
Towards Shared Memory Consistency Models for GPUs

Tyler Sorensen
University of Utah
Salt Lake City, UT

t.sorensen@utah.edu

Ganesh Gopalakrishnan
University of Utah
Salt Lake City, UT

ganesh@cs.utah.edu

Vinod Grover
NVIDIA

Santa Clara, CA
vgrover@nvidia.com

ABSTRACT
With the widespread use of graphical processing units (GPUs),
it is important to ensure that programmers have a clear
understanding of their shared memory consistency model,
i.e. what values can be read when issued concurrently with
writes. Compared to CPUs, GPUs present different shared
memory behavior, and we know of no published formal con-
sistency model for them. To fill this void, we establish a for-
mal state transition model of GPU loads, stores, and fences
in the language Murphi [2], and check properties – captured
in litmus tests that pertain to ordering and visibility prop-
erties – over executions using the Murphi model checker.

Categories and Subject Descriptors
C.1.2 [Computer Systems Organization]: Processor Ar-
chitectures—Multiple Data Stream Architectures (Multipro-
cessors); D.2.4 [Software Engineering]: Software/Program
Verification—model checking, reliability

General Terms
Verification, Reliability

Keywords
GPU; Shared Memory Consistency; Memory Fences

1. MOTIVATION
We study GPU shared memory consistency with a focus

on memory fences. Well-synchronized code can hide weak
memory model issues from the programmer [4, p.64-65];
however, synchronization operations can be very expensive.
Cutting-edge algorithms bypass these expensive operations
to obtain significant speedup, at the cost of exposing the
memory model [3], which must be understood for correct
implementation. If developers write unsynchronized code
assuming certain instruction orderings or memory visibilities
which are not in line with the shared memory consistency
model, then code can be buggy. We have found instances of
such assumptions in real world code.

Memory fences can enforce different visibility semantics,
including static (ordering within a thread) or dynamic (tran-
sitive visibility across threads) properties. Fences can also
be cumulative which requires ensuring the visibility of values

Copyright is held by the author/owner(s).
ICS’13, June 10–14, 2013, Eugene, Oregon, USA.
ACM 978-1-4503-2130-3/13/06.

observed (but not written) by a given thread [1]. The cur-
rent CUDA documentation only has scanty detail on these
semantics.

2. CONTRIBUTIONS
This work presents a variety of litmus tests i.e. short exe-

cutions which are allowed, disallowed or guaranteed, that we
believe illustrate the behavior of our subset of instructions.
We provide tests that investigate classical properties such
as coherence and write atomicity [4, p.11,69] as well as tests
that take into account the unique memory and concurrency
systems of GPUs. For example, different fences enforce dif-
ferent visibilities for inter and intra block threads. The re-
sults of the tests were determined by feedback from industry
experts, the limited documentation available, and properties
desired in modern multi-core systems. Some behaviors e.g.
write atomicity, remain unresolved.

Using the results of the litmus tests, we developed an op-
erational shared memory consistency model using intuitive
data structures and simple operations. At a high level, each
thread has: an instruction queue for each address, a view of
global and shared memory and a set of unissued loads. In-
structions are issued nondeterministically from instruction
queues. Memory locations have flags and are shared be-
tween threads based on these flags.

Finally, we implemented our model in the Murphi [2] mod-
eling language and validated our litmus tests through model
checking. We provide our model at: http://www.cs.utah.

edu/~tylers/CUMM along with instructions how to investi-
gate custom tests which can aid developers.

Our GPU shared memory consistency model is currently
being reviewed by industry experts and is expected to grow
and change based on feedback. We have shown real world
motivation for a GPU memory model and provided a rea-
sonable model based on related work and industry feedback.

3. REFERENCES
[1] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell.

Fences in weak memory models, CAV 2010.
Springer-Verlag.

[2] D. Dill. The Murphi verification system, CAV 1996.
Springer.

[3] N. M. Lê, A. Pop, A. Cohen, and F. Zappa Nardelli.
Correct and efficient work-stealing for weak memory
models, PPoPP 2013. ACM.

[4] D. J. Sorin, M. D. Hill, and D. A. Wood. A Primer on
Memory Consistency and Cache Coherence, 2011.
Morgan & Claypool Publishers.

489




