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Graphics execution

Execution
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Compute execution (sssp)
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Multi-tasking

Application that
takes longer than
graphics period

Running http://webglsamples.org/electricflower/electricflower.html
with sssp OpenCL application in background on Intel HD5500
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Multi-tasking

Application that
takes longer than
graphics period

graphics freeze!

Running http://webglsamples.org/electricflower/electricflower.html
with sssp OpenCL application in background on Intel HD5500
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Multi-tasking

Running http://webglsamples.org/electricflower/electricflower.html
with sssp OpenCL application in background on Intel HD5500

Current GPUs

Kill application!
it never finishes
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Multi-tasking

What we want!

Running http://webglsamples.org/electricflower/electricflower.html
with sssp OpenCL application in background on Intel HD5500

12

http://webglsamples.org/electricflower/electricflower.html


Multi-tasking

What we want!

Running http://webglsamples.org/electricflower/electricflower.html
with sssp OpenCL application in background on Intel HD5500

13

http://webglsamples.org/electricflower/electricflower.html


Multi-tasking

CU CU CU

w0

workgroup queue

w1w2

GPU with 3 compute units

Program P1 with 3 workgroups

14



Multi-tasking

CU CU CU

GPU with 3 compute units

w0

workgroup queue

w1w2Program P1 with 3 workgroups

15



Multi-tasking

CU CU CU

w0 w2

GPU with 3 compute units

w1

workgroup queue

Program P1 with 3 workgroups

16



Multi-tasking

CU CU CU

w0 w2

GPU with 3 compute units

w1w0

workgroup queue

w1w2

workgroup queue

Program P1 with 3 workgroups

Program P2 with 3 workgroups

17



Multi-tasking
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wait for P1, causing frame 
skips
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Multi-tasking

CU CU CU

w0

Program P1 with 3 workgroups

GPU with 3 compute units
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Easy, just need to save state!

w2w1
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GPU programming model

Global Memory

Workgroup 0 Workgroup 1

Threads

Local memory for 
WG0

Local memory for 
WG1
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Workgroup n

Local memory for 
WGn

Saving state for a workgroup 
is EXPENSIVE! includes PC, registers 
for all threads and local memory



Example application

• Example: Frontier based sssp graph traversal

base
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Example application

• Example: Frontier based sssp graph traversal

base

frontier 1

frontier 2

… frontier n

Dependencies!!

Requires global synchronisation
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Intra-frontier processing has a large
workgroup local state
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Almost zero workgroup local state 
between frontiers

What if programmers had a way
to express this?



Our solution

• Cooperative kernels: Long running kernels (e.g. graph traversal) that 
could interrupt short running kernels (e.g. graphics)

• Cooperative kernels must share resources via new programming 
constructs which enable

• Framework provides cooperative kernels guaranteed execution
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Cooperative kernel workgroup functions

• offer_kill
• Scheduler can kill calling workgroup if needed

• Kills workgroups in descending id order

CU CU CU

w0 w2w1

w0w1w2
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Cooperative kernel workgroup functions
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Cooperative kernel workgroup functions

• resizing_barrier
• A barrier where workgroups may leave/join
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Example application
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resizing_barrier()



Evaluation (ease of programming?)

• Porting existing applications to use cooperative kernels

• Two types of applications:
• 6 global barrier applications

• Changed all global barriers to resizing barriers

• 2 work stealing applications
• added 1 call to offer_kill and request_fork

• DSL can automatically generates cooperative kernels
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Evaluation (does it actually work?)

• Prototype implementation models two task systems

• We experiment multi-tasking:
• 8 long-running applications

• 3 graphics workloads

• We run on Intel Iris 6100 GPU

• Prototype overhead: 10% (upper-bound!)
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Graphics workloads

Workload Period Execution (full GPU) Cooperative overhead Compute units

Light 70 ms 3 ms

Medium 40 ms 3 ms

Heavy 40 ms 10 ms

Geo. mean

Can we reach the deadlines for smooth graphics?

Execution

Period
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Graphics workloads

Workload Period Execution (full GPU) Cooperative overhead Compute units

Light 70 ms 3 ms 1.00x 25%

Medium 40 ms 3 ms 1.03x 25%

Heavy 40 ms 10 ms 1.28x 50%

Geo. mean

Can we reach the deadlines for smooth graphics?

Execution

Period
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• GPU multitasking is a complex unsolved issue

• Our solution provides 3 new primitives for programmers to interact 
with scheduler for efficient GPU multitasking

• Prototype implementation achieves soft real-time constraints for 
compute + graphics

Cooperative Kernels: 
GPU Multitasking for Blocking Algorithms

Tyler Sorensen https://www.doc.ic.ac.uk/~trs15/
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