
A Simulator and Compiler Framework 
for Agile Hardware-Software Co-design 

Evaluation and Exploration

Tyler Sorensen
UC Santa Cruz

Aninda Manocha, Esin Tureci, Margaret Martonosi 
Princeton University

Juan L. Aragón
Universidad de 

Murcia

ICCAD 2020 Opensource Tools and Platforms for Agile Development of Specialized Architectures



Speaker Bio • Tyler Sorensen

• Assistant Professor at UC Santa Cruz 
Since Summer 2020

• Previously I was a Post doc at 
Princeton with Margaret Martonosi 
when this work was done

• Background is in Programming 
Languages (GPU programming 
models), but I was interested in 
peeking under the hood J

https://twitter.com/Tyler_UCSC
https://users.soe.ucsc.edu/~tsorensen/

https://twitter.com/Tyler_UCSC
https://users.soe.ucsc.edu/~tsorensen/


The DECADES Project

• Part of DARPA’s SDH project

• Principle Investigators:
• David Wentzlaff (Princeton)
• Luca P. Carloni (Columbia)
• Margaret Martonosi

• Developing a new tiled, heterogeneous architecture with data-supply 
and accelerator innovations (tape out planned in near future!)



Building a Chip is a Big Project…
The focus of Professor Martonosi’s group was:

• Programming language support and innovations

• Support for popular programming languages

• Modular and extensible design

• Early stage design space exploration



Our Contributions: A Compiler and Simulator
• Compiler: DEC++

• Builds on top of LLVM, Clang 
frameworks.

• Kernel-centric parallel programming 
model (main support for C++)

• Flexible frontends, backends, and 
transformations 

https://github.com/PrincetonUniversity/DecadesCompiler

• Simulator: MosaicSim

• Early-stage performance estimates 
(cycle-driven LLVM IR simulation)

• Tile model support heterogeneous core 
models (both CPUs and accelerators)

• Best Paper Nomination at ISPASS 2020!
MosaicSim: A Lightweight, Modular 
Simulator for Heterogeneous Systems

https://github.com/PrincetonUniversity/MosaicSim

https://github.com/PrincetonUniversity/DecadesCompiler
https://users.soe.ucsc.edu/~tsorensen/publication/ispass2020/
https://github.com/PrincetonUniversity/MosaicSim


The DEC++ Compiler

ExecutableSource Compiler

int main() {
printf(““);
return 0;
}



The DEC++ Compiler

int main() {
printf(““);
return 0;
}

ExecutableSource Compiler

Frontend Compiler 
IR

Backend LinkerISA

Transformations



The DEC++ Compiler

int main() {
printf(““);
return 0;
}

ExecutableSource Compiler

Frontend Compiler 
IR

Backend LinkerISA

Transformations

Too complex to develop everything!
Instead we plug into the LLVM toolflow

We require no LLVM source code changes and
simply link to public APIs or use tools directly



The DEC++ Compiler

int main() {
printf(““);
return 0;
}

ExecutableSource Compiler

Frontend Compiler 
IR

Backend LinkerISA

Transformations

LLVM has mature frontend support 
(e.g. parsing) that we plug into,
e.g. Clang for C/++:



DEC++ Front End: Programming Model

Kernel function must be identified
Kernel function has two required parameters

Program is written in a thread-agnostic SPMD way



DEC++ Front End: Implementation

Front end implementation must intercept kernel function call and run 
in SPMD parallel execution

Implemented with Clang Visitor pass



The DEC++ Compiler

int main() {
printf(““);
return 0;
}

ExecutableSource Compiler

Frontend Compiler 
IR

Backend LinkerISA

Transformations



DEC++ Transformations

• Compiler passes over the 
LLVM AST performing re-
writes and analysis.

