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I. PROBLEM AND MOTIVATION

A Graphics Processing Unit (GPU) is a compute acceler-
ated microprocessor designed with many cores and high data
bandwidth [12, p. 3-5]. These devices were originally used for
graphics acceleration; however, their high arithmetic through-
put and energy efficiency made them attractive for use in other
applications. In 2006, NVIDIA released their first general-
purpose GPU that supported the CUDA architecture [19, p.
6] which allowed programmers to develop applications more
easily that run on GPUs. Since then, GPUs have continued
to be used in many applications and are present in devices
ranging from the top supercomputers [22] to smartphones and
tablets [27].

GPUs are concurrent shared memory devices and share
many of the concurrency considerations as their multicore CPU
counterparts. One example, and our focus, is the architecture’s
shared memory consistency model (or memory model for short)
which governs the values that can be read from memory when
issued concurrently with other reads and writes.

While memory models for CPUs have been well studied
[3, 24], GPUs have a substantially different concurrency and
memory system. Despite this, GPU vendor documentation
on memory models remains sparse. For example, the doc-
umentation for NVIDIA’s low level intermediate language
PTX [16] has less than two pages describing the memory
fences and no examples. Without a well specified memory
model, programmers cannot write robust and portable code
using custom synchronization idioms (e.g. locks, non-blocking
data structures). Furthermore expensive and critical scientific
simulation results could be cast into serious doubt.

This work presents several contributions towards better
understanding of GPU memory models. First we propose a
variety of litmus tests for GPUs. These tests describe relaxed
coherence and shed light on scope-sensitive memory fence
behavior — a unique aspect of GPUs. Next we discuss the
operational semantics for a putative GPU operational memory
model which we dub the Utah GPU (or UGPU) model. This
proposed model captures the semantics of basic load, store,
and scoped fence instructions. The model is implemented in
the Murphi modeling language [7] and is able to run our GPU
litmus tests. This work was originally presented in [23].

While the UGPU model can reason about an idealistic GPU
memory model, it is unclear how well it describes deployed
hardware and hence, how useful it is to the practitioner. To this
end, we present ongoing work to extend the litmus hardware
testing tool [2] to test GPUs. With this, we show that GPUs

Fig. 1. Thread hierarchy and memory regions of a GPU architecture.

implement weak memory models with subtle scoped properties
unseen in CPU models; we then compare the UGPU model to
our experimental observations. We show that older NVIDIA
chips (Kepler) implement a controversial relaxed coherence
behavior while newer chips (Maxwell) do not. Finally, we
show that a published implementation of a GPU spin-lock
[19, p. 250-258] does not provide sufficient synchronization
to implement what is generally considered correct for a lock.

II. BACKGROUND AND RELATED WORK

A. GPU Architecture

GPU architectures have several key differences from their
CPU counterparts. Developers have explicit access to the
location of threads in the GPU thread hierarchy and can
design programs using this information; threads that share finer
grained levels of the hierarchy enjoy accelerated interactions
and additional functionality. For example, one level of the
hierarchy is called a block. A GPU program often has many
blocks, and threads residing in the same block have access
to a fast region of memory called shared memory. Threads in
different blocks cannot access the same shared memory region
and must use the slower global memory region to share data
[15, p. 10-12]. The thread hierarchy and memory regions of a
single GPU device are shown in Figure 1.

B. Memory Models, Litmus Tests and Testing

For a given program and architecture, a memory model
defines the set of values that the load instructions are allowed
to return. That is, it specifies all possible behaviors of shared
memory interactions. Our work describes an operational-
semantic (or operational for short) memory model, which



initial state: x = 0, y = 0

Thread 1 Thread 2
a: *x = 1;
b: r1 = *y;

c: *y = 1;
d: r2 = *x;

assert: r1 = 0 ∧ r2 = 0

Fig. 2. Classic Store Buffering Litmus test. This assertion cannot be satisfied
under an SC memory model.

means that the system is described as an abstract machine.
Given the current state of the system, the operational model
will provide all possible transitions the system could take
and how the system state is updated based on the transition;
examples of operational models include [20, 21]. Memory
models may alternatively be defined in an axiomatic style
where constraints are described on sets and relations over
memory actions; for examples of this type of model see
[1, 3, 14].

