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ABSTRACT

With the widespread use of GPUs, it is important to ensure that programmers have

a clear understanding of their shared memory consistency model i.e. what values can be

read when issued concurrently with writes. While memory consistency has been studied

for CPUs, GPUs present very different memory and concurrency systems and have not

been well studied. We propose a collection of litmus tests that shed light on interesting

visibility and ordering properties. These include classical shared memory consistency model

properties, such as coherence and write atomicity, as well as GPU specific properties e.g.

memory visibility differences between intra and inter block threads. The results of the

litmus tests are determined by feedback from industry experts, the limited documentation

available and properties common to all modern multi-core systems. Some of the behaviors

remain unresolved. Using the results of the litmus tests, we establish a formal state

transition model using intuitive data structures and operations. We implement our model

in the Murphi modeling language and verify the initial litmus tests. As a preliminary study,

we restrict our model to loads and stores across global and shared memory along with two of

the memory fences given in the NVIDIA PTX, thread fence and thread fence block.

Finally, we show real world examples of code that make assumptions about the GPU shared

memory consistency model that are inconsistent with our proposed model.
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CHAPTER 1

INTRODUCTION

A Graphics Processing Unit (GPU) is a microprocessor designed with many cores

and high data bandwidth [15, p.3-5]. These devices were originally used for graphics

acceleration, particularly in 3D games; however, the high arithmetic throughput of these

microprocessors had potential to be used in other applications. In late 2006, NVIDIA

released the first GPU that supported the CUDA architecture [27, p.6]. CUDA allowed

programmers to develop general purpose code to run on a GPU. Since then the use of

GPUs has and is continuing to grow in many aspects of modern computing. These devices

have been used in many applications including medical imaging [29], radiation modeling

[10] and molecular simulations [6]. Current research is showing innovative new algorithms

for GPUs efficiently solving fundamental problems in computer science e.g. Merrill et.

al. recently published an optimized graph traversal algorithm using GPUs[21]. The most

recent results of the TOP500 project, which ranks and documents the current most powerful

500 computers1, states that a total of 62 the computers on the list are using accelerators or

co-processor technology. Furthermore, the number 1 and 8 ranked computers have NVIDIA

GPU co-processors. Statistics on the number of papers published from a popular research

hub www.hgpu.org also shows a rising trend in GPU popularity. Less than 600 papers

were published in 2009 describing applications developed for GPUs; in 2010 this rose to

1000 papers and both 2011 and 2012 saw over 1200 papers.

GPUs are highly concurrent devices that allow multiple processors to share data and as

such, they are prone to the same notorious concurrency memory issues as their traditional

1see http://www.top500.org

www.hgpu.org
http://www.top500.org
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CPU counterparts. Concurrency bugs, such as data races and deadlocks, can be very

difficult to detect due to the non-deterministic execution of processes, that is, a bug

may appear in one run and not in another even with the exact same input data [22].

In some cases these concurrency bugs have gone completely undetected until deployment

and have caused substantial damage in real world systems [30, 13, 18]. One source of

non-deterministic concurrency bugs is a misunderstanding of the architecture’s shared

memory consistency model i.e. what values can be read from shared memory when issued

concurrently with other reads and writes [28, p.1]. A programmer may expect that every

concurrent execution (even if a data race is present) to be equivalent to a sequential

interleaving of the concurrent instructions, a property known as sequential consistency [16]

(see Figure 1.1). This, however, is not always the case as many modern architectures

relax sequential consistency for performance gains [9] and the underlying hardware is

allowed to re-order and execute certain instructions non-deterministically according to

the particular architecture’s shared memory consistency model. The Power architecture

[11] is one such example. Furthermore, data written to shared memory by a process p0

is not always guaranteed to be visible to a different process p1 immediately. To alleviate

some of these issues, many architectures provide memory barrier instructions which can

guarantee certain visibility and ordering properties [2]. If a programmer is to avoid costly

and elusive concurrency bugs, he or she must understand the architecture’s shared memory

consistency model and the guarantees (or lack thereof) provided.

Shared memory consistency models for traditional CPUs have been well studied over

the years [28] and continues to be an area of rich research. However, GPUs have a

memory hierarchy system and concurrent model that is substantially different from that

of a traditional CPU. For example, in NVIDIA GPUs a thread2 can access two different

sections of memory, shared and global. All threads on the GPU can read and write to the

same global memory while only certain other threads in the GPU read and write to the

same shared memory (see Section 2.1 for more details) [15, p.77]. In fact the PTX (Parallel

2Both threads and processes refer to an independent sequence of execution, however threads run in some
type of shared memory environment.
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Figure 1.1: (a) Illustration of sequentially consistent executions and (b) a non
sequentially consistent execution.

Thread eXecution) ISA from NVIDIA defines four different memory state spaces that can

be read from. Out of these state spaces, two are thread local, one is global and one is

shared within a block i.e. only shared between a few specific threads [25, p.127]. This is a

noticeable departure from CPU memory models where fewer memory spaces are involved.

Furthermore, the memory barrier instructions for NVIDIA GPUs have different guarantees

for the different types of memory and threads [24, p.88]. Despite these differences, two of

the most popular GPU frameworks, CUDA [23] and OpenCL [14], do not provide detailed

memory model documentation leaving GPU memory consistency largely unstudied.

This work presents a variety of litmus tests i.e. short executions which are allowed,

disallowed or guaranteed, that we believe illustrate the behavior of two of the CUDA

memory fence types across shared and global memory on NVIDIA GPUs. While other GPU

vendors exist, NVIDIA was chosen due to its dominant usage, abundance of examples, and
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valuable contributions from industry contacts. For the remainder of this paper, GPU will

refer to an NVIDIA GPU. These litmus tests illustrate both static and dynamic properties

of fences as well as classical memory consistency properties such as coherence. Then two

operational memory consistency models for GPUs are presented which are consistent with

previously discussed litmus test. The two models deviate on some controversial behavior;

for example, the first model maintains classical coherence properties [28] while the second

model exhibits more relaxed behavior based on industry feedback. These models were

implemented in the Murphi modeling language [7] and formally describe interactions of

loads, stores, and memory fences, which lack detailed documentation in existing CUDA

literature [24], across both types of memory. These Murphi models are made publicly

available. As a preliminary study, our model contains a subset of the real instruction set

(see Table 1.1 for modeled instructions), yet we are able to show interesting properties

between them. Note that this work attempts to describe the hardware consistency model

which pertains to how the hardware manages instructions; the software consistency model

dictates how the compiler can manipulate instructions. Other than a motivating example

in Section 5.3 the software consistency model is not addressed in this work. Finally, to

emphasize the need for a formal GPU memory model, this work shows real world examples

of incorrect (with respect to our model) and poorly defined CUDA code [21, 5]. As a final

introductory note, we would like to emphasize that the model presented in this paper, while

developed in collaboration with NVIDIA, is not an official NVIDIA endorsed model. None

of the other models developed for traditional CPUs have been declared “official” by their

respective vendors for various reasons beyond the scope this paper. It is our hope that

Table 1.1: Table of modeled instructions.

