
Cooperative Kernels: 
GPU Multitasking for Blocking Algorithms

Tyler Sorensen, Hugues Evrard, Alastair Donaldson
Imperial College London, UK

FSE 
Sept. 2017

1



“The GPU Multitasking Talk”

Tyler Sorensen, Hugues Evrard, Alastair Donaldson
Imperial College London, UK

FSE 
Sept. 2017

2



from http://webglsamples.org/electricflower/electricflower.html

Graphics execution

3

http://webglsamples.org/electricflower/electricflower.html


from http://webglsamples.org/electricflower/electricflower.html

Graphics execution

Execution

Period

4

http://webglsamples.org/electricflower/electricflower.html


Graphics execution

Execution

Period
Workload Period (ms) Execution (ms)

Light 70 3

Medium 40 3

Heavy 40 10

5



Compute execution (sssp)

6

Dataset Execution (ms)

NY-road 400

CAL-road 1200

USA-road 2200

Compute GPU program == kernel



Compute execution (sssp)

7

Dataset Execution (ms)

NY-road 400

CAL-road 1200

USA-road 2200

Workload Period (ms) Execution (ms)

Light 70 3

Medium 40 3

Heavy 40 10



Multi-tasking

Application that
takes longer than
graphics period

Running http://webglsamples.org/electricflower/electricflower.html
with sssp OpenCL application in background on Intel HD5500

8

http://webglsamples.org/electricflower/electricflower.html


Multi-tasking

Application that
takes longer than
graphics period

graphics freeze!

Running http://webglsamples.org/electricflower/electricflower.html
with sssp OpenCL application in background on Intel HD5500

9

http://webglsamples.org/electricflower/electricflower.html


Multi-tasking

Running http://webglsamples.org/electricflower/electricflower.html
with sssp OpenCL application in background on Intel HD5500

Current GPUs

Kill application!
it never finishes

10

http://webglsamples.org/electricflower/electricflower.html


Multi-tasking

Running http://webglsamples.org/electricflower/electricflower.html
with sssp OpenCL application in background on Intel HD5500

Current GPUs

Kill application!
it never finishes

11

http://webglsamples.org/electricflower/electricflower.html


Multi-tasking

What we want!

Running http://webglsamples.org/electricflower/electricflower.html
with sssp OpenCL application in background on Intel HD5500

12

http://webglsamples.org/electricflower/electricflower.html


Multi-tasking

What we want!

Running http://webglsamples.org/electricflower/electricflower.html
with sssp OpenCL application in background on Intel HD5500

13

http://webglsamples.org/electricflower/electricflower.html


Multi-tasking

CU CU CU

w0

workgroup queue

w1w2

GPU with 3 compute units

Program P1 with 3 workgroups

14



Multi-tasking

CU CU CU

GPU with 3 compute units

w0

workgroup queue

w1w2Program P1 with 3 workgroups

15



Multi-tasking

CU CU CU

w0 w2

GPU with 3 compute units

w1

workgroup queue

Program P1 with 3 workgroups

16



Multi-tasking

CU CU CU

w0 w2

GPU with 3 compute units

w1w0

workgroup queue

w1w2

workgroup queue

Program P1 with 3 workgroups

Program P2 with 3 workgroups

17



Multi-tasking

CU CU CU

w0

Program P1 with 3 workgroups

w2

GPU with 3 compute units

w1w0

workgroup queue

Program P2 with 3 workgroups w1w2

workgroup queue

Current GPUs just have P2 
wait for P1, causing frame 
skips

18



Multi-tasking

CU CU CU

w0

Program P1 with 3 workgroups

w2

GPU with 3 compute units

w1w0

workgroup queue

Program P2 with 3 workgroups w1w2

workgroup queue

What about preemption?

19



Multi-tasking

CU CU CU

w0

Program P1 with 3 workgroups

w2

GPU with 3 compute units

w1w0

workgroup queue

Program P2 with 3 workgroups w1w2

workgroup queue

What about preemption?

20



Multi-tasking

CU CU CU

w0

Program P1 with 3 workgroups

w2

GPU with 3 compute units

w1

w0

workgroup queue

Program P2 with 3 workgroups w1w2

workgroup queue

state for w1 and w2

What about preemption?

21



Multi-tasking

CU CU CU

w0

Program P1 with 3 workgroups

w2

GPU with 3 compute units

w1

w0

workgroup queue

Program P2 with 3 workgroups w1w2

workgroup queue

state for w1 and w2

P2 can execute on these 2 CUs

What about preemption?

22



Multi-tasking

CU CU CU

w0

Program P1 with 3 workgroups

w2

GPU with 3 compute units

w1

w0

workgroup queue

Program P2 with 3 workgroups w1w2

workgroup queue

state for w1 and w2

P2 can execute on these 2 CUs

What about preemption?

23



Multi-tasking

CU CU CU

w0

Program P1 with 3 workgroups

w2

GPU with 3 compute units

w1

w0

workgroup queue

Program P2 with 3 workgroups w2

workgroup queue

state for w1 and w2

P2 can execute on these 2 CUs

What about preemption?

24



Multi-tasking

CU CU CU

w0

Program P1 with 3 workgroups

w2

GPU with 3 compute units

w1

w0

workgroup queue

Program P2 with 3 workgroups w2

workgroup queue

state for w1 and w2

P2 can execute on these 2 CUs

What about preemption?

25



Multi-tasking

CU CU CU

w0

Program P1 with 3 workgroups

w2

GPU with 3 compute units

w1

workgroup queue

Program P2 with 3 workgroups

workgroup queue

state for w1 and w2

What about preemption?

26



Multi-tasking

CU CU CU

w0

Program P1 with 3 workgroups

w2

GPU with 3 compute units

w1

workgroup queue

Program P2 with 3 workgroups

workgroup queue

state for w1 and w2

What about preemption?

27



Multi-tasking

CU CU CU

w0

Program P1 with 3 workgroups

GPU with 3 compute units

workgroup queue

Program P2 with 3 workgroups

workgroup queue

Easy, just need to save state!

w2w1

28



GPU programming model

Global Memory

Workgroup 0 Workgroup 1

Threads

Local memory for 
WG0

Local memory for 
WG1

29

Workgroup n

Local memory for 
WGn



GPU programming model

Global Memory

Workgroup 0 Workgroup 1

Threads

Local memory for 
WG0

Local memory for 
WG1

30

Workgroup n

Local memory for 
WGn

Saving state for a workgroup 
is EXPENSIVE! includes PC, registers 
for all threads and local memory



Example application

• Example: Frontier based sssp graph traversal

base

31



Example application

• Example: Frontier based sssp graph traversal

base

frontier 1

32



Example application

• Example: Frontier based sssp graph traversal

base

frontier 1

frontier 2

33



Example application

• Example: Frontier based sssp graph traversal

base

frontier 1

frontier 2

… frontier n

34



Example application

• Example: Frontier based sssp graph traversal

base

frontier 1

frontier 2

… frontier n

Dependencies!!

35



Example application

• Example: Frontier based sssp graph traversal

base

frontier 1

frontier 2

… frontier n

Dependencies!!

Requires global synchronisation

36



Example application

• Example: Frontier based sssp graph traversal

base

frontier 1

frontier 2

… frontier n

37

Intra-frontier processing has a large
workgroup local state



Example application

• Example: Frontier based sssp graph traversal

base

frontier 1

frontier 2

… frontier n

38

Almost zero workgroup local state 
between frontiers



Example application

• Example: Frontier based sssp graph traversal

base

frontier 1

frontier 2

… frontier n

39

Almost zero workgroup local state 
between frontiers

What if programmers had a way
to express this?



Our solution

• Cooperative kernels: Long running kernels (e.g. graph traversal) that 
could interrupt short running kernels (e.g. graphics)

• Cooperative kernels must share resources via new programming 
constructs which enable