An intuitive way to understand memory models is through
litmus tests, i.e. short concurrent programs with an assertion
about the final states of registers and memory. Litmus tests
are evaluated under a memory model and can be allowed
(the assertion sometimes passes) or disallowed (the assertion
never passes). Figure 2 shows a litmus test known as store
buffering. Litmus tests are prevalent illustrations in memory
model literature [1, 3, 17].

Many programmers reason about concurrent programs un-
der the sequentially consistent memory model (or simply SC),
first defined by Lamport in 1979 [13]. That is, a concurrent
execution must correspond to some interleaving of the in-
structions. However, modern multiprocessors (e.g. x86, ARM)
implement weak memory models, where executions may not
correspond to an interleaving. Weak architectures provide fence
instructions to restore orderings. Figure 3 shows how one
would reason about the store buffering litmus test under SC.
While the litmus test assertion will never be allowed under
SC, it is observable on x86 chips if fences are not used [17].

Some possible interleavings of store buffering litmus test

Interleaving 1 Interleaving 2 ...
a: *x = 1;
b: r1 = *y;
c: *y = 1;
d: r2 = *x;

a: *x = 1;
c: *y = 1;
b: r1 = *y;
d: r2 = *x;

c: ...
a: ...
b: ...
d: ...

final: r1 = 0 ∧ r2 = 1 final: r1 = 1 ∧ r2 = 1 ...

Fig. 3. Examining some possible interleaving of the store buffering litmus
test (see Figure 2). The litmus test assertion cannot be satisfied in SC.

The GPU testing framework we present is an extension of
the Litmus tool [2] which runs litmus tests on different CPU
architectures, (e.g. x86 and ARM). ARCHTEST and TSOTool
[6, 8] are earlier memory model testing tools.

C. GPU Memory Models

The past few years have seen considerable activity in
academia w.r.t. GPU memory models [9–11]. We consider this
work part of that effort and hope to see the same level of

rigorous testing and modeling applied to GPU memory models
as CPU memory models have enjoyed [3, 21, 24]. We outline
some recent work in this area:

In June 2013, Hower et al. proposed an SC for RF (i.e.
a race-free program only has SC executions) memory model
for GPUs [10]. Using scoped atomic operations, they build a
happens-before relationship and use it to define a race which
they call a heterogeneous race.

Also in June 2013, Hechtman and Sorin [9] showed that
in a particular model of GPU and for common programming
idioms on GPUs, weak memory consistency has negligible
benefits. Because of this, SC is an attractive choice for their
model of GPUs. Our testing work shows that despite their
analysis, current GPUs do implement weak memory models.

In January 2014, Hower et al. [11] presented two SC
for heterogeneous-RF memory models named HRF-direct and
HRF-indirect. The first is suited for traditional GPU programs
and current language standards while the latter is forward-
looking to irregular GPU programs and new standards.

Our work differs from Hower et al. in that we investigate
the memory model implemented on deployed GPUs. As such,
we are able to test and reason about programs executed on
deployed hardware. Additionally, we attempt to give semantics
to all programs — regardless of data races.

III. APPROACH AND UNIQUENESS

A. GPU Litmus Tests

GPU litmus tests extend CPU litmus tests in that they
must specify the GPU thread hierarchy and memory regions
discussed in Section II-A, namely:

• GPU Thread hierarchy - In this study we consider
only single GPU device tests and restrict the threads
to being either in the same block or different blocks.

• GPU Memory regions - In this study we consider
shared and global memory regions and restrict our
tests to a single memory region, i.e memory locations
are either are shared or global per test.

We note that these are not all the configurations to consider,
e.g. in 3+ threaded tests, some threads may be in the same
block and others may be in different blocks. Similarly the same
test may contain both shared and global memory locations.
While our model gives semantics to all programs, we are less
confident in its behavior under these configurations and leave
exploration of these behaviors to future work.

GPUs have scoped fences, where ordering constraints are
limited to certain levels in the GPU thread hierarchy. The
CUDA fences [15, p. 92] we consider in this study are:

• __thread_fence_block (TFB) - This fence en-
forces orderings within the issuing GPU block.

• __thread_fence (TF) - This fence enforces or-
derings within the entire GPU device.