Instruction Description
ld.global Loads a value from the global memory space
ld.shared Loads a value from the shared memory space
st.global Stores a value to the global memory space
st.shared Stores a value to the shared memory space
thread fence To be discussed
thread fence block To be discussed
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our work will aid GPU memory consistency efforts to provide a more complete model that

both developers and manufacturers could agree on. Perhaps one way to view this work is:

what is a reasonable CUDA memory model that passes the litmus tests we present?

1.1 Related Work

Using litmus tests are an intuitive way to understand memory consistency models and

are used in official industry documentation [31]. Litmus tests have also been studied

formally [20] and have been shown to describe important properties of memory systems

such as model equivalence. More specifically, several concise litmus tests are used to show a

great deal about the consistency model. For example, the classic IRIW [3] (see Figure 1.2)

test can show write atomicity violation, that is, if this execution is allowed, then threads

can see updates to different addresses in different orders and there is no global total order

of stores. Thread3 will see the memory at location x updated before the memory at

location y, while Thread4 will see the opposite memory update order. One can see the

extra attention that developing in an architecture that allows this behavior would need.

Additionally, simple causality tests are shown that describe how causal relationship can

be determined between threads. That is, if Thread1 writes a new value to address a and

Thread2 reads the new value from a then we know that Thread1’s write caused thread

Thread2’s read. These causal relationships are important when reasoning about litmus

tests as they can provide some execution order between threads. We use similar litmus

tests to show properties of our GPU operational models. Murphi has been used in the

past to model concurrent shared memory consistency protocols. As a notable example,

Murphi was used in verification studies of the Cray SV2 cache coherence protocol [1].

More specifically, the Murphi model was used to verify coherence, forward progress, and

exclusivity of this protocol. We discuss coherence in depth in 3.2 and similarly use our

models to reason about coherence properties of GPUs. Murphi was also used in validating

a complex cache protocol used in Intel processors [17]. Between these two studies, Murphi

is shown to be an effective tool in reasoning about memory systems.
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Figure 1.2: Classic IRIW litmus test. If the assert can be true then this shows a write
atomicity violation.

Alglave et. al. present a thorough study on fences in weak memory models [2] which

formally defines static, dynamic and cumulative properties of memory fences which we refer

to in our work. We borrow the idea representing litmus tests as graphs with cycles showing

violations of properties in Section 3.2. While their work presents axiomatic consistency

models as opposed to the operations memory consistency models presented in this work,

our work shares a similar goal in showing the complex interactions of memory fences on

weak memory models. Finally, their work uses the Power architecture as its main focus

and does not mention GPUs, which is our contribution.

1.2 Roadmap

The presentation of this work is organized as follows. Chapter 2 presents the required

background necessary for the healthy digestion of the rest of this document. This includes

a primer on the GPU concurrency and memory system and some required prerequisites

on shared memory consistency models and litmus tests. We also give some background

on memory fences and their properties as well as operational semantics. The next two

chapters present our model in the top-down order that it was developed i.e. we explicitly

state behaviors we would like to see in the form of litmus tests, given in Chapter 3, and

build our model to satisfy those tests, given in Chapter 4. Some behaviors of the model

have yet to be resolved, which we take in consideration in both chapters. The operational

semantics of our model are given in detail in Chapter 4 along with a discussion of the Murphi
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implementation. Real-world examples of code that make memory consistency assumptions

that are not in line with our model are shown in Chapter 5 along with the fixes that make

the code consistent with our model. We end with a conclusion which summarizes this

document and discusses future work.



CHAPTER 2

BACKGROUND

2.1 GPU Basics

This is a very basic overview of the GPU architecture. We only consider one dimen-

sional blocks and grids and restrict memory to global and shared. More complete treatments

of this material are available [27, 15] for the motivated reader.

GPUs have a fundamentally different architecture than traditional CPUs including

complex memory and concurrency systems. In Flynn’s taxonomy [8], a GPU has a SIMD

(single instruction multiple data) architecture, that is, many processing units execute the

same instruction stream on different data. A thread in a GPU executes a shared instruction

stream on a processing unit and has access to a thread id variable to facilitate accessing

its own data. In CUDA, the C level interface to program NVIDA GPUs, this variable

can be given by threadIdx.x. For example, a CUDA program to add two integer vectors

z = x+ y might look like:

__global__ void add_vectors(int *x, int *y, int *z) {

z[threadIdx.x] = x[threadIdx.x] + y[threadIdx.x];

}

Figure 2.1 shows a graphical representation of the execution of the add vectors routine

on a GPU.

One important aspect of concurrent programming is how different threads can work

together to accomplish a task. This involves synchronization and shared memory between

threads. To this end, GPU threads are split into blocks. Each block contains the same
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Figure 2.1: Visual representation of how a vector addition routine might happen on a
GPU.

number of threads and thus satisfies the equation : blocks ∗ block size = total threads.

The block size and number of blocks1, can be adjusted at launch time. Threads within

the same block can share certain types of memory and synchronize with each other. The

block id variable can be accessed in CUDA by the variable blockIdx.x. Only threads

within the same block are given a synchronization barrier which can be invoked by the

CUDA command syncthreads(). GPUs have several memory spaces but this work is

restricted to global and shared memory. Global memory is accessible to all threads on the

GPU and is persistent between GPU launches from within the same program. On the other

hand, shared memory is only shared between threads in the same block i.e. each block has

its own shared memory. Shared memory is not persistent between GPU launches. As one

might suspect, global memory is larger but slower than shared memory. Global memory

is dynamically allocated and initialized on the CPU before the GPU launch while shared

memory is declared in the GPU code using the CUDA keyword shared . Finally a

graphical representation of the discussed features of the GPU is given in Figure 2.2.

1often called the grid size.
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Figure 2.2: Graphical representation of the relevant features of a GPU.

2.2 Memory Consistency Models and Litmus Tests

Shared memory consistency models (or memory models for short) for a particular

architecture define the correct behavior of shared memory behavior without explicitly

mentioning the physical cache or other layers of memory. Traditionally there have been

two ways to do this:

1. Axiomatic Models: These models define relationships between actions and are

normally drawn as graph-like structures with the relationships as edges and actions

as nodes. Actions are usually memory operations such as load, write, or memory

fence. Examples of relationships are program order, data dependency etc. Other

than a brief mention of a structure obtained by a prior model (see Figure 3.2) we will

not discuss axiomatic models in this work.

2. Operational Models: These models define behavior in terms of the operation of the

system. That is, given the current state of the system and, optionally, an operation,

e.g. load, the operational model will provide all possible steps the system could take.

These steps are known as operational semantics and they are more formally defined

in Section 2.4
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If one memory model M1 imposes fewer constraints than another M2, we say M1 is weaker

M2. Memory models become weaker by removing constraints, which is known as relaxing the

model. A model that is strictly stronger than another will only allow a subset of the legal

executions of the weaker model. The strongest memory model is sequential consistency

(see Figure 1.1) which only allows executions which can be represented as a sequential

interleaving of instructions.

While providing precise operational or axiomatic models yield unambiguous mathemat-

ical structures, an intuitive way to understand a given memory model is through litmus

tests. Litmus tests are short programs evaluated under a memory model and usually

contain assertions about values read from memory. Litmus tests can either be guaranteed

(meaning all assertions pass), disallowed (at least one assertion will always fail), or, given

the non-determinism of concurrent systems, allowed but not guaranteed. As mentioned

in the introduction (see Section 1.1) litmus tests have been widely studied and can show

interesting properties of the memory model. We use litmus tests as our main method of

specifying the high level behavior of our model.