• Lots of opportunity for 
innovation

• Example: Decoupled Access 
Execute (DAE)

Access
Core

Execute
Core

Main Memory

Specialized 
for memory 
loads

Specialized 
for compute

Optimized NoC
communication



DEC++ Transformations: DAE Example

In pseudo LLVM-IR



DEC++ Transformations: DAE Example

Access
Core

Execute
Core

Insert API calls for 
NoC communication 

Simple code slicing 
places loads on an 
Access core and 
compute on the 
execute core



The DEC++ Compiler

int main() {
printf(““);
return 0;
}

ExecutableSource Compiler

Frontend Compiler 
IR

Backend LinkerISA

Transformations



DEC++ Backend and Linking

But how to deal with new architecture 
features?

Access
Core

Execute
Core

Main Memory

Optimized NoC
communication

LLVM has backends for many architectures:
• X86: ideal for developing and debugging
• RISC-V: The ISA for the DECADES architecture



DEC++ Backend and Linking

• We require architecture features to be implemented behind an API 
with a software emulation implementation:

Provides: 
Portable Execution
Documentation
Specification



Our Contributions: A Compiler and Simulator
• Compiler: DEC++

• Builds on top of LLVM, Clang 
frameworks.

• Kernel-centric parallel programming 
model (main support for C++)

• Flexible frontends, backends, and 
transformations 

https://github.com/PrincetonUniversity/DecadesCompiler

• Simulator: MosaicSim

• Early-stage performance estimates 
(cycle-driven LLVM IR simulation)

• Tile model support heterogeneous core 
models (both CPUs and accelerators)

• Best Paper Nomination at ISPASS 2020!
MosaicSim: A Lightweight, Modular 
Simulator for Heterogeneous Systems

https://github.com/PrincetonUniversity/MosaicSim

https://github.com/PrincetonUniversity/DecadesCompiler
https://users.soe.ucsc.edu/~tsorensen/publication/ispass2020/
https://github.com/PrincetonUniversity/MosaicSim


How DEC++ interfaces with MosaicSim

int main() {
printf(““);
return 0;
}

ExecutableSource Compiler

Frontend Compiler 
IR

Backend LinkerISA

Transformations

Simulator annotates memory instructions to get a memory trace
and generates a data-dependency graph

LLVM IR



MosaicSim: How accurate is simulating LLVM IR?

Raw cycle counts are pretty inaccurate
but why?



instruction mapping 
mismatches: 

1 C instruction maps to:
3 LLVM IR instructions
2 X86 instructions
4 RISC-V instructions



MosaicSim: Scaling Trends

MosaicSim accurately captures trends, which is what is important for early-stage 
performance modeling



MosaicSim Extras in ISPASS paper

• modeling ASIC accelerator tiles

• how complex architecture features are 
efficiently modeled, e.g. RoB, LSQ

• case studies of design space exploration 
of applications on heterogeneous 
architectures

Lead author of MosaicSim is Luwa
Matthews (now at Apple)



Conclusion
• We present a compiler/simulator framework for hardware-software co-design

• DEC++ is built alongside LLVM, giving it flexibility in frontends and backends. 
• Straightforward to implement innovations at the IR transformation level, e.g. DAE
• Architecture additions are provided through APIs that support native emulation

• MosaicSim provides early-stage performance estimates. Simulating LLVM is 
inaccurate at the cycle level, but captures trends and characterizations

Thanks to the DECADES team and co-authors: Aninda Manocha, Esin Tureci, Marcelo Orenes-Vera, Juan L. 
Aragón, Margaret Martonosi 

Software:
https://github.com/PrincetonUniversity/DecadesCompiler
https://github.com/PrincetonUniversity/MosaicSim

Tyler Sorensen
https://twitter.com/Tyler_UCSC
https://users.soe.ucsc.edu/~tsorensen/

https://github.com/PrincetonUniversity/DecadesCompiler
https://github.com/PrincetonUniversity/MosaicSim
https://twitter.com/Tyler_UCSC
https://users.soe.ucsc.edu/~tsorensen/

