optimizations

LB - Local

LB - Subgroup

LB - Workgroup

OC - Sync

RMW-Cls

Applications		
BFS		GPUs
SSSP		Nvidia-Quadro
PR		Nvidia-1080
CC	Inputs	AMD-R9
MIS	Uniform	Intel-Iris
MST	RMAT	Intel-HD5500
TRI	NY-Road	ARM-Mali T628

All combinations of above were run

Total runtime of **240 hours**

Over 10K individual runs

widest empirical study across GPUs that we are aware of!

Performance Portability

 Which optimizations should be applied to provide best performance across the entire domain?

Optimizations

LB - Local

LB - Subgroup

LB - Workgroup

OC - Sync

RMW-Cls

Optimization Space (32 options)

Do No Harm

- Only apply an optimization if it:
 - Does not provide any slowdowns across the entire domain
 - Provides at least one speedup

Easily to query from our data set, and we found...

Do No Harm

- Only apply an optimization if it:
 - Does not provide any slowdowns across the entire domain
 - Provides at least one speedup

• Easily to query from our data set, and we found...

NOTHING!!!

All optimizations provided at least one instance of a slowdown

Do the Least Harm

• Relaxation of Do no Harm: Select the optimization combination that caused the fewest slowdowns.

Max Geomean

 Select the optimization combination that provides the highest geomean across the domain

Highest Geomean

Optimizations
LB - Local
LB - Subgroup
LB - Workgroup
OC - Sync
RMW-Cls

49 Slowdowns 66 Speedups, 1.18x Geomean

GPUs	# Speedups	# Slowdowns
Nvidia-Quadro	10	21
Nvidia-1080	00	16
AMD-R9	12	3
Intel-Iris	10	2
Intel-HD5500	14	2
ARM-Mali T628	20	5

Max Geomean

 Select the optimization combination that provides the highest geomean across the domain

Highest Geomean Optimizations LB - Local LB - Subgroup LB - Workgroup OC - Sync Highest Geomean 49 Slowdowns 66 Speedups, 1.18x Geomean

RMW-Cls

GPUs	# Speedups	# Slowdowns
Nvidia-Quadro	10	21
Nvidia-1080	00	16
AMD-R9	12	3
Intel-Iris	10	2
Intel-HD5500	14	2
ARM-Mali T628	20	5

Our Approach: Rank-based

For a single chip, app, input combination, just compare confidence intervals

Our Approach: Rank-based

For a single chip,app,input combination, just compare confidence intervals

Our Approach: Rank-based

For a single chip,app,input combination, just compare confidence intervals

Things become trickier when more chips are added

Only consider relative *Opt. On* points, we can show more now visually

We now use the *Mann-Whitney U test* to determine if points are *stochastically more likely to be above* the horizontal line.

The test is *non-parametric*: it assumes nothing about the distribution.

Rank-based Results

 Compared to fewest slowdowns, more slowdowns, also more speedups. Higher Geomean and higher max

Rank-based Results

• Compared to highest geomean: No more bias against Nvidia GPUs

Highest Geomean

GPUs	# Speedups	# Slowdowns
Nvidia-Quadro	10	21
Nvidia-1080	00	16
AMD-R9	12	3
Intel-Iris	10	2
Intel-HD5500	14	2
ARM-Mali T628	20	5

Rank-based

GPUs	# Speedups	# Slowdowns
Nvidia-Quadro	22	13
Nvidia-1080	13	07
AMD-R9	17	4
Intel-Iris	10	10
Intel-HD5500	21	12
ARM-Mali T628	20	04

• Provides 6 different optimization strategies, one per chip:

GPUs	LB-Local	LB-Subgroup	LB-Workgroup	OC - Sync	RMW-Cls
Nvidia-Quadro	.86	.68	.22	.47	.07
Nvidia-1080	.86	.78	.32	.22	.19
AMD-R9	.90	.74	.18	.65	.70
Intel-Iris	.58	.63	.09	.73	.67
Intel-HD5500	.54	.56	.12	.63	.41
ARM-Mali T628	.47	.76	.11	.71	.12

 AMD has widest vector lane, it makes sense that it benefits from coalescing

GPUs	LB-Local	LB-Subgroup	LB-Workgroup	OC - Sync	RMW-Cls
Nvidia-Quadro	.86	.68	.22	.47	.07
Nvidia-1080	.86	.78	.32	.22	.19
AMD-R9	.90	.74	.18	.65	(.70)
Intel-Iris	.58	.63	.09	.73	.67
Intel-HD5500	.54	.56	.12	.63	.41
ARM-Mali T628	.47	.76	.11	.71	.12

Nvidia slimmed down kernel launch overhead; no need for on-chip synchronization

GPUs	LB-Local	LB-Subgroup	LB-Workgroup	OC - Sync	RMW-Cls
Nvidia-Quadro	.86	.68	.22	.47	.07
Nvidia-1080	.86	.78	.32	.22	.19
AMD-R9	.90	.74	.18	.65	.70
Intel-Iris	.58	.63	.09	.73	.67
Intel-HD5500	.54	.56	.12	.63	.41
ARM-Mali T628	.47	.76	.11	.71	.12

Mysterious that ARM balances across subgroups...