2.3 Memory Fences

A memory fence is a low level instruction that enforces ordering on memory instructions.

As mentioned in Chapter 1 many modern architecture support out-of-order execution i.e.

memory instructions can be reordered for performance gains. Memory fence instructions

can be inserted to combat this non-intuitive behavior and restore orderings. Memory fences

have been well studied [2] and have two distinct properties:

1. Static Properties: These properties enforce program order within one thread of

execution. For example, these properties would decide if instructions before the

memory fence are allowed to be reordered after the memory fence or similarly, if

instructions after the fence can be reordered before.

2. Dynamic Properties: These properties enforce memory visibility across threads.

Informally, these properties dictate if the writes to shared memory prior to the fence

must be visible to other threads after the execution of the fence.
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Fences may also be cumulative, a dynamic property which enforces visibility of not

only the values written by the calling thread but also the values written by other threads

currently visible to the calling thread. Consider the classic IRIW test in Figure 1.2.

In Thread3 and Thread4 the static properties of the fence are enforcing the two loads

to happen in program order. If the fence has cumulative dynamic properties, then the

assertions can never be satisfied by the following argument: w.l.o.g. one of the fences must

execute before the other; say Thread3’s fence executes first and say r1 == 1 (from which

we know x == 1). Then the memory fence will enforce the visibility of x to Thread4 even

though Thread3 did not write it, thus making the assertions unsatisfiable.

Memory fences are the best way to enforce orderings in architectures with weak memory

models. Understanding the subtle behaviors enforced by properties is crucial to writing

correct code; furthermore, by reasoning about fences in terms of static and dynamic

properties we can gain insights into the entire shared memory consistency model.

2.3.1 CUDA Fences

CUDA provides three memory fences, documented [24] as follows:

• __threadfence_block() waits until all global and shared memory accesses made by the calling thread prior
to __threadfence_block() are visible to all threads in the thread block.

• __threadfence() waits until all global and shared memory accesses made by the calling thread prior to
__threadfence() are visible to: All threads in the thread block for shared memory accesses, All threads in
the device for global memory accesses.

• __threadfence_system() waits until all global and shared memory accesses made by the calling thread prior
to __threadfence_system() are visible to: All threads in the thread block for shared memory accesses, All
threads in the device for global memory accesses, Host threads for page-locked host memory accesses (see
Section 3.2.4.3).

While some high level dynamic properties are discussed, this documentation fails to

mention any static or cumulative properties of these fences. This work aims to formally

model and thus capture the behavior of __threadfence_block() and __threadfence()

along with all of their properties.
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2.4 Operational Semantic Models and Implementation

Operational semantic models describe systems in a rigorous, unambiguous manner using

mathematical notation. A state of the system (denoted by σ) is described by a valid

assignment to all the global variables in the system e.g. to refer to global variable x in

a state σ we say σ.x. We limit our discussion of operation semantic models to structural

operational semantic models [26]. This semantic model describes the system by formally

defining each possible atomic step of the system. The notation generally used for an atomic

step is a horizontal bar. On the top of the bar is a predicate P : X → {true, false} where

X ⊆ S where S is the global variables of the system. Underneath the bar is a transition

σ → σ′ where σ is the current state and σ′ is a new state which may contain different

assignments to system variables. It is also common notation for σ[(z := v)] where z ∈ S

and v ∈ Domain(z) to mean the state σ with variable z updated to the value of v. As an

example consider a system with x and y as global variables and say the system increments

x by 2 and y by 1 while x < 50. The operational semantics for this behavior would be:

σ.x < 50

σ → σ[x := x+ 2, y := y + 1]
(2.1)

A complete operational semantic model will consist of many atomic steps. If the predicate

on top of the bar is true in a given state i.e. P : σ → true then we say that transition is

enabled. If a transition is enabled, then the state update underneath the bar is allowed to

happen and the system moves to state σ′. Note that it is possible for multiple transitions to

be enabled in a single state; this leads to a non-deterministic system i.e. even if given the

exact same starting state, an execution may give different intermediate or ending states.

Given the non-deterministic nature of concurrent code, structural operational semantic

models are often developed to reason about these types of systems.

2.4.1 Murphi Implementation

The Murphi modeling language [7] provides intuitive syntax and powerful techniques

for implementing and reasoning about non-deterministic structural operational semantic

models. A Murphi Model consists of four main sections:
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1. System Variables: This is where all the global variables of the system are declared

and defined. Murphi supports integer and boolean data types as well as arrays and

records of multiple data. Functions may also be defined which are executed atomically

and can modify system variables.

2. Start State: This initializes all the system variables to some starting value.

3. Guarded Transitions: This describes the behavior of the model and is a direct

mapping of structural operational semantic atomic steps. The general form of these

guarded transitions is:

<expr> ==> <expr>*

where the right hand side expr should be a predicate on a subset of the system

variables and the left hand side expr should be modifying system variables to reflect a

new state. For example, using the Pascal-like syntax of Murphi, the formal transition

in equation (2.1) would be implemented as:

x < 50 ==> x := x + 2; y := y + 1;

4. Invariants: These are predicates that must remain true in all states of the system.

When given a model and executed, Murphi will explore all possible states and executions,

even in non-deterministic models, and check invariants. If an invariant ever becomes false

during an execution, Murphi will report the error along with an execution trace. In short,

Murphi is a tool for implementing and reasoning about structured operational semantic

models. Section 4.2 gives the behavior of the GPU consistency model in the syntax of

Murphi guarded transitions; however, it should be clear that these guarded transitions are

a simple implementation of mathematical operational semantics.



CHAPTER 3

LITMUS TESTS AND PROPERTIES

This chapter presents a series of litmus tests that we believe the GPU shared memory

consistency model should adhere to. While extensive testing on actual hardware is still in

a preliminary state, we believe the GPU memory model should satisfy the following tests

by one or more of the following criteria:

• Desired properties studied with respect to traditional CPU memory models.

• The limited documentation provided (see Section 2.3.1).

• High level discussion with contacts at NVIDIA.

• Limited testing on hardware.

Once the high level behavior of the GPU memory model is described through litmus

tests we proceed in Chapter 4 to define an operational semantic memory model that satisfies

these litmus tests. In a way, we are attempting to reverse engineer the GPU memory model,

starting with the behavior we hope to see and concluding with the actual model. This

approach produces a memory model built around the programmers perspective and thus

is more amiable to developers. Finally, some conflicting views on the outcome of several

of the litmus tests arose during the course of this work. The implications of these conflicts

yield additional discussion and have a dramatic effect on the resulting model.

3.1 Notation

Because we attempt to keep the notation as clean and intuitive as possible, we will not

write the litmus tests in the NVIDIA PTX [25] language as would be required to run the
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tests on hardware, but rather in a higher level more intuitive language. Furthermore, many

interesting properties and behaviors can be seen using small litmus tests consisting of only

several threads, memory locations, and values which allows us to restrict their domains to

a readable format. In each test it will be noted which memory space addresses belong to

and which block threads belong to. Occasionally these details are kept generic and a case

analysis is presented examining the different possibilities. The notations kept consistent

across tests are:

• Registers: Each thread has its own registers and cannot read or write from any

other thread’s registers. They are labeled rx where x is an integer.

