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Predicting File System Actions from Reference Patterns

Thomas M. Kroeger

Abstract

Most modern cache systems treat each access as an independent event. Events

in a computer system, however are driven by programs. Thus, accesses occur in distinct

sequences and are by no means random. The result is that modern caches ignore useful

information. In aUnix �le system, when the executable for the programmake is referenced,

it is likely that references to �les such as cc, as, and ld will soon follow. To successfully

track the �le reference patterns, a model must e�ciently handle the large number of distinct

�les, as well as the constant addition and removal of �les. To further complicate matters,

the permanent nature of a �le system requires that this model be able to run continuously,

forcing any realistic model to address issues of long-term model buildup and adapting to

changing patterns.

We have adapted a multi-order context modeling technique used in the data com-

pression method Prediction by Partial Match (PPM) to track �le reference patterns. We

then modi�ed this context modeling technique to e�ciently handle large numbers of distinct

�les, and to adapt to areas of local activity. From this model, we are able to determine

�le system accesses that have a high probability of occurring next. By prefetching the

data for these events, we have augmented a Least Recently Used (LRU) cache with a pre-

dictive prefetcher, creating a predictive cache that, in our simulations, averages 14% more

cache hits than an LRU without prefetching. We show that on average our four megabyte

predictive cache has a higher cache hit ratio than a 90 megabyte LRU cache.
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Chapter 1

Introduction

While the past few years have brought signi�cant gains in processor technology,

permanent storage devices have at best seen moderate increases in speed. The resulting

bottleneck from I/O system latency has inspired several researchers to re-evaluate how

caching is done [9, 20, 24, 6, 28, 13, 16].

The purpose of a cache is to reduce latency by using limited high speed storage to

bu�er data between a workload and a data resource (Fig. 1.1). The workload provides two

streams: I/O system requests and write data. It will expect request results and read data.

The data resource accepts I/O system requests and write data, while providing requests

results and read data. The cache �ts in between the workload and the data resource,

managing a pool of relatively faster storage to reduce the latency seen by the workload. To

manage these resources a cache system will make decisions about replacement, prefetching

and writing. The policies by which these decisions are made constitute the algorithm used

for caching. This thesis presents a method to track patterns within the request stream and

generate a probabilistic model for future requests. This model can be used to help make
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these decisions. We show how a prefetching policy might use this information.
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Figure 1.1: Cache System Model.

In an e�ort to improve I/O performance several researchers have taken the ap-

proach of adapting the workload to provide information about future requests [13, 24, 6].

With this informed model they present several methods for managing cache replacement

in conjunction with prefetching [13]. Since write behind policies can mask update latency,

their e�orts focus on evaluating prefetching and replacement together.

With the same goal of reducing I/O latency several other researchers have pursued

methods to determine future requests based on previous workload request patterns [9, 20,

28, 16]. While these predictive methods vary in their approach, they are all based on the

same idea: that previous action patterns provide indications for future references.

Informed and predictive caching techniques di�er in the following ways. Work

with informed methods has focused on the problem of how to best utilize caching resources

given near-perfect knowledge of future requests, while the work with predictive methods

focuses on how we can gain probabilistic knowledge of these future requests from previous

actions. Informed methods require modi�cation of the workload itself, making the program

designer's or compiler's task more complex, while predictive methods work without mod-
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ifying the workload. Finally, the class of I/O actions improved by informed prefetching

intersects the class of actions predictive prefetching improves, but both methods also have

unique situations where they will gain when the other cannot. In other words, there exist

situations where informed prefetching will bene�t and predictive prefetching will be inef-

fective, situations where the reverse is true, and situations where both methods will prove

e�ective. The bottom line is that these techniques are in no way mutually exclusive, and a

cache that combines both of these techniques should be able to get the best of both worlds.