While we have investigated more tests (see Section V), we
only discuss two tests in this paper. Both have been previously
studied on CPUs, e.g. in [3]. When specifying the litmus



test, we give the traditional CPU test with a generic fence
instruction. In Section IV we parameterize these tests over the
GPU memory regions, thread hierarchy and scoped fences.

1) Message Passing (MP): Figure 4 shows the message
passing (MP) litmus test, in which one thread writes some data
followed by a flag while the other thread reads the updated flag
but does not read updated data. This test describes a handshake
idiom and published locking methods can be distilled to similar
tests (see Section IV-B). We investigate which GPU fence is
required to disallow this test (and thus actually implement the
expected handshake) under different GPU parameters.

initial state: data = 0, flag = 0

Thread 1 Thread 2
a: *data = 1;
b: fence;
c: *flag = 1;

d: r1 = *flag;
e: fence;
f: r2 = *data;

assert: flag = 1 ∧ data = 0

Fig. 4. Specification of the Message Passing (MP) litmus test. We use a
generic fence instruction which we parameterize for different scoped fences.

2) Relaxed Coherence: Coherence has been defined as SC
for a single address (see e.g. [24, p. 14]). However some
architectures (e.g. Sparc RMO [26, p. 265-267]) allow reads
from the same address to be reordered; this can be seen in
the Coherence Read-Read (or CoRR) litmus test (shown in
Figure 5), in which Thread 2 is able to read the updated value
from memory followed by a read which returns older data. This
behavior has been controversial in CPU memory models as it
is observable on certain ARM chips but confirmed as buggy
behavior by the vendor [3, 4]. Initial discussions suggested
this behavior may be intentionally allowed on GPUs and thus
we implemented our model to account for it. However, due to
recent feedback and testing results we have recently reopened
this issue and now believe that it should not be allowed. This
postulation is consistent with our testing results which show
that CoRR is observable on Kepler architectures (2012) but
not Maxwell architectures (2014).

initial state: x = 0

Thread 1 Thread 2
a: *x = 1; b: r1 = *x;

c: fence;
d: r2 = *x;

assert: r1 = 1 ∧ r2 = 0

Fig. 5. Specification of the read-read coherence (CoRR) litmus test. We use a
generic fence instruction which we parameterize for different scoped fences.

B. UGPU Operational Model

Here we describe our putative GPU memory model dubbed
the UGPU model. We make no claim that this model is
endorsed to be the actual NVIDIA hardware memory model.
Figure 6 shows the data structures and communication in the
UGPU model. Specifically, each thread contains:

• Global and Shared Address Queues: A queue for each
address. When a thread executes a load or store in-
struction from the program, the instruction is enqueued

Fig. 6. A high level view of the data structures and communication in
the UGPU memory model. This shows two threads in the same block where
(G1, G2) are global addresses and (S1, S2) are shared addresses.

in the queue for the address it references. Instruc-
tions are dequeued to memory non deterministically
allowing memory accesses from different addresses to
be re-ordered. When a fence is executed, a special
instruction denoting which type of fence (TF or TFB)
is enqueued in all address queues of the issuing thread.

• Load Array: An unordered array of load instructions.
This allows for relaxed coherence in which loads from
the same address can be reordered. To enforce full
coherence (e.g. disallow the CoRR test) this structure
simply needs to be removed and the loads will be
ordered by the above queues.

• Shared Memory: An array of shared memory. The
shared memory is connected to all threads in the block.

• Global Memory: An array of global memory. The
global memory is connected all threads in the device.

Each thread has its own view of memory to allow write
atomicity violations [24, p. 69], i.e. threads may see updates
to memory in different orders. Due to space constraints, we
leave this discussion to materials referenced in Section V.

Memory locations have flags which enforce consistency
and coherence (similar to a MESI protocol [18]). Fence
instructions use these flags to determine which values need
to be distributed to which scope. These flags are:

• Locally Modified (LM) - The location has been mod-
ified and needs to be distributed within the block.

• Globally Modified (GM) - The location has been mod-
ified and needs to be shared globally. Not on Shared
memory as blocks have disjoint shared memory.

These flags on global memory give the model its scoped
properties. When a thread issues a fence that provides intra-
block ordering constraints (TFB), the thread must distribute all
locally modified memory locations within the block. The TF
fence distributes both globally and locally modified values to



all threads in the GPU. In the case where the data is globally,
but not locally modified, the TF fence distributes the memory
to all threads not in the same block; this preserves coherence.
Being locally modified, but not globally modified is an invalid
state in our model as this would indicate that values were
distributed inter-block before intra-block; we are unaware of
any GPU fence that enforces such behavior.