• Values: For simplicity, values that can be stored in registers and memory locations

are integers.

• Instructions: As noted in Table 1.1, we model a small subset of the actual PTX

instruction set. A store instruction is given by x = y where x is a memory location

and y is a value. A load instruction is given by x = y where x is a register and y is

a memory location. We restrict our study to only two of the CUDA memory fences,

__threadfence_block() which is abbreviated as TFB() and __threadfence() which

is abbreviated as TF(). Finally to establish a causal relationship between threads we

use c-like if statements.

• Assertions: Assertions take a Boolean expression as an argument and pass if, and

only if, the Boolean expression evaluates to true. If it is possible for an assertion to

fail, then the entire litmus test fails.

3.2 Coherence

Coherence is a property studied in traditional CPU memory consistency models that

aims to make memory caching operationally invisible to the programmer. That is, a

programmer should not be able to determine which memory values were cached based on the

results of load and store operations. The threads and memory in the coherence litmus tests

have been left generic as coherence is a desired property in any shared memory situation
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Figure 3.1: Litmus test that can test for coherence violation.

and thus we assert that it must be maintained between all memory spaces that threads

share. It has been shown that this property is equivalent to sequential consistency with

respect to a single address [28, p.14]. To this end we propose a classical coherence litmus

test (see Figure 3.1). We assert that this litmus test must always fail if classical coherence is

to hold as there is no sequentialization of these instructions that satisfy the assertions. As

further evidence that this test violates classical coherence, we use an equivalent relational

coherence definition, given by Alglave et. al. [2] but not explicitly shown here, to further

show that this litmus test does indeed test for coherence violations. Again, we do not

formally go into how the graph is constructed, but rather it is shown in support for our

litmus test as we encountered some disagreement about the classical definition of coherence.

A violating cycle in the relations graph (see Figure 3.2) substantiates our test.

3.2.1 Weak Coherence

While the above definition of coherence seems to be prevalent in the literature [28, 2],

discussion with industry experts revealed that some architectures allow load operations

from the same address to be reordered which violates the classical coherence litmus test.

To this end we developed a notion of weak coherence which we define as:

Weak Coherence : sequential consistency with respect to a single address if loads

within a thread are separated (and thus ordered) by a memory fence.
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Figure 3.3 shows a litmus test similar to the classical coherence test which tests for weak

coherence violations. Notice that fences are inserted for their static property of keeping

the loads in program order.

3.3 Simple Visibility

We now turn our attention to simple dynamic properties of the GPU fences, i.e. what

should other threads expect to see in memory after a thread executes a memory fence. The

strategy here is to establish a causal relationship between threads so one thread knows

when the other has issued a memory fence. We do this by having one thread issue a fence

followed by a write. Now a separate thread observes the memory location of the first

thread’s final write. If the observing thread sees the write issued by the first thread, we

know the memory fence and, by the static properties of fences, all instructions before the

memory fence in the first thread have been executed (see Figure 3.4). Since our study

restricts to GPU memory space into only two sections (shared and global) we consider

each space separately and then bring them together with a larger test. The behavior in

the following tests follows directly from the limited documentation of the fences and has

been confirmed by industry experts.

Figure 3.2: Graphical representation of coherence litmus test, a violating cycle is
emphasized.
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Figure 3.3: Litmus test that can test for weak coherence violation.

Figure 3.4: Establishing a causal relationship between threads.

3.3.1 Shared Memory

Recall that threads inside the same block have a shared memory space known as shared

memory. We propose a litmus test in Figure 3.5 to show simple visibility across shared

memory for threads within the same block. The memory fence in Thread2 is a TFB() for its

static properties only, that is, to ensure the loads remain in program order. The memory

fence in Thread1 is left unspecified so we can analyze the test under the different fences.

If the memory fence is a:

• No-op: No guarantees are made and the assertions may pass or fail.

• __threadfence_block(): The assertions in this litmus must always pass.

• __threadfence(): The assertions in this litmus must always pass.
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Figure 3.5: Litmus test establishing dynamic properties of GPU fences.

3.3.2 Global Memory

We can use the exact same test as seen in Figure 3.5 for global memory, however, since

all threads on the device share global memory, we must consider the separate cases when

t0 and t1 are in the same block and when they are not. We show a similar fence case

analysis as before for both.

• T0 and T1 are in the same block:

– No-op: No guarantees are made and the assertions may pass or fail.

– __threadfence_block(): The assertions in this litmus must always pass.

– __threadfence(): The assertions in this litmus must always pass.

• T0 and T1 are not in the same block:

– No-op: No guarantees are made and the assertions may pass or fail.

– __threadfence_block(): No guarantees are made and the assertions may pass

or fail.

– __threadfence(): The assertions in this litmus must always pass.

3.3.3 Putting it together

When creating a test that combines __threadfence() and __threadfence_block()

we run into an interesting issue which leads us to our next section. Consider the test in
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Figure 3.6. It is fairly easy to follow the causal relations between threads, but should this

assertion be guaranteed? That is, does Thread2’s __threadfence() apply to thread1’s

stores that are visible to Thread2? Or, another way this assertion could be satisified is if

memory updates have a global order and Thread2’s visibility of Thread1’s stores implies

all threads see Thread1’s stores. This is a source of conflict in discussion and is discussed

next.

Figure 3.6: Large litmus test combining both GPU fences.

3.4 Write Atomicity and Cumulative Fences

Write atomicity was briefly discussed and shown in Figure 1.2 with the classical IRIW

litmus test which we reference now. Write atomicity requires that one thread’s store is

visible to all other threads at the same time. It is clear that in a system supporting

write atomicity this test cannot pass as one of the stores to x or y will become visible

first and the other threads cannot see them out of order. Another factor that dictates

whether or not an architecture passes is if the fences are cumulative or not. Recall that

cumulative fences not only guarantee the visibility of their own stores, but also the visibility

of other stores visible to them. If GPU fences are indeed cumulative, we maintain that

__threadfence() and __threadfence_block() maintain their same strength as shown in
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the previous section. That is, __threadfence() acts both within and across blocks while

__threadfence_block() only acts within blocks but on both global and shared memory.

That is, assuming cumulative fences, the IRIW test in Figure 1.2 cannot pass if the memory

fence is a __threadfence_block() and the threads all belong to the same block regardless

of shared or global memory. If the threads are not in the same block, then the memory

must be global and the fence must be a __threadfence() to ensure the assertion never

passes. If the fences are not cumulative then there are no guarantees about if the assertions

will pass or fail. As mentioned earlier, there are conflicting views if the GPU fences are

cumulative or not.

As a final note, notice that the above tests suggest that __threadfence_block() is

strictly weaker than __threadfence(). That is, executions allowed using __threadfence()

are a subset of the executions allowed using __threadfence()_block().



CHAPTER 4

GPU OPERATIONAL SEMANTIC

MODELS

In this section we present our shared memory consistency model that satisfies the desired

behaviors shown by the litmus tests in the previous chapter. We give a visual description of

the data structures in the model and then formally present the transition rules in Murphi

syntax. We briefly show an alternative model which has different behavior with respect to

some of the unresolved issues discussed in the previous chapter. We conclude the chapter

by discussing the Murphi implementation and the results of model checking the litmus

tests.

4.1 Visual Description and Data Structures of Model

A visual description of the model is given in Figure 4.1 which will be helpful for

understanding the operational semantics of the model. We begin by discussing the data

structures used in the model. Each thread has its own

• Program (an array of instructions) along with a program counter. These are

given in the model by: PGM : array[blocks] of array[threads] of array

[program length] of instructions or a three dimensional array indexed by

block, thread and program counter. Similarly the program counter is given by

a two dimensional array indexed by block and thread: PC : array[blocks] of

array[threads] of program length;

• Set of registers given in the model by: REG : array[blocks] of array[threads]

of array [registers] of data. Again, a three dimensional array indexed by

block, thread, and register number.
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• Copy of shared and global memory 1 which are simply arrays indexed by addresses

given in the model by: SM : array[blocks] of array[threads] of smem and GM

: array[blocks] of array[threads] of gmem respectively. smem and gmem are

simply data locations with the additional flags as seen in the figure and discussed in

the next list.

• Set of unissued loads (called the load pool) given in the model by: LP :

array[blocks] of array[threads] of load instruction.

• Instruction queues for each global and shared memory address given in the

model by: (S|G)QA : array[blocks] of array[threads] of array [addrs] of

Instructions. where SQA are the shared memory instructions and GQA are the global

memory instructions.

Each memory location (per thread) also has a set of Boolean flags which are:

• B - Borrowed bit

• LS - Locally shared

• GS - Globally shared (global memory only)

4.2 Annotated Operational Semantics

We now discuss the operational semantics of the model, that is, we describe atomic op-

erations and the guards must be satisfied in order to enable the operation (see Section 2.4).

Note that we will employ the Murphi syntax for expressing the guarded transition system.

Because of its intuitive nature, we do not give detailed documentation on all the Murphi

syntax but any confusion can be resolved with the official Murphi documentation. In the

quest for succinctness, the model shown below is slightly simpler than the actual model as

the actual model contains additional mechanisms to aid with verification; additionally we

do not define all functions and predicates used below but rather give them with sufficient

1in the figure a and b are shared addresses and g and h are shared addresses.
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Figure 4.1: Visual description of our shared memory consistency model for GPUs.

names or comments to express their semantics. English summaries of the different sections

of system are given to aid in understanding. Intuitively, we begin with the initial state.

For the intial state, all memory locations are initialized to 0. The borrowed flag is set

to false and locally and globally shared flags are set to true. Additionally, all program

counters (PC) and registers are set to 0. Instruction queues and load pools are empty and

memory fields are initialized (the previously mentioned flags and data values). Programs

can be custom input by the user here (see Section 4.4). This is given in the start state of

the Murphi model as:
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For b:blocks do

For t:threads do

PC[b][t] := 0; -- Program counter

end;

end;

For b:blocks do

For t:threads do

initlp(LP[b][t]); -- initialize load pool to empty.

For a:addrs do

initq(SQA[b][t][a]); -- initialize each queue to empty;

initq(GQA[b][t][a]); -- initialize each queue to empty;

endfor;

endfor;

endfor;

--initializing memory, values to 0,shared (not needing to share) and not borrowed.

For b:blocks do

For t:threads do

For a:addrs do

GM[b][t][a].Data := 0;

GM[b][t][a].LS := True;

GM[b][t][a].GS := True;

GM[b][t][a].B := False;

SM[b][t][a].Data := 0;

SM[b][t][a].LS := True;

SM[b][t][a].B := False;

end;

end;

end;

--Insert Custom program and registers here
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Next we present operations that progress the thread forward in the program, i.e.

increment the program counter. A no-op simply increments the program counter while

loads and stores get stored in the instruction queue of the address they are operating on.

Finally fence instructions get enqueued in all of the calling threads’ instruction queues.

Notice that the rulesets create a rule for each thread in the model (a technique that is used

throughout) and ins is simply an alias to the current instruction. We use the function

enqueue(queue, value) to enqueue instructions. Finally notice that instructions have an

Op field containing what kind of instruction it is, an addr field for which address it operates

on and a Global field indicating if it acts on global or shared memory.

ruleset b : blocks do

ruleset t : threads do

Alias ins : PGM[b][t][ PC[b][t] ] Do

Rule "Fire a noop (simply incrpc)"

--

ins.Op = no-op ==> PC[b][t] := PC[b][t] + 1;

EndRule;

Rule "Fire a ld from global, store in global queue"

--

ins.Op = load &

ins.Global ==>

enqueue(GQA[b][t][ins.addr], ins);

PC[b][t] := PC[b][t] + 1;

Endrule;
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Rule "Fire a ld from shared, store in shared queue"

--

ins.Op = load &

!ins.Global ==>

enqueue(SQA[b][t][ins.addr], ins);

PC[b][t] := PC[b][t] + 1;

Endrule;

Rule "Fire a st from global, store in global queue"

--

ins.Op = store & ins.Global

==>

enqueue(GQA[b][t][ins.addr], ins);

PC[b][t] := PC[b][t] + 1;

Endrule;

Rule "Fire a st from shared, store in shared queue"

--

ins.Op = store & !ins.Global

==>

enqueue(SQA[b][t][ins.addr], ins);

PC[b][t] := PC[b][t] + 1;

Endrule;
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Rule "Fire a TF."

--

(ins.Op = TF) ==>

For a : addrs Do

enqueue(SQA[b][t][a], ins);

enqueue(GQA[b][t][a], ins);

Endfor;

PC[b][t] := PC[b][t] + 1;

Endrule;

Rule "Fire a TFB."

--

(ins.Op = TFB) ==>

For a : addrs Do

enqueue(SQA[b][t][a], ins);

enqueue(GQA[b][t][a], ins);

Endfor;

PC[b][t] := PC[b][t] + 1;

Endrule;

Endalias;

endruleset;

endruleset;

The next set of operations describes what happens when load and store instructions are

dequeued from the instruction queues. Store instructions go out to the thread’s memory

resetting the borrowed and shared flags while load instructions go through the load pool.

The load pool can block an address a if it contains any operation with a as an argument.

We define a predicate lp_not_locking(Load_Pool,address) which returns true if load

pool is not blocking else false. We use a few more additional functions in these rules,

namely dequeue(Queue) which removes the head of a queue, head(Queue) which returns

the head of a queue and finally a function which can add an instruction to the load pool
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addtoLoadPool(Load_Pool,instruction). Finally the store instructions have a Data

field containing the value to store.

ruleset b : blockT do

ruleset t : threadT do

ruleset a : addrT do

--Rules with the shared memory queues

Alias Q : SQA[b][t][a] do

Rule "Drain a store of a shared queue."

--

lp_not_blocking(LP[b][t],a) &

head(Q).Op = store ==>

SM[b][t][a].Data := head(Q).Data;

SM[b][t][a].B := False;

SM[b][t][a].LS := False;

dequeue(Q);

EndRule;

Rule "Drain a load of a shared queue."

--

head(Q).Op = load ==>

addtoLoadPool(LP[b][t],head(Q));

dequeue(Q);

EndRule;

Endalias;
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Alias Q : GQA[b][t][a] do

--Rules with the global memory queues

Rule "Drain a store of a global queue."

--

lp_not_blocking(LP[b][t],a) &

head(Q).Op = store ==>

GM[b][t][a].Data := head(Q).Data;

GM[b][t][a].B := False;

GM[b][t][a].LS := False;

GM[b][t][a].GS := False;

dequeue(Q);

EndRule;

Rule "Drain a load of a global queue."

--

head(Q).Op = load ==>

addtoLoadPool(LP[b][t],head(Q));

dequeue(Q);

Endruleset;

Endruleset;

Endruleset;

Moving on, we discuss the operations dealing with the load pool issuing instructions.

Note that the load pool is unordered ad its function is to allow reordering of loads, even

from the same address. This supports the litmus test for weak coherence (see Section 3.2.1).

We also allow load instruction to borrow memory values from other thread’s memory if

they have not been shared (as indicated by the flag). Once an address has been borrowed,

the thread must update it’s own memory with the value and not allow borrowing the

same address again until another operation overrides the borrowed bit. These memory

properties are indicated by the memory flags discussed earlier. Note that the borrowing

thread is also not responsible for sharing the value. Furthermore there are different rules
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for borrowing global memory intra and inter block. This borrowing mechanism allows for

the write atomicity violation behavior. The memory is loaded to the register stored in the

reg field of the instruction type. Finally the instruction is removed from the load pool

with the following function removeFromLoadPool(Load_Pool,instruction).

ruleset b : blocks do

ruleset t : threads do

ruleset i : loadPool do

Alias a : i.addr do

Alias reg : i.reg do

--First the cases loading from local memory

Rule "non-det execute a load from the load pool

from local global memory"

--

i.Global ==>

REG[b][t][reg] := GM[b][t][a].Data;

removeFromLoadPool(LP[b][t], i);

EndRule;

Rule "non-det execute a load from the load pool

from local shared memory"

--

!i.Global ==>

REG[b][t][reg] := SM[b][t][a].Data;

removeFromLoadPool(LP[b][t], i);

EndRule;
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ruleset b1 : blocks do

ruleset t1 : threads do

Rule "non-det execute a load from the load pool

from others global memory out of block"

--

i.Global &

GM[b][t][a].B = False &

b != b1 &

!GM[b1][t1][a].GlobalShared

==>

REG[b][t][reg] := GM[b1][t1][a].Data;

GM[b][t][a].Data := GM[b1][t1][a].Data;

GM[b][t][a].LS := True;

GM[b][t][a].B := True;

GM[b][t][a].GS := True;

removeFromLoadPool(LP[b][t], i);

EndRule;



34

Rule "non-det execute a load from the load pool

from others global memory inside block"

--

i.Global &

GM[b][t][a].B = False &

b = b1 & t != t1 &

!GM[b1][t1][a].LS

==>

REG[b][t][reg] := GM[b1][t1][a].Data;

GM[b][t][a].Data := GM[b1][t1][a].Data;

GM[b][t][a].S := True;

GM[b][t][a].B := True;

GM[b][t][a].GS := True;

removeFromLoadPool(LP[b][t], i);

EndRule;

Rule "non-det execute a load from the load pool

from others shared memory inside block"

--

!i.Global &

SM[b][t][a].B = False &

b = b1 & t != t1 &

!SM[b1][t1][a].LS

==>

REG[b][t][reg] := SM[b1][t1][a].Data;

SM[b][t][a].Data := SM[b1][t1][a].Data;

SM[b][t][a].S := True;

SM[b][t][a].B := True;

removeFromLoadPool(LP[b][t], i);

EndRule;
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Endruleset;

Endruleset;

EndAlias;

EndAlias;

Endruleset;

Endruleset;

Endruleset;

The next set of transitions we discuss are the nondeterministic sharing of memory (if flags

dictate memory needs to be shared). Memory is shared per-location to all threads the

memory location is visible to i.e. all threads for global memory, intra block threads for

shared memory. Shared memory locations reset the memory flags associated with that

memory in both the sharing thread and all threads being shared with. It is possible for

global memory to only be shared to inter block threads as the weaker fence (__thread_

fence_block()) only enforces global memory to be shared intra block.
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ruleset b : blocks do

ruleset t : threads do

ruleset a : addrs do

Rule "share an completely unshared datum from global memory"

--

!GM[b][t][a].LS & !GM[b][t][a].GS

==>

For b2 : blocks Do

For t2 : threads Do

if b != b2 | t != t2 then

GM[b2][t2][a].Data := GM[b][t][a].Data;

GM[b2][t2][a].LS := True;

GM[b2][t2][a].GS := True;

GM[b2][t2][a].B := False;

endif;

endfor;

endfor;

GM[b][t][a].GS := True;

GM[b][t][a].LS := True;

Endrule;
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Rule "share a partially shared datum from global memory"

--

GM[b][t][a].LS & !GM[b][t][a].GS ==>

for b2 : blocks Do

for t2 : threads Do

if b != b2 then

GM[b2][t2][a].Data := GM[b][t][a].Data;

GM[b2][t2][a].LS := True;

GM[b2][t2][a].GS := True;

GM[b2][t2][a].B := False;

endif;

endfor;

endfor;

GM[b][t][a].GS := True;

GM[b][t][a].LS := True;

Endrule;

Rule "share a datum from shared memory to others in the block"

--

!SM[b][t][a].LS & !SM[b][t][a].B

==>

for t2 : threads Do

if t2 != t then

SM[b][t2][a].Data := SM[b][t][a].Data ;

SM[b][t2][a].LS := True;

SM[b][t2][a].B := False;

endif;

endfor;

SM[b][t][a].LS := True;

Endrule;
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Endruleset;

Endruleset;

Endruleset;

The final set (phew!) of instructions we present is the execution of the memory fences

from the instructions queues. In order for a thread to drain a fence, the fence instruction

must be at the head of all instruction queues of the calling thread and the load pool

must be empty. This ensures the local ordering of instructions or the static properties of

the fences. The weaker fence, __thread_fence_block() or TFB, enforces all memory not

locally shared to be shared to intra block threads. The stronger fence, __thread_fence()

or TF, enforces the same with the additional constraint that global memory must be shared

inter block as well. These are the dynamic properties of the fences. We use the function

is_empty(List) which returns true if the list is empty, false otherwise. Finally we use

two extra functions Merge_Shared(source,dest) and Merge_Global(source_mem,dest_

mem,source_block,dest_block) to aid these transitions. These functions merge two sets

of memory i.e. based on flags in memory, copy memory from one threads memory to another

and reset flags. Due to their importance, we include their definitions before the transitions.

The lsmT type is a local shared memory, similarly for lgmT and global memory. Note that

when values in memory are merged, their borrowed and shared flags are overwritten.
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--First the merging functions

PROCEDURE Merge_Shared(source : lsmT; var dest : lsmT);

--Merge local shared memories source and dest

begin

For a : addrs Do

if !source[a].LS

then

dest[a].Data := source[a].Data;

dest[a].LS := True;

dest[a].B := False;

endif;

endfor;

end;

PROCEDURE Merge_Global(source : lgmT; var dest : lgmT;

bsource : block; bdest : block);

--Merge global memories source and dest

begin

For a : addrT Do

if (!source[a].LS) |

((!source[a].GS) & (bdest != bsource))

then

dest[a].Data := source[a].Data;

dest[a].LS := True;

dest[a].GS := True;

dest[a].B := False;

endif;

endfor;

end;
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--Now the transition rules

ruleset b : blocks do

ruleset t : threads do

Rule "Drain TFB fence."