Predictive prefetching methods are based on the hypothesis that previous reference

patterns o�er information about future references. The motivation for this hypothesis is

as follows. In a computer system, programs de�ne the sequence of actions, and while the

actions of a program may vary widely from one invocation to the next, in every case this

program has a �xed set of instructions that it must follow. In the common case, the program

executes the same sequence of instructions causing a similar set of I/O references and little

variation. Take, for example, the case of pine, a commonly used mail reader. Upon start-up

this program will look for a system-wide con�guration �le (e.g. /usr/local/pinerc) and

take actions based on that �le. For most systems, this �le rarely changes and actions based

on this �le will repeat every time a user invokes pine. Next, the program will attempt to

�nd a user speci�c con�guration �le and take actions based on it. Again, this �le rarely

changes. From this �le, pine may take actions speci�c to that user, such as reading the

user's mail aliases and signature �le. Finally, pine will sequentially read the user's mail

�le. As another example, consider the program building process. When a user executes

the program make, it will often result in references to the �les cc, as, and ld. If we note

a reference to the �le make and a speci�c Make�le then another sequence of references:
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program.c, program.h, stdio.h, : : : , is likely. These two examples illustrate how a �le

reference patterns can provide information about future references. Thus, a �le system

bu�er cache that tracks �le reference patterns and notes predictive sequences should be

able to exploit the information in such sequences, by determining likely references and

prefetching that data before it is requested.

We have developed such a predictive prefetching cache [16]. This cache is composed

of two parts: a model that tracks the �le reference patterns and a selector that uses this

information to prefetch data that is likely to be needed. Our model tracks previous �le

references patterns through a �nite multi-order context modeling technique adapted from

the data compression technique Prediction by Partial Match (PPM) [4]. We modi�ed this

model to e�ciently handle a large number of distinct �les and adapt to changing reference

patterns. Our selector examines the most recently seen patterns and the counts of the

events that have followed them to determine which events are likely.

Using these predictions, we augment an LRU cache by prefetching data that is

likely to be accessed. The result is a predictive prefetching caching algorithm that, in our

simulations, averaged hit ratios better than a non-prefetching LRU cache more than 20

times its size.

The rest of this thesis is organized as follows. Chapter 2 details how we adapted

PPM to model reference patterns and used to drive the prefetching. Chapter 3 presents

our initial simulations and results. Chapter 4 details how we modi�ed context modeling to

work within e�cient space constraints and to quickly adapt to changing reference patterns.

Chapters 5 and 6 discuss related and future work respectively. Chapter 7 concludes this

thesis.
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Chapter 2

Predictive Prefetching Method

This chapter presents the details of how we adapted data compression modeling

to model the request stream, and how this information was used to implement a predictive

prefetching cache. Using previous request patterns this cache prefetches probable future

accesses and hence improves I/O performance.

As in data compression, where a model drives a coder, our predictive cache can

be divided into two portions: a model that drives a selector. The model tracks reference

patterns and produces probability distributions for future events. The selector uses these

distributions to select which �les to prefetch. Figure 2.1 illustrates how these components

integrate into a I/O cache.

Our model tracks observed �le reference patterns through a �nite multi-order

context modeling technique adapted from Prediction by Partial Match (PPM) [4]. This

model uses a trie [15] to store �le reference patterns and the number of times they have

occurred.

To determine likely future references our selector compares the counts of the most



6

Writing

Cache Buffers

Request-Results High Speed 
Requests

Policies (Disk etc...)
Data Resource

Replacement
Prefetching

Request-Results

Write Data

Read Data

Read Data

Write Data

Prefetch

Requests

Event Stream
Model Selector

W
O

R
K

L
O

A
D

Cache Manager

Figure 2.1: Cache System with Predictive Prefetching.

recently seen patterns (the current contexts) to the counts of the reference events that have

previously followed these contexts. Using these predictions, we augment an LRU cache by

prefetching data that are likely to be referenced.