Our model is implemented in the Murphi modeling lan-
guage [7]. Rules are given in the form of a predicate and
action separated by the symbol ==>. If the predicate is true,
the action may execute. As an example, we show the rule for
when a thread reads a global memory access from the program
and enqueues it in the address queue. The complete model is
pointed to in Section V.

Ruleset t: thread do
Rule "Read global load or store from

program and put in global queue"
Alias ins:Program[t][ProgramCounter[t]]

(ins.type = load | ins.type = store) &
ins.memory = Global

==>
GlobalAddrQueue[t][ins.addr].enq(ins);
ProgramCounter[t]++;

C. GPU Testing Framework

We have extended the Litmus memory model testing tool
[2] to test GPUs. This tool takes a test specification along
with GPU memory region and thread hierarchy information. It
generates executable CUDA code that runs the GPU litmus test
under system stress designed to trigger weak memory effects.
The flow of the tool is shown in Figure 7. This tool allows us
to compare the UGPU model with actual GPU hardware and
test more complicated idioms used in deployed code.

We investigated GPU specific ways to stress the memory
system in hopes of triggering weak memory behaviors. For
example, we randomly place poorly aligned memory accesses
(known as bank conflicts [15, p. 77]) next to optimally aligned
accesses. These heuristics are crucial for testing and without
them we were unable to observe any weak behaviors. Addi-
tionally, NVIDIA does not provide a way to program machine
level instructions. To ensure our tests are unoptimized by the
compiler, we check the assembly produced from a complied
binary using cuobjdump against the test specification.

IV. RESULTS AND CONTRIBUTIONS

A. Running Tests

We report on running the two litmus tests (MP and CoRR)
on the UGPU model and on two production GPUs with
different architectures — a GTX Titan (Kepler) and a GTX
750 (Maxwell). For the hardware tests, we run the tests
100,000 times and report the number of times we observe
the weak behavior. We report results under different GPU
parameters including fence type, memory region and GPU
thread hierarchies. Our naming convention is the name of the
test (MP or CoRR) followed by the fence type (TF or TFB)
in parenthesis; the memory region and thread hierarchy will

Fig. 7. A high level flow chart of how the GPU Litmus tool is used to test
GPU memory consistency.

be explicitly provided. In Figure 8 we show the results of
running the tests when the threads are in the same GPU block.
In Figure 9 we report the results of the tests when the threads
are in different GPU blocks.

We observe that for these two families of tests, our model
and observations agree exactly for the Kepler chip. The
Maxwell chip shows far fewer weak behaviors e.g. only inter-
block MP (no fences) is observable. However, documentation
and discussions lead us to believe that it is the architectural in-
tent to allow many of these behaviors; namely MP (no fences)
should be allowed both inter and intra block and MP (TFB)
should be allowed inter-block. We do not observe them either
because our testing was unable to reveal them, or because the
behavior is not implemented yet but may be on future chips.
Finally, CoRR is observable on Kepler but not Maxwell. As
stated in Section III-A2, we believe this to be intentional and
the UGPU model should be revisited to reflect this change.

We further observe the memory region GPU parameter
does not make a difference if the behavior is allowed or
disallowed, i.e. tests allowed with shared memory are also
allowed with global memory. However, the GPU thread hi-
erarchy parameter does make a difference, e.g. MP (TFB) is
observable inter-block, but not intra-block. While TFB is not
documented to provide inter-block ordering, our results show
that it reduces the number of violations observed in MP.

Results of running MP and CORR intra-block

Test Memory
Region

UGPU
Model

Observed on:
Kepler Maxwell

MP
(no fences)

Shared YES 2265 0
Global YES 3142 0

MP
(TF or TFB)

Shared NO 0 0
Global NO 0 0

CoRR
(no fences)

Shared YES 4368 0
Global YES 9707 0

CoRR
(TF or TFB)

Shared NO 0 0
Global NO 0 0

Fig. 8. Results for running MP and CoRR intra-block on the UGPU model
and hardware. Recall TFB and TF are the scoped GPU fences. The observation
columns reports how many times the test was seen out of 100,000 runs.