GPUs	LB-Local	LB-Subgroup	LB-Workgroup	OC - Sync	RMW-Cls
Nvidia-Quadro	.86	.68	.22	.47	.07
Nvidia-1080	.86	.78	.32	.22	.19
AMD-R9	.90	.74	.18	.65	.70
Intel-Iris	.58	.63	.09	.73	.67
Intel-HD5500	.54	.56	.12	.63	.41
ARM-Mali T628	.47	(.76	.11	.71	.12

Mysterious that ARM balances across subgroups...

GPUs	LB-Local	LB-Subgroup	LB-Workgroup	OC - Sync	RMW-Cls
Nvidia-Quadro	.86	.68	.22	.47	.07
Nvidia-1080	.86	.78	.32	.22	.19
AMD-R9	.90	.74	.18	.65	.70
Intel-Iris	.58	.63	.09	.73	.67
Intel-HD5500	.54	.56	.12	.63	.41
ARM-Mali T628	.47	.76	.11	.71	.12

• Turns out it is because of "memory divergence"!

Conclusion

- GPUs and graph applications are important emerging domain.
 - We perform a massive empirical study (240 hours across 6 different GPUs)
- Traditional performance portability fall short in this domain.

• *Rank-based* statistical procedures offer a new way of thinking about performance portability

Tyler Sorensen

https://twitter.com/Tyler UCSC

https://www.cs.princeton.edu/~ts20/

Extra Slides Start

Impact on GPU Programming Languages

 Working with Khronos group to better specify a progress model that allows on-chip synchronization (OC-Sync)

Rank-based Global Optimizations Optimizations LB - Local 60 Slowdowns LB - Subgroup 66 Speedups, LB - Workgroup 1.15x Geomean OC - Sync 6x max speedup

Semi-specialization in Other Dimensions

• Semi-specialized optimizations for chip, application, and graph input

Do the Least Harm

• Relaxation of Do no Harm: Select the optimization combination that caused the fewest slowdowns.

At First Glance – IrGL Optimizations

- The Good: Fantastic Speedups!
 - Optimizations achieved up to a 16x speedup for AMD
 - Speedups of over 10x on Intel chips
 - Geomean of 1.5x top speedups

- The Bad: Horrible Slowdowns!
 - Slowdowns of up to 22x on Intel GPUs for some "optimizations"
 - Other GPUs suffered slowdowns of at least 8x

- The Ugly: Performance Portability?
 - How to tame this area?

- IrGL: Pai and Pingali, OOPSLA 2016
 - Original work targets only Nvidia GPUs
- First class support for nodes, edges, worklists

- Optimizing compiler
 - Load balancing
 - On-chip synchronization
 - Atomic RMW coalescing

- IrGL: Pai and Pingali, OOPSLA 2016
 - Original work targets only Nvidia GPUs

 First class support for nodes, edges, worklists

- Optimizing compiler
 - Load balancing
 - On-chip synchronization
 - Atomic RMW coalescing

- IrGL: Pai and Pingali, OOPSLA 2016
 - Original work targets only Nvidia GPUs

 First class support for nodes, edges, worklists

- Optimizing compiler
 - Load balancing
 - On-chip synchronization
 - Atomic RMW coalescing

- IrGL: Pai and Pingali, OOPSLA 2016
 - Original work targets only Nvidia GPUs

 First class support for nodes, edges, worklists

- Optimizing compiler
 - Load balancing
 - On-chip synchronization
 - Atomic RMW coalescing

- IrGL: Pai and Pingali, OOPSLA 2016
 - Original work targets only Nvidia GPUs

 First class support for nodes, edges, worklists

- Optimizing compiler
 - Load balancing
 - On-chip synchronization
 - Atomic RMW coalescing

- IrGL: Pai and Pingali, OOPSLA 2016
 - Original work targets only Nvidia GPUs

 First class support for nodes, edges, worklists

- Optimizing compiler
 - Load balancing
 - On-chip synchronization
 - Atomic RMW coalescing

- IrGL: Pai and Pingali, OOPSLA 2016
 - Original work targets only Nvidia GPUs

 First class support for nodes, edges, worklists

- Optimizing compiler
 - Load balancing
 - On-chip synchronization
 - Atomic RMW coalescing

Worklist				