--

(For a : addrs Do

head(SQA[b][t][a]).Op = TFB &

head(GQA[b][t][a]).Op = TFB

Endforall) &

is_emptyp(LP[b][t]) ==>

--atomically dequeue all

For a : addrs Do

dequeue(SQA[b][t][a]);

dequeue(GQA[b][t][a]);

Endfor;

--Share memory within block

For t2 : threads Do

if t != t2 then

Merge_Shared(SM[b][t], SM[b][t2]);

Merge_Global(GM[b][t], GM[b][t2], b, b);

endif;

endfor;

--Mark as merged

For a : addrs Do

SM[b][t].LS := True;

GM[b][t].LS := True;

endfor;

Endrule;
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Rule "Drain all TF fences when together."

--

(For a : addrs Do

head(SQA[b][t][a]).Op = TF &

head(GQA[b][t][a]).Op = TF

Endforall) &

is_emptyp(LP[b][t]) ==>

For a : addrs Do

dequeue(SQA[b][t][a]);

dequeue(GQA[b][t][a]);

Endfor;

--Share globally

For t2 : threads Do

if t != t2 then

Merge_Shared(SM[b][t], SM[b][t2]);

endif;

For b2 : blocks Do

if t != t2 | b != b2 then

Merge_Global(GM[b][t], GM[b2][t2], b, b2);

endif;

endfor;

endfor;

--Mark as merged

For a : addrs Do

SM[b][t].LS := True;

GM[b][t].LS := True;

GM[b][t].GS := True;

endfor;

Endrule;
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Endruleset;

Endruleset;

Finally, as the careful reader may have noticed, not all combinations of flags on memory are

possible. In fact only four combinations of the global memory bits and three combinations

on shared memory. The combinations and meanings are listed in Table 4.1.

Table 4.1: All bit combinations and their meanings.

Global Memory

B LS GS Meaning

0 0 0
The memory location has not been shared at all and needs to be shared
both locally and globally.

0 1 0
The memory location has been shared intra block and still needs to be
shared inter block

0 1 1
The memory location does not need to be shared and has not been
borrowed (the initial state)

1 1 1
The memory location has been borrowed and as such the owner thread
does not have to share it

Shared Memory

B LS GS Meaning

0 0 NA The memory location has not been shared yet

0 1 NA
The memory location has not been borrowed and does not need to be
shared (initial state)

1 1 NA
The memory location has been borrowed and as such the owner thread
does not have to share it

4.3 Alternative Model

Because of the unresolved behavior pertaining to the results of some of the litmus tests,

we designed an alternative model which is strictly stronger than the model presented above.

We will refer to the new model as the strong model and the previous model as the weak

model. We will simply present a visual description of the strong model (see Figure 4.2)

and note some of the major differences. Notice that each thread does not have its own

view of memory, rather each block shares its own view of global and shared memory (this
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Figure 4.2: Visual description of our shared memory consistency model for GPUs.

enforces write atomicity). Also note the lack of a load pool and only one flag per memory

location which leads to a simpler memory sharing system. The behavioral differences are

discussed in the next section as the results of the Murphi model checking. We believe that

regardless of resolution of the unresolved behavior, we will be able to combine mechanisms

from each model to get the desired properties.

4.4 Murphi Model

The models described above were implemented in the Murphi modeling language and

can be used to check the executions of litmus tests described in the previous chapter. This

is done by initializing each threads program array with the desired instructions in the initial

state and then adding invariants. Some changing of global constants is also required for

each test. An example of the encoding of the weak coherence violation test (seen in Figure

3.3) across global memory intra block is shown below along with the invariant. Recall the
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invariant has to be true for every state, however, we are only concerned with the state of

the system after all the threads have finished executing; to this end, we add the predicate

All_Threads_Done() which returns true if all threads have executed all their instructions,

meaning their instruction queues are empty.

--T1

PGM[0][0][0].Op := store;

PGM[0][0][0].addr := 0;

PGM[0][0][0].Data := 1;

PGM[0][0][0].Global := true;

--T2

PGM[1][0][0].Op := store;

PGM[1][0][0].addr := 1;

PGM[1][0][0].Data := 2;

PGM[1][0][0].Global := true;

--T3

PGM[2][0][0].Op := load;

PGM[2][0][0].addr := 0;

PGM[2][0][0].reg := 1;

PGM[2][0][0].Global := true;

--

PGM[2][0][1].Op := load;

PGM[2][0][1].addr := 0;

PGM[2][0][1].reg := 2;

PGM[2][0][1].Global := true;

--T4

PGM[3][0][0].Op := load;

PGM[3][0][0].addr := 0;

PGM[3][0][0].reg := 1;

PGM[3][0][0].Global := true;
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--

PGM[3][0][1].Op := load;

PGM[3][0][1].addr := 0;

PGM[3][0][1].reg := 2;

PGM[3][0][1].Global := true;

--

Invariant

!(All_Threads_Done() &

REG[2][0][1] = 1 & REG[2][0][2] = 2 &

REG[3][0][1] = 2 & REG[3][0][2] = 1 )

4.4.1 Results

The results of the litmus tests on the models (as seen in Table 4.2) were as expected.

The litmus tests presented below are all discussed in Chapter 3. Because this project is not

about the performance of model checkers, we do not record execution time or the number

of states explored. We will note, however, that all tests executed in under a minute and

the weak model had a much larger state space.

We end with some notes about the results. Notice that the simple visibility tests have

the same results across both models; this is due to both the simplicity of the tests and

the clear documentation on these matters. Also notice that shared memory visibility is

only tested intra block as those threads are the only ones that share shared memory. The

strong model does not allow either the classical or relaxed coherence violations while the

weak model can show a classical coherence violation. Similar behavior is seen with write

atomicity violations. Note that the strong model does not need cumulative fences as write

atomicity implies cumulative fences. The weak model does not have cumulative fences as

executing fences only shares values authored by the calling thread (see Section 4.2) which

directly leads to the allowed write atomicity violation result.
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Table 4.2: The results of the litmus tests when ran on the models.

3- Guaranteed 7 - Not Allowed ? - Allowed but not Guaranteed

Test Weak Model Strong Model

Classical Coherence Violation (inter and intra
block)

? 7

Relaxed Coherence Violation (inter and intra
block)

7 7

Simple Visibility Across Shared Memory With
No Fence

? ?

Simple Visibility Across Shared Memory With
TFB

3 3

Simple Visibility Across Shared Memory With
TF

3 3

Simple Visibility Across Global Memory With
No Fence (inter and intra block)

? ?

Simple Visibility Across Global Memory With
TFB (intra block)

3 3

Simple Visibility Across Global Memory With
TFB (inter block)

? ?

Simple Visibility Across Global Memory With
TF (inter and intra block)

3 3

Write Atomicity Violation IRIW (inter and intra
block)

? 7



CHAPTER 5

EXAMPLES

In this section we show several examples of code that makes assumptions about the

GPU shared memory consistency model which are inconsistent with our model. We show

how to fix the offending code using our proposed model.