Results of running MP and CORR inter-block

Test UGPU
Model

Observed on:
Kepler Maxwell

MP (no fences) YES 4388 290
MP (TFB) YES 1860 0
MP (TF) NO 0 0
CoRR (no fences) YES 1033 0
CoRR (TFB) NO 0 0
CoRR (TF) NO 0 0

Fig. 9. Results for running MP and CoRR intra-block on the UGPU model
and hardware. Recall TFB and TF are the scoped GPU fences. The observation
columns reports how many times the test was seen out of 100,000 runs.

B. CUDA by Example Spin Lock

The book CUDA by Example presents an inter-block mu-
tex implementation using atomic CAS and atomic exchange
operations. [19, p. 250-258] implemented as:

__device__ void lock(int mutex) {
while( atomicCAS(mutex, 0, 1) != 0 ); }

__device__ void unlock(int mutex) {
atomicExch(mutex, 0); }

We distill this spin lock into a simple litmus test we call
CAS spin-lock (or CAS-SL), shown in Figure 10; it is similar
to the MP tests with the addition of RMW atomic instructions
and a conditional. The m memory location is the mutex and
d is data accessed in the critical section. The test begins in a
state where Thread 1 has the mutex. Thread 1 stores a value to
d and then releases the mutex via an atomic exchange. Thread
2 attempts to acquire the lock with a CAS instruction, then
checks to see if the lock was acquired successfully (via the
conditional). If the lock was acquired, Thread 2 attempts to
read the global data in d. The final constraint describes an
execution where Thread 2 acquires the lock (r1 = 0) but
does not see the updated value (r2 = 0), a behavior many
would consider incorrect for a mutex.

initial state: m = 1, d = 0

Thread 1 Thread 2
a: *d = 1;
b: fence;
c: Exch(m,0);

d: r1 = CAS(m,0,1)
e: if (r1 == 0) {
f: fence;
g: r2 = *d; }

assert: r1 = 0 ∧ r2 = 0

Fig. 10. Specification of the CAS spin-lock (CAS-SL) litmus test. Exch and
CAS are atomic exchange and atomic compare-and-swap respectively. Again,
we use a generic fence that we parameterize with GPU fences.

While the UGPU model does not have the machinery to
handle atomic RMWs or conditionals, our testing tool supports
these operations. Figure 11 shows the results of running CAS-
SL inter-block on global memory. Without fences, we observe
that Thread 1 may not see the updated memory value on Kepler
chips. While the Maxwell chip does not reveal this behavior,

we believe the architectural intent is to allow it. The CUDA
by Example implementation is given without fences and is
vulnerable to this behavior.

Some architectures give control flow (e.g. in Figure 10,
the branch in Thread 2) ordering constraints similar to fences;
however, our testing in this area is preliminary. As such, we
conservatively suggest a fence even with conditionals.

Results of running CAS-SL inter-block

Test Observed on:
Kepler Maxwell

CAS-SL (no fences) 2260 0
CAS-SL (TFB) 1672 0
CAS-SL (TF) 0 0

Fig. 11. Results for running CAS-SL inter-block on GPU hardware. We
highlight that the fence-less test is vulnerable to weak behavior.

C. Contributions and Future Work

In this work, we have described GPU litmus tests and
the extra parameters they require. We then gave several tests
providing intuition about scoped fences and the relaxed coher-
ence implemented on some production GPUs. We presented a
putative operational GPU memory model with an executable
Murphi implementation followed by a GPU testing tool which
we used to compare our model to hardware. Using this tool,
we identified a published spin-lock implementation [19, p. 250-
258] which is lacking the proper fence instructions to provide
sufficient synchronization for what is generally considered
correct for a lock. Additionally, we have identified other related
bugs in available code, namely another spin lock [25] and non-
synchronous (or volatile) intra-warp data races [5] where the
compiler may reorder instructions. We document these issues
in materials referred to in Section V. We feel this body of
work contributes substantially to the understanding, testing,
and overall awareness of GPU memory models.

Currently we are undertaking a comprehensive study on
GPU memory models (with several additional authors) which
includes this testing work. The larger project involves sys-
tematically generating GPU litmus tests and modeling GPU
memory models in the Herd axiomatic generic framework [3].
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