In the next section, we will provide a short background of context modeling from

the �eld of data compression. In x2.2 we explain how we adapted these context modeling

techniques to track �le reference patterns, x2.3 explains how the selector uses the information

tracked to improve cache performance, and x2.4 analyzes the limitations in adapting context

modeling to �le systems.

2.1 Context Modeling

Modeling previously seen event patterns to predict upcoming events is a problem

faced in many domains. In this work we intend to track �le access events to predict future
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accesses. In text compression we model characters in a text �le to determine the probability

distribution for the next character. In either case we can consider the events modeled as

symbols be they �le accesses or characters in a text �le.

In data compression, context modeling is a common technique that counts the

frequency of symbol patterns seen. By comparing the counts of patterns currently seen

with the counts the symbols that have previously followed these patterns, such models

provide a distribution of likelihood for the next symbol. A trie, a data structure based on

a tree, is often used to e�ciently store previously seen patterns and to maintain counts of

each pattern's frequency.

Just as a word in a sentence occurs in a context, a character in a string can be

considered to occur in a context. For example, in the string \object" the character \t" is

said to occur within the context \objec". In text compression a context is used to model

which characters are likely to be seen next, and thus determine which symbols should be

encoded with the least number of bits. For example, given that we have seen the context

\object" it may be likely that the next character will be a space, or possibly an \i," but

it is unlikely that the next character is an \h". Data is then compressed by encoding \i"

with fewer bits at the cost of having to encode an \h" with more bits.

The length of a context is termed its order. In the example string, \jec" would

be considered a third order context for \t". In fact we could describe the next character

as occurring under any of the following contexts, \t," \ct" \ect," \ject," \bject" and

\object." Techniques that track multiple contexts of varying orders are termedMulti-Order

Context Models [4]. To prevent the model from quickly growing beyond available resources,

most implementations of a multi-order context model limit the highest order tracked to
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some �nite number m; hence the term Finite Multi-Order Context Model.

At every point in a string, its current state can be modeled by the last seen contexts

(a set of order 0 through m). For example, take the input string \objec" and limit our

model to a third order (m = 3). The next character can now be described by four contexts

f�, \c," \ec," \jec"g. This set of contexts can be thought of as the current state or current

context of what we are modeling, be it a character input stream or an I/O system reference

pattern. With each new event or character, the set of new contexts that will model the

next state is generated by appending the newly seen item to the end of the contexts that

model the previous state. If f�, \c," \ec," \jec"g is our current context at time t, and at

time t + 1 we see the character \t," our new context is described by the set f�, \t," \ct,"

\ect"g.

The nature of a context model, where one set of contexts is built from the previous

set, makes it well suited for a trie [15]. A trie is a data structure based on a tree that is

used to e�ciently store sequences of symbols (e.g. storing sequences of letters from the

alphabet). Each node in this trie contains a symbol (e.g. a letter from the alphabet). By

listing the symbols contained on the path from the root to any individual node, we use

each node to represent a sequence of symbols (e.g. previously seen contents). The result is

that the children of every node, represent all the symbols that have been seen to follow the

sequence represented by the parent.

To do context modeling, we add to each node a count of the number of times that

pattern (or context) has been seen. Since the children of a node represent all of the symbols

that have previously followed that nodes's sequence, then the sum of their counts should

equal the count of that node. The one exception to this case is when the node represents
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a current context, in which case we have just seen this sequence and have not yet seen a

successor. In this case, the frequency count is equal to the sum of its children's counts

plus one. Therefore, we can use the formula countchild=(countparent � 1) to estimate the

likelihood of a child's symbol occurring as the next event.

2.2 Tracking File Reference Patterns

A predictive prefetching policy needs a model that tracks �le references to predict

which accesses are likely to occur next. For this purpose we have adapted �nite multi-order

context models to model �le reference patterns. By replacing letters from the alphabet

with unique �le identi�ers (e.g. inode numbers) each node in the trie contains a speci�c �le

identi�er. Through its path from the root, each node represents a sequence of �le references

that have been seen. These �le reference patterns are the contexts that we use to indicate

the state of our �le system. As before in each node we keep a count of the number of times

this pattern has occured.

