
Towards Shared Memory Consistency Models for GPUs

Tyler Sorensen, Ganesh Gopalakrishnan

University of Utah School of Computing

Vinod Grover

NVIDIA

Research

Supported by

NSF OCI

1148127

Abstract

With the widespread use of GPUs, it is important to ensure

that programmers have a clear understanding of their shared

memory consistency model i.e. what values can be read

when issued concurrently with writes. GPUs present very

different memory and concurrency systems from traditional

CPUs and have not been the subject of any published study

we know yet. We propose a collection of litmus tests that

illustrate interesting visibility and ordering properties. We

establish a model using intuitive data structures and

implement our model in the Murphi modeling language. As a
preliminary study, we restrict our model to Load (Ld), Store

(St), Thread Fence (TF) and Thread Fence Block (TFB)

instructions across global and shared memory.

Memory fences can have many different properties, including

static (ordering within a thread) or dynamic (memory visibility

to other threads)2 properties. Fences can also be cumulative3

which requires ensuring visibility of values the calling thread

did not author. The current CUDA documentation does not

mention any static or cumulative properties at all.

Well-synchronized code hides weak memory model issues

from the programmer; however, synchronization operations

can be expensive. Cutting edge algorithms bypass these

expensive operations to obtain significant increases in

performance1 at the cost of exposing the memory model,

which must be understood for correct implementation.

If developers write unsynchronized code assuming certain

instruction orderings or memory visibilities which are not in

line with the memory consistency model, then their code is

buggy. We have found instances of such assumptions in un-

synchronized real world code, instances in real-world linear

algebra libraries, and graph traversal algorithms.

Performance Increase

Looming Bugs

Lack of Clarity on Fences

Motivation

We implemented our model in the Murphi modeling language. The

model is available at:

http://www.cs.utah.edu/~tylers/CUMM.

Litmus

Test
Murphi

Model

Forbidden

Write Atomicity Relaxation

T0 : St(a,1) ; ... ; ;

T1 : St(b,2) ; ... ; ;

T2 : Ld(a,1) ; TFB ; Ld(b,0) ;

T3 : Ld(b,2) ; TFB ; Ld(a,0) ;

//T0 and T1 in the same block

T0 : St(a,1) ; TFB ; St(b,2) ; ... ;

T1 : Ld(b,2) ; TFB ; Ld(a,1) ; ... ;

T0 : St(a,1) ; TF ; St(b,2) ; ;

T1 : Ld(b,2) ; TF ; Ld(a,1) ; ;

Allowed, but not guaranteed

Guaranteed

• Each thread has its own view of registers, an

instruction queue for each address and view of

global and shared memory.

This model is currently being reviewed by industry experts and is

expected to grow and change based on feedback. Future work

includes: a more complete treatment of PTX, a level-language

model for CUDA, an axiomatic model with an equivalence proof and

a contrast with observable behavior on GPUs.

1. Nhat Minh Lê, Antoniu Pop, Albert Cohen, and Francesco Zappa Nardelli. “Correct and efficient

work-stealing for weak memory models.” In Symp. on Principles and Practice of Parallel

Programming (PPoPP), Shenzhen, China, February 2013.

2. Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. "Fences in weak memory models

(extended version)." Formal Methods in System Design. 40.2 (2012): 170-205. Print.

3. D. J. Sorin, M. D. Hill, and D. A. Wood, A Primer on Memory Consistency and Cache

Coherence, Synthesis Lectures on Computer Architecture, Morgan & Claypool Publishers, 2011.

Murphi Implementation Model

Conclusions/References

• Memory is shared and borrowed based on flags.

?

Classical Coherence
3

T0 : St(a,1); St(a,2)

T1 : Ld(a,1); Ld(a,2)

T2 : Ld(a,2); Ld(a,1)

T3 : ... ;

Simple Global/Shared Visibility across threads

T0 : St(a,1) ; St(b,2) ; ;

T1 : Ld(b,2) ; Ld(a,1) ; ;

?

Litmus Tests and Results

• Load pool allows relaxed coherence.

//T0 and T1 not in the same block

T0 : St(a,1) ; TFB ; St(b,2) ; ... ;

T1 : Ld(b,2) ; TFB ; Ld(a,1) ; ... ;

Relaxed Coherence

T0 : St(a,1); ... ;

T1 : St(a,2); ... ;

T2 : Ld(a,1); TFB; Ld(a,2)

T3 : Ld(a,2); TFB; Ld(a,1)

?
GPUs prohibit.

Our model is

faithful.

GPUs allow.

Our model is

faithful.

GPUs unknown.

Our model is

programmable.

It is easily modifiable to run custom litmus tests and verify

assertions regarding the test. A flowchart of the process and

possible outcomes is shown below:

