
request_fork()

Cooperative Kernels: GPU Multitasking for 
Blocking Algorithms

Tyler Sorensen, Hugues Evrard, and Alastair F. Donaldson
Imperial College London

Workload Period Execution Overhead Workgroups

Light 70 ms 3 ms 1.00x 25%

Medium 40 ms 3 ms 1.03x 25%

Heavy 40 ms 10 ms 1.28x 50%

Motivation GPU preemption

Cooperative kernels

Programming model Results

GPU graphics 
application

Long running blocking
GPU application

(e.g. parallel 
graph traversal)

Problem:
Graphics freeze

while application is 
executing!

time

Many current GPU systems
do not provide multitasking.
An application owns the GPU
until it finishes. GPUs often
drive the OS GUI, thus,
executing long GPU apps
freezes the system, reducing
usability.

local cache

For CPU multicore systems, preemption solves the multitasking problem.
Preemption is the ability to save the state of a programs thread and
remove it from a hardware resource to return later.

On GPUs, preemption is difficult due to the large state that needs to be
saved. A GPU workgroup’s state contains up to 256 threads and a local
cache. Efficiently saving and restoring is non-trivial.

time

offer_kill()

resizing_barrier()

resizing_barrier()

Currently programmers are responsible for understanding and adding
cooperative instructions correctly.

Cooperative kernels are backwards compatible. New instructions can be
treated as no-ops on existing GPUs.

Ported 8 existing applications with minimal changes following simple
guidelines.

Support: EPSRC Fellowship EP/N026314, and a gift from Intel Corporation

Prototype framework implemented for Intel GPUs. Models two tasks
(graphics and long-running). Graphics tasks of three levels of intensity
tested. We maintain smooth GUI on all graphics tasks with reasonable
overhead on the long-running application.

GPU Workgroup

Threads

GPU

Workgroup states

Preemption
is expensive!

offer_kill()

3 new programming instructions for stateless multitasking

request_fork()

resizing_barrier()

A calling workgroup is ready to be
killed if the system needs the resource
for another task

Either!
+ sync Barrier

Example: 
graph traversal

resizing_barrier()

resizing_barrier()

+

+

X
A calling workgroup may be forked
(copied), if the system has available
resources.

Synchronizes all workgroups in the
program. At this point workgroups
may be killed or forked depending on
resource availability or contention.

Execution
Period

Missed graphics calls

Distinguished paper award