To easily update this trie and use it to determine likely future events, we maintain

an array of pointers, indexed by context order, 0 through m, that indicate the nodes which

represent the current contexts (C0 through Cm). With each new event A, we examine the

children of each of the old Ck, searching for a child that represents the event A. If such a

child exists, then this pattern (the new Ck+1) has occurred before, and is represented by

this node's child, so we set the new Ck+1 to point to this child and increment its count.

If no such child is found, then this is the �rst time that this pattern has occurred, so we

create a child denoting the event A and set the k + 1st element of our array to point to

this node. Once we have updated each context in our set of current contexts, we have a
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new state that describes our �le system. Figure 2.2 extends an example from Bell [4] to

illustrate how this trie would develop when given the sequence of events CACBCAABCA.

The �rst three tries show how our model builds from the initial (empty) state. The last trie

shows how our model would look after the entire sequence. The current contexts at each

stage are indicated by the circled letters.
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Figure 2.2: Example tries for the sequence CACBCAABCA.

2.3 Selecting Events to Prefetch

Given the probability information maintained by the model, we present one pos-

sible method of using this information to improve cache performance, by prefetching data

that is likely to be needed. To select which data to prefetch we compare the likelihood
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estimate for each child of a current context to a prefetch threshold, which is a parameter of

the model.

To determine which �les should be prefetched, after each reference we compare

the counts of each new current context with the counts of their children. Using the formula

from x2.1 we estimate the likelihood of a reference to each child's �le. If the estimated

likelihood is greater than or equal to the prefetched threshold parameter, then the data

accessed for this event is prefetched into the cache. We evaluate each context 1 through m

independently, resulting in m sets of predictions.

The zero order context predicts based on frequency counts of each �le and thus,

would always cause prefetching of the most frequently accessed �les, making the predictive

cache become an LFU cache. Therefore, we have chosen to ignore the zero order predictions

for this study. The result is that since a zero order predictive model will do no prefetching,

a zero order predictive cache does not augment the the original LRU cache.

Additionally, for this study, we chose to treat prefetch data as if it had been

referenced by placing it at the front of our cache. Since cache replacement is still LRU, the

data is likely to remain in the cache for the next several events. So long as the event occurs

before its data is removed from the cache we avoid a cache miss.

2.4 Limitations of Context Modeling

Adapting the PPM model to a �le system reference stream brought out two impor-

tant di�erences between modeling text and �le system reference streams. These di�erences,

the number of symbols modeled and the length of stream, serve to emphasize the limitations

of model space requirements and adapting to changes in reference patterns.
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The set of symbols modeled, also called the alphabet, for a �le system is larger and

more dynamic than the alphabet for a text �le. The alphabet size of a text �le is simply

the number of characters in the encoding (e.g. 256 characters in ASCII) used for the text

�le. The number of �les in a common �le system is several orders of magnitude larger, and

the alphabet itself is constantly changing as �les are created and deleted.

The second di�erence is that the lifespan of a �le system, or the length of the

�le reference stream, cannot be predetermined. Therefore, an e�ective model must be able

to continue inde�nitely. While a text �le is normally of a set length, having a known

beginning and end, the stream of references in a �le system can continue over several years

of operation, and the end of this stream is not known until it arrives.

The �rst problem these di�erences cause is that of model space requirements. Since

each node in the trie can have a child for every member of the alphabet, the trie built under

the PPM model does not scale well to the increased alphabet size of a �le system. In fact,

the model size is O(am) where a is the alphabet size, and m is the maximum order modeled.

Additionally, since at each event we must scan all the children of each node in the current

context, the computational complexity of this model is O(am). While in our simulations

the model size was signi�cantly less than O(am), the unbounded stream length points out

that this model must be able to live inde�nitely, and over greater lengths of time the space

requirements would grow toward this bound.

The unbounded length of a �le system reference stream will also cause large counts

to build up over extended periods of modeling, making it di�cult for a model to learn new

predictive patterns. For example, when a programmer modi�es a speci�c Make�le the

references that follow an access to this Make�le can also change. Under the context model
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descried in this Chapter, if this Make�le has seen 100 references then (given a prefetch

threshold of 0.1)1 the new patterns from the modi�edMake�le would need to occur at least

11 times before they would be used. Also, data from the old reference patterns could be

incorrectly prefetched for an additional 900 references. Therefore, for a model to be e�ective

over extended durations it must adapt to changes in the each �le's predictive nature.

In Chapter 4 we show how we modify context modeling to address these issues.

Nevertheless, before we deal with the issues of model size and adapting, we must �rst

demonstrate that context modeling is e�ective in predicting �le references. To this end,

Chapter 3 details the results from our trace driven simulations of predictive caching based

on context modeling.

1Chapter 3 presents 0.1 as an e�ective setting for prefetch threshold
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Chapter 3

Simulations and Results

In order to test our hypothesis that reference patterns o�er useful information

about future events, we simulated the performance of a normal LRU cache without prefetch-

ing and the performance of a cache with predictive prefetching. The primary purpose of

our experiments was to investigate the e�ectiveness of using previous reference patterns to

drive cache prefetching. We used cache hit ratios as a measure of this e�ectiveness. As

a secondary objective we used these simulations to explore the additional load that would

result from this prefetching. Finally, we examined what settings of model parameters would

produce the best hit ratio and how sensitive our model is to variations in these parameters.

We found that using reference patterns to drive prefetching for a four megabyte

cache, resulted in a 15% higher hit ratio. Moreover, for an LRU cache to see the same hit

ratio, it would need 90 megabytes of RAM. Using these simulations to investigate model

parameters we found that, for the trace data used, the prefetch threshold is best set in the

range of 0.05{0.1, model order was best set at 2, and model performance was stable for any

reasonable variations in these parameters.
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3.1 Experimental Methodology

We used discrete event simulations to model the cache hit ratios of a normal LRU

cache and a LRU cache with predictive prefetching (called a predictive cache). Using �le

open events from the Sprite �le system traces [3] to generate a workload, we measured the

hit ratios of both caches and the number of �les prefetched by a predictive cache, across

variations in cache size, prefetch threshold and model order.

We developed a discrete event simulator that modeled the actions of an LRU cache,

using whole �le caching. We chose to consider whole �le caching for three reasons. First,

the primary purpose of our work is to avoid the latency of �le system accesses; if a whole �le

can be cached, this reduces the number of transactions with the I/O subsystem on behalf

of that �le, and in turn reduces the latency of our �le system. Secondly, whole �le caching

has been used e�ectively in several distributed �le systems [12, 14, 26]. Finally, in a mobile

environment the possibility of temporary disconnection and the availability of local storage

make whole �le caching desirable. The cache itself was divided into one kilobyte blocks.

We augmented this LRU simulation to model reference patterns and prefetch data

as described in Chapter 2. Our primary objective was to determine if reference patterns

can o�er information that indicates future references, so we chose to ignore the issues of

scheduling prefetching events and to model prefetching as an instantaneous event.

To simulate the workload of a �le system we used �le open events from the Sprite

�le system traces [3]. These traces represent the workload of a distributed �le system in

an academic research environment. We split these traces into eight 24-hour periods called

A through H, to provide eight separate reference streams. Table 3.1 shows the number of

unique �les and the total number of open events in each trace.
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We used cache hit ratio as a metric for initial comparison and to o�er some insight

into the latency reduction. To gain a more tangible appreciation for the signi�cance of

our increased hit ratio, we then determined how much additional RAM an LRU cache

would need to achieve the same performance increase. To measure the additional work

load incurred from predictive prefetching we measured the number of �les prefetched after

each reference. Using these metrics for comparison, we explored how variations in prefetch

threshold, model order and cache size e�ected cache performance.

3.1.1 Bounds on Performance

In order to better evaluate the improvement seen with predictive prefetching, we

present the following bound on the performance of an online predictive prefetching cache

h � 1 � (f=e), where h is the hit ratio of an online predictive prefetching cache, f is the

number of unique �les referenced, and e is the number of events seen in the trace. The basis

for this bound is as follows. Any online predictive prefetching cache must see at least one

reference to a �le before it can predict future references to that �le. Therefore, we bound

our model by knowing that it must miss at least once for each unique �le referenced in the

trace stream. The last row of table 3.1 shows this bound.

Table 3.1: Counts of �les and events for each trace and a bound on the hit ratio of a online
predictive prefetching cache.

Trace A B C D E F G H Ave.

Files 16310 45211 19376 24250 23259 40573 13061 21098 25392.3
Events 42923 288068 202482 175515 181972 257670 171017 325848 205686.8

Hit Ratio
Bound 62.0% 84.3% 90.4% 86.2% 87.2% 84.3% 92.4% 93.5% 85.0%
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3.2 Improvements Over LRU

Table 3.2 provides a direct comparison of both caches simulated at a size of four

megabytes. Our predictive cache prefetched at a threshold of 0.1 and modeled up to second

order events. These parameters were selected based on empirical tests that are detailed in

x3.3.

Table 3.3 shows what fraction of the bound each cache was able to achieve. From

these tables one can see that our predictive cache clearly o�ered signi�cant improvements

over the performance of LRU on all eight traces, averaging 15% more cache hits than an

LRU and achieving more than half of the possible improvement.

Table 3.2: Hit ratios for LRU and Predictive caches (cache size four megabytes, second
order model, threshold 0.1).

Trace A B C D E F G H Ave.

Bound 62.0% 84.3% 90.4% 86.2% 87.2% 84.3% 92.4% 93.5% 85.0%

Predictive 56.1% 74.6% 75.0% 73.2% 72.1% 70.0% 77.7% 79.8% 72.3%
LRU 48.5% 59.7% 59.8% 57.2% 54.9% 54.0% 58.4% 68.8% 57.7%

Increase 7.6% 14.9% 15.2% 16.0% 17.2% 16.0% 19.3% 11.0% 14.6%

Table 3.3: Fractions of Bound Achieved for LRU and Predictive caches (cache size four
megabytes, second order model, threshold 0.1).

Trace A B C D E F G H Ave.

Predictive 0.905 0.885 0.830 0.849 0.827 0.830 0.841 0.853 0.851
LRU 0.782 0.708 0.662 0.664 0.630 0.641 0.632 0.736 0.679

To investigate whether the bene�t from our predictive cache would quickly dimin-

ish as the size of our cache grew, we simulated an LRU cache and our predictive cache for

varying cache sizes up to 120 megabytes. Figure 3.1 shows how the average cache hit ratios

varied as we increased the cache size. This graph show that the performance gains from

prefetching based on previous reference patterns will not easily be overcome by increasing
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the size of an LRU cache. For example, on average it would require an LRU cache with

more than 90 megabytes of memory to match the performance of a 4 megabyte predictive

cache. It should also be noted that the bound presented in x3.1 is also a bound on the

hit ratio of an LRU cache as cache size increases. Therefore, the hit ratios for these two

algorithms will eventually converge as cache size is increased. However, from Figures 3.1

and 3.2 we can see that for any practical cache size a predictive cache will be much closer

to this bound.
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Figure 3.1: Average cache hit ratio versus cache size for both predictive cache and LRU
(cache sizes 1{120 megabytes). Figures 3.2 and 3.3 provided details by trace.

3.2.1 Number of Files Prefetched

To determine of the additional load placed on a �le system, we measured the

average number of �les prefetched per reference event. Figure 3.4 shows how the average

number of prefetches varied for settings of the probability threshold ranging from 0.001

to 0.25. This graph shows that for extremely low threshold settings, less than 0.025, the

number of �les prefetched quickly becomes prohibitive. However, for settings of 0.05 or
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Figure 3.2: Cache hit ratio versus cache size for traces A through D (2{120 megabytes,
second order predictive models, prefetch threshold 0.1).

greater, the average number of �les prefetched would not impose an excessive load. In fact,

for a probability threshold of 0.075 the average number of �les prefetched per open event

ranged from 0.21 to 1.10 �les.
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Figure 3.3: Cache hit ratio versus cache size for traces E through H (2{120 megabytes,
second order predictive models, prefetch threshold 0.1).

3.3 Parameter Settings

In this section we discuss how the parameters of prefetch threshold and model

order a�ected predictive cache performance. This investigation had two goals. First, we

intended to determine what values of each parameter would o�er the best performance.

Second, we wanted to examine the sensitivity of our model with respect to variations in

these parameters. A model whose performance changes signi�cantly with small variations
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Figure 3.4: Average number of �les prefetched per open event versus prefetch threshold
(cache size 4 megabyte, second order, threshold settings 0.001, 0.01, 0.025, 0.05, 0.075, 0.1
and 0.25).

in parameters is called parametrically instable. This stability is important because, if slight

variations in a parameter would cause signi�cant changes in performance, then it is quite

possible that for slightly di�erent workloads the best setting for these traces would have

signi�cantly di�erent results. In all cases the parameters appeared to be stable within

reasonable limits.

3.3.1 Prefetch Threshold

We found a prefetch threshold in the region of 0.05 to 0.1 o�ers the best hit ratios.

Figure 3.5 shows how our hit ratio varied as the threshold settings ranged from a probability

of 0.001 to 0.25. From Gri�oen and Appleton's work [9], we expected this setting to be

quite low. Even so, it is surprising that such an aggressive prefetch threshold produced the

best results. The fact that cache hit ratios increases as the threshold setting decreases to

0.1 indicates that on average a �le with a likelihood as small as 0.1 is more useful in the

cache than the data it would replace.



22

With regards to stability, for settings greater than 0.025, performance does not

change radically with minor variations. However, for settings below 0.025 we see a sharp

drop in performance as the result of prefetching too many �les, which pushes needed data

out of the cache. Thus, for the workload represented by these traces, we can say that this

algorithm is stable for settings of the probability threshold that are greater than 0.025.
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Figure 3.5: Cache hits versus prefetch threshold (cache size four megabytes, second order,
threshold settings 0.001, 0.01, 0.025, 0.05, 0.075, 0.1 and 0.25).

3.3.2 Maximum Order of the Model

To determine the bene�t gained from each order of modeling, we simulated models

of order ranging from zero through four. Since we ignore the predictions of the zero order

model, a zero order cache does not prefetch, and is thus equivalent to an LRU cache.

Figure 3.6 shows how performance varied over changes in model order. While we expected

to gain mostly from the �rst and second orders, the second order improved performance

more than we had expected, while fourth and higher orders appeared to o�er negligible

improvements. We hypothesize that the signi�cant increase from the second order model

comes from its ability to detect the combination of some frequently used �le (e.g. make or
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xinit) and a task-speci�c �le (e.g. Make�le or .xinitrc).
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Figure 3.6: Cache hit ratio versus model order (cache size four megabytes, prefetch threshold
0.1).

3.4 Interpretation of Results

From these simulations we have seen that prefetching based on reference patterns

can provide a signi�cant increase in cache hit ratio { an increase that, for a four megabyte

LRU cache, is equivalent to the addition of 86 megabytes of RAM. By measuring the number

of �les prefetched we have seen that the load imposed by this prefetching is reasonable.

Finally, since performance did not change radically with small variations in the prefetch

threshold and model order, we can conclude that this model is stable for the workloads

presented in the Sprite traces.
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Chapter 4

Partitioned Context Modeling

In adapting context modeling to track �le references, the di�erences in the nature

of the alphabet and the length of the symbol stream brought out the importance of model

space requirements and the ability to adapt to changes in predictive patterns. This chapter

details how we have addressed these issues by modifying the context modeling technique

presented in Chapter 2. This new technique, Partitioned Context Modeling, partitions the

trie based on �rst order nodes and then statically limits the size of each partition. We

adapted our predictive cache simulator to implement this new model and saw a minor loss

in cache hit ratio and a signi�cant reduction in model space requirements.

The amount of memory required by the context model is directly proportional to

the number of nodes in the trie. The traces evaluated in Chapter 3 generate 238,200 nodes,

on average. Since this implementation required 16 bytes per node, the memory required by

a second order model should be less than four megabytes. While this model takes almost

as much memory as the cache it models, we note that this additional four megabytes seems

negligible when compared to the additional 86 megabytes that would be required for a cache
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without prefetching to see equivalent performance. Nevertheless, this only represents the

model buildup that occurred over a 24 hour time span. Over longer periods of time this

model would increase in size.

Other predictive caching methods used virtual memory to page parts of this trie

to secondary storage, and have shown that this can be done without losing all performance

gains [28, 20]. However, e�ciently restricting the buildup of model size has not been ad-

dressed within the domain of predictive caching. Within the data compression community

e�ciently restricting the growth of the PPM model has been addressed in a limited man-

ner [21].

4.1 Improving Context Modeling with Partitions

In order to retain the predictive nature gained from each �le we have pursued

a model that retains all �rst order nodes and reduces space requirements by limiting the

number of descendants of each �rst order node. The result is that model space requirements

are reduced from O(am) to O(a). The model RAM requirements are then further reduced by

paging each partition with the object it represents. The result is that the RAM requirements

for a predictive cache become directly proportional to the cache size, while requiring O(a)

on disk.

Examining the trie built by the model in Chapter 2, we observe that the number

of �rst order nodes corresponds to the number of distinct �les that have been referenced.

In fact, each �rst order node represents a reference pattern of length one, consisting of

one reference to the �le represented by that node. Additionally, note that each �rst order

node and its descendants represent all previously seen reference patterns beginning with a
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reference to that �le. Since removing any �rst order node would lose all the information

associated with patterns that begin with the �le represented by that node, we have pursued

an approach to limit the model size by not purging any �rst order nodes but instead limiting

their descendants.

This approach divides the trie into partitions, where each partition consists of a

�rst order node and all of its descendants. The number of nodes in each partition is limited

to a static number that is a parameter of the model. The e�ect of these changes is to limit

the total model size to O(a), and the computational complexity to a constant. Figure 4.1

shows a modi�ed trie with these static partitions.

A (1)

Partition C

B (1)

C (1)B (1)

C (1)B (1)

A (4)

ROOT

B (2)

C (2)

A (2)

A (3)

A (1) C (1)

B (1)

C (1)

C (4)

Partition BPartition A

Figure 4.1: Example partitioned trie for the reference sequence CACBCAABCA.

Fixed-size partitions require modifying how references are handled. As each ref-

erence occurs counts are updated as before. However, when a new node is needed in a

partition that is full, the model must either clear space or ignore this reference. Currently,

when this situation occurs all node counts in the partition are divided by two (integer divi-

sion), then any nodes with a count of zero are cleared to make space for new nodes. If no

space becomes available, the reference is ignored. Additionally, when new reference patterns

occur they will cause node counts to be reduced, resulting in a bias towards more recent
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references, thus adapting to new reference patterns.

Another result of partitioning the trie in this manner is that the only partitions

actively being modi�ed are those whose �rst order node represents an object currently in

the cache. As a result, the RAM memory requirements of this model