Synchronization operations are expensive and algorithms that can jettison these op-

erations by taking advantage of low level atomics or other hardware features can gain

substantial performance increases at the expense of exposing the memory model [4]. In

GPUs, a popular technique is exploiting warp-based scheduling. That is, in NVIDIA

GPUs, threads execute in a lock-step manner in groups of 32 [27, p.106]. This allows

unsynchronized code in groups of 32 threads to execute on hardware while producing

deterministic results. While our model does not take warps into consideration, we maintain

that even when instructions are executed (or dequeued from the instruction queues) in a

lock-step manner the memory visibility still behaves as we presented in our model. We

analyze at a high level several CUDA programs that exploit this technique under the

visibility properties of our shared memory consistency model.

5.1 MAGMA

MAGMA is a dense linear algebra library similar to LAPACK but for architectures

with GPU accelerators [5]. The following code was found in a GPU kernel function in the

file zgemvt_kernel_fermi.cu:
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/* sdata is a shared memory array which is NOT declared volatile */

if(tx < 32) sdata[tx] += sdata[tx + 32];

if(tx == 0)

for(int i=1;i<32;i++)

sdata[tx] += sdata[tx + i];

This code attempts to exploit warp based programming by allowing thread tx==0 to do

unsynchronized work on the sdata array. The final for loop done only by thread tx==0

assumes that the data in sdata is visible after multiple other threads issue stores to it in

the statement sdata[tx]+=sdata[tx+32];. Given the shared memory consistency model

we presented, this is not the case. At a high level, the shared memory behavior here is

similar to the No-op fence litmus test in Section 3.3.1 and a __thread_fence_block() is

needed before the final if statement. The corrected code is:

if(tx < 32) sdata[tx] += sdata[tx + 32];

__thread_fence_block();

if(tx == 0)

for(int i=1;i<32;i++)

sdata[tx] += sdata[tx + i];

5.2 Graph Traversal

Recently Merrill et. al. developed a novel new graph traversal algorithm specifically for

NVIDIA GPUs [21]. As previously discussed, this algorithm exploits warp based scheduling

for performance gains; in particular, one technique used several times in this algorithm we

refer to as a warp vote. Generic code for this technique is given below:
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//All threads in a warp write to the same location.

array[warp_id] = thread_id;

//Only one thread should make it past the conditional.

if (array[warp_id] == thread_id)

//Do unsynchronized work w.r.t. other threads

//in the warp.

In this technique all the threads within a warp write to the same memory location;

however, due to warp-based scheduling all of the threads will attempt to write at once and

only one of the writes will succeed. All of the threads will progress to the conditional at

the same time, but only the thread whose write succeeded will get past the conditional.

In short, threads in a warp vote for themselves to do unsynchronized work, and only one

is elected, hence the name warp vote. Similar to the first example, the problem lies in

the assumption that shared memory writes are immediately visible to other threads in the

block. While the authors make note that the shared memory is declared volatile, we feel

that volatile is a historically confusing1 and an informal construct. Furthermore, the

C11 ISO standard maintains that volatile should be used only for hardware accesses,

not for thread communication2 [12]. Since CUDA is generally compiled with a C compiler

and given our formal modeling of GPU fences, we feel a more portable and robust solution

would be to place a thread fence block() between the memory write and conditional

which gives the correct code of:

array[warp_id] = thread_id;

__thread_fence_block();

if (array[warp_id] == thread_id)

//Do unsynchronized work w.r.t. other threads

//in the warp.

1The keyword volatile is substantially different in Java, C, and C#

2While the standard doesn’t exactly say this outright, it does not mention volatile at all in the context
of concurrency
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5.3 Software Memory Model

Finally, while the entirety of this work has been based on the hardware memory model,

we now briefly show an example motivating the need for a software memory model which

attempts to exploits warp based scheduling. Consider the following CUDA code:

/* x and y are allocated and initialized in the host code such that:

* x[i] = y[i] = i

* The kernel is launched with 1 block and 64 threads */

__global__ void kernel(int* x, int* y) {

int index = threadIdx.x;

y[index] = x[index] + y[index];

if (index != 63 && index != 31)

y[index+1] = 1111;

}

It is easy to see that under warp based scheduling there is no race as each thread accesses its

own data element with the line y[index] = x[index] + y[index]. The conditional then

weeds out the two threads at the warp edges and writes a flag value to location index+1.

This means we would expect to see the flag value 1111 everywhere but index 0 and 32

i.e. y = [0,1111, ..., 64, 1111, .... 1111, 1111]. However, when compiled with

regular nvcc with CUDA 4.2 we see the output: y = [0, 2, 4, 6, 8, ... 126] or

y[i] = 2*i. Furthermore we see this output consistently, which is uncharacteristic for a

race. To add to the confusion, when compiled with nvcc with CUDA 4.1 or with debug

symbols i.e. nvcc -g -G we get the expected output. Speaking with an industry expert

revealed that the nvcc compiler does not take into account warp-based scheduling and

expects race-free programs under warp size of one. In order to fix this code to show the

correct output, x and y could be labeled as volatile or either of the memory fences could

be inserted immediately after the y[index]=x[index]+y[index] instruction3. Like the

3Although from Section 5.2 it should be clear we prefer the memory fence fix.
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others, this program is similar to the No-op fence litmus test in Section 3.3.1 and the

corrected code is:

__global__ void kernel(int* x, int* y) {

int index = threadIdx.x;

y[index] = x[index] + y[index];

__thread_fence_block();

if (index != 63 && index != 31)

y[index+1] = 1111;

}

5.4 Detecting Memory Model Violations

While we do not have a tool that takes raw CUDA code as input and outputs memory

model analysis, we propose a way to isolate potential trouble areas in code. Because weak

memory model behaviors are invisible under well synchronized code, it is only when races

(with warp size being one) are present that programmers have to even think about the

memory model. The tool GKLEE [19] is a concolic executor for CUDA programs that has

the option to model warp size equal to one. GKLEE can be run to show any unsynchronized

areas in CUDA code that may need to be evaluated under the weak memory model. In

fact this method was used in finding the MAGMA example in Section 5.1.



CHAPTER 6

CONCLUSION

This GPU shared memory consistency model is currently being reviewed by industry

experts and is expected to grow and change based on feedback. This work provides a

set of litmus tests that not only test for classical shared memory consistency properties,

but also take into consideration the unique concurrency and memory systems of GPUs.

Using the results of the litmus tests, determined by industry feedback and documentation,

we provided a reasonable operational model. We implemented our model in the Murphi

modeling language and verified the properties proposed by the initial litmus tests. Finally

we have shown a need for a GPU memory model using real-world examples that make

assumptions about local instruction orderings and memory visibilites across threads. It

is our hope that this initial work will (1) educate developers that the GPU memory

model needs to be considered when writing unsynchronized GPU code and (2) motivate

conversation and developments in the area related to GPU memory models including robust

and portable development of fast non-blocking algorithms and verification of such code.

Future work includes an axiomatic model to compliment the operational model, a more

complete treatment of the PTX intermediate code, comparing the GPU and C11 memory

models, and a language-level model for CUDA compilation that is related to GPU hardware

memory models.
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