• Framework provides cooperative kernels guaranteed execution

40



Cooperative kernel workgroup functions

• offer_kill
• Scheduler can kill calling workgroup if needed

• Kills workgroups in descending id order

CU CU CU

w0 w2w1

w0w1w2

41



Cooperative kernel workgroup functions

• offer_kill
• Scheduler can kill calling workgroup if needed

• Kills workgroups in descending id order

CU CU CU

w0 w2w1

w0w1w2

Calls offer_kill

42



Cooperative kernel workgroup functions

• offer_kill
• Scheduler can kill calling workgroup if needed

• Kills workgroups in descending id order

CU CU CU

w0 w1

w0w1w2

43



w0

Cooperative kernel workgroup functions

• offer_kill
• Scheduler can kill calling workgroup if needed

• Kills workgroups in descending id order

CU CU CU

w0 w1

w1w2

44



Cooperative kernel workgroup functions

• request_fork
• If there are available resources, fork workgroups

• Assigns new ids to forked workgroups

CU CU CU

w0 w1

45



Cooperative kernel workgroup functions

• request_fork
• If there are available resources, fork workgroups

• Assigns new ids to forked workgroups

CU CU CU

w0 w1

Calls request_fork

46



Cooperative kernel workgroup functions

• request_fork
• If there are available resources, fork workgroups

• Assigns new ids to forked workgroups

CU CU CU

w0 w1 w2

47



Cooperative kernel workgroup functions

• resizing_barrier
• A barrier where workgroups may leave/join

CU CU CU

w0 w2w1

w0w1w2

48



Cooperative kernel workgroup functions

• resizing_barrier
• A barrier where workgroups may leave/join

Calls resizing_barrier

CU CU CU

w0 w2w1

w0w1w2

49



Cooperative kernel workgroup functions

• resizing_barrier
• A barrier where workgroups may leave/join

CU CU CU

w0

w0w1w2

50



Cooperative kernel workgroup functions

• resizing_barrier
• A barrier where workgroups may leave/join

CU CU CU

w0

w2

w1w0

51



Cooperative kernel workgroup functions

• resizing_barrier
• A barrier where workgroups may leave/join

CU CU CU

w0

52



Cooperative kernel workgroup functions

• resizing_barrier
• A barrier where workgroups may leave/join

Calls resizing_barrier

CU CU CU

w0

53



Cooperative kernel workgroup functions

• resizing_barrier
• A barrier where workgroups may leave/join

CU CU CU

w0 w2w1

54



Example application

base

frontier 1

frontier 2

… frontier n

Almost zero workgroup local state 
between frontiers

55

barrier()



Example application

base

frontier 1

frontier 2

… frontier n

Almost zero workgroup local state 
between frontiers

56

resizing_barrier()



Evaluation (ease of programming?)

• Porting existing applications to use cooperative kernels

• Two types of applications:
• 6 global barrier applications

• Changed all global barriers to resizing barriers

• 2 work stealing applications
• added 1 call to offer_kill and request_fork

• DSL can automatically generates cooperative kernels

57



Evaluation (does it actually work?)

• Prototype implementation models two task systems

• We experiment multi-tasking:
• 8 long-running applications

• 3 graphics workloads

• We run on Intel Iris 6100 GPU

• Prototype overhead: 10% (upper-bound!)

58



Graphics workloads

Workload Period Execution (full GPU) Cooperative overhead Compute units

Light 70 ms 3 ms

Medium 40 ms 3 ms

Heavy 40 ms 10 ms

Geo. mean

Can we reach the deadlines for smooth graphics?

Execution

Period

59



Graphics workloads

Workload Period Execution (full GPU) Cooperative overhead Compute units

Light 70 ms 3 ms 1.00x 25%

Medium 40 ms 3 ms

Heavy 40 ms 10 ms

Geo. mean

Can we reach the deadlines for smooth graphics?

Execution

Period

60



Graphics workloads

Workload Period Execution (full GPU) Cooperative overhead Compute units

Light 70 ms 3 ms 1.00x 25%

Medium 40 ms 3 ms 1.03x 25%

Heavy 40 ms 10 ms

Geo. mean

Can we reach the deadlines for smooth graphics?

Execution

Period

61



Graphics workloads

Workload Period Execution (full GPU) Cooperative overhead Compute units

Light 70 ms 3 ms 1.00x 25%

Medium 40 ms 3 ms 1.03x 25%

Heavy 40 ms 10 ms 1.28x 50%

Geo. mean

Can we reach the deadlines for smooth graphics?

Execution

Period

62



• GPU multitasking is a complex unsolved issue

• Our solution provides 3 new primitives for programmers to interact 
with scheduler for efficient GPU multitasking

• Prototype implementation achieves soft real-time constraints for 
compute + graphics

Cooperative Kernels: 
GPU Multitasking for Blocking Algorithms

Tyler Sorensen https://www.doc.ic.ac.uk/~trs15/
63


