GPU Concurrency

Weak Behaviours and Programming Assumptions

Jade Alglave^{1,2}, Mark Batty³, Alastair F. Donaldson⁴, Ganesh Gopalakrishnan⁵, Jeroen Ketema⁴, Daniel Poetzl⁶, Tyler Sorensen^{2,5} and John Wickerson⁴

¹Microsoft Research Cambridge, ²University College London, ³University of Cambridge, ⁴Imperial College London, ⁵University of Utah, ⁶University of Oxford

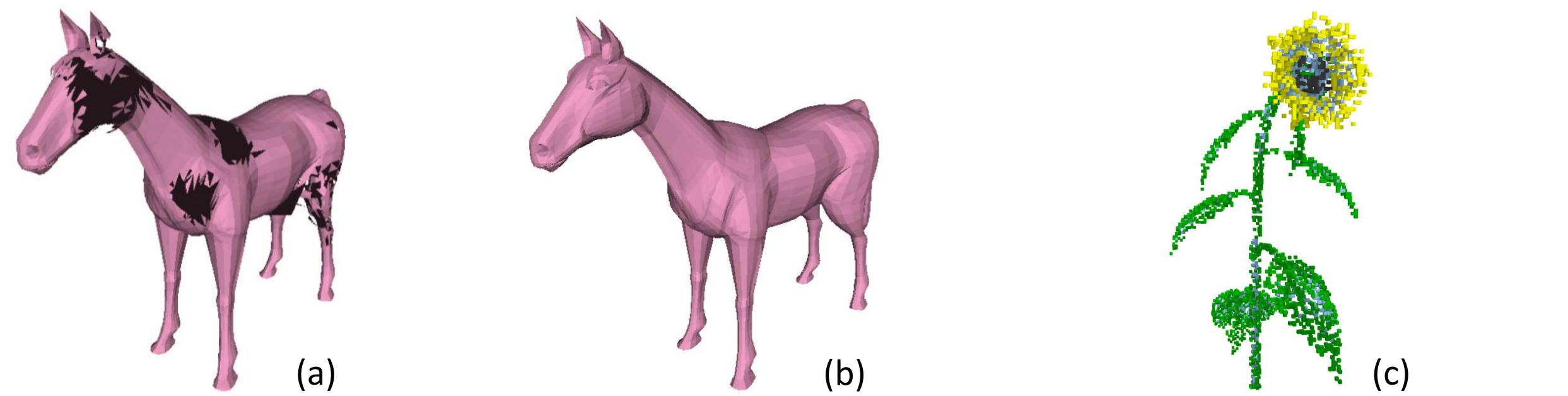
diy [1]

Motivation

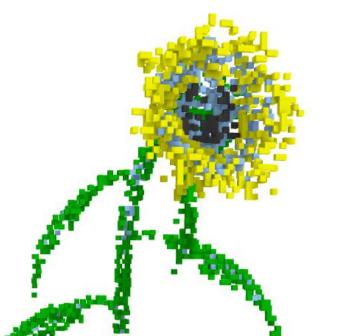
- Multicore systems (e.g. Nvidia GPUs) implement weak *memory models* [1]; i.e. executions that do not correspond to an interleaving of concurrent instructions are observable.
- Documentation for such behaviours is often sparse and written in prose, which is prone to misinterpretations and can lead to bugs in applications.

Methodology

generates systematic families of litmus tests


GPU additions

concurrency and memory hierarchies (e.g. scopes)


We explore which weak behaviours are experimentally observable on GPU chips; we compare our results to GPU applications containing synchronisation idioms. Finally, we give a formal GPU model which is sound w.r.t. our experimental data.

litmus [1]	generates and executes code of a litmus test	stresses the system to increase the likelihood of weak behaviours
herd [1]	simulates a formal model given as a cat file	cat file for Nvidia PTX
targets	ARM, IBM PowerPC, and Intel x86 CPUs	AMD and Nvidia GPUs

Examples of observed behaviours

(d)

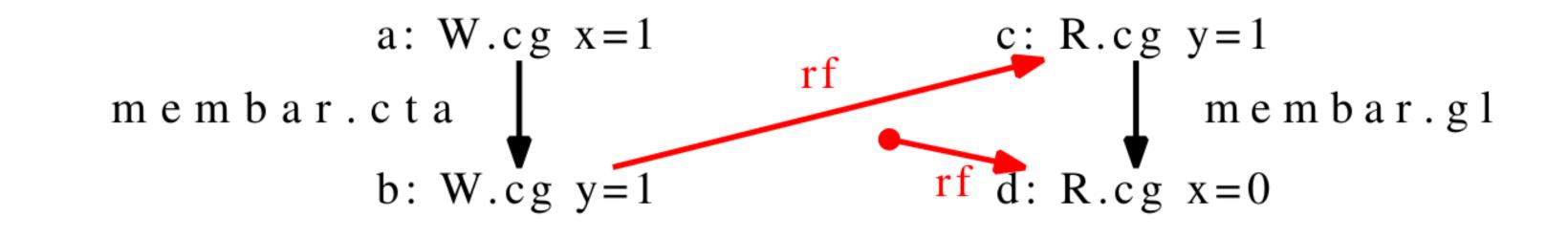
Pictures computed using an octree given in **GPU Computing** Gems: Jade Edition [2] on an Nvidia Tesla C2075. Errors in picture (a) are due to weak memory behaviours. Picture (b) is from code that has been experimentally fixed by us.

Formal model

We developed a formal model given as a cat file [1] for GPUs which is sound for over **10,000** litmus tests run on **5** Nvidia chips over **3** architectures (Fermi, Kepler, Maxwell)

> 'global x=0 **final:** r0=1 ∧ r2=0 threads: intra-CTA

Pictures computed using a hash table in **CUDA by Example** [3] on an Nvidia Tesla C2075. Errors in picture (c) are due to weak memory behaviours. Picture (d) is from code that has been experimentally fixed by us. *Led to an official Nvidia erratum* [4].


Supplementary material

Paper: GPU Concurrency: Weak Behaviours and Programming Assumptions Jade Alglave, Mark Batty, Alastair F. Donaldson, Ganesh Gopalakrishnan, Jeroen Ketema, Daniel Poetzl, Tyler Sorensen and John Wickerson. ASPLOS '15.

http://virginia.cs.ucl.ac.uk/sunflowers/asplos15

a	st.cg [x],1	c ld.cg r0,[y]
	membar.cta	membar.gl
b	st.cg [y],1	d ld.cg r2,[x]

init:

http://youtu.be/3-Y8xLsqywY Video:

Simulator: <u>http://virginia.cs.ucl.ac.uk/herd-web/?book=ptx</u>

References:

Data:

[1] J. Alglave, L. Maranget, and M. Tautschnig. Herding cats: Modelling, simulation, testing, and data mining for weak memory. TOPLAS '14 [2] Wen-mei W. Hwu. GPU Computing Gems Jade Edition. Morgan Kaufmann Publishers Inc., 2011

[3] J. Sanders and E. Kandrot. CUDA by Example: An Introduction to General-Purpose GPU Programming. Addison Wesley Professional, 2010

[4] <u>https://developer.nvidia.com/cuda-example-errata-page</u>

Support: EPSRC grants EP/{H005633, H008373, K008528, K011499, K039431}, EU FP7 project CARP (287767), NSF CCF Awards 1346756 and 1302449, and SRC project 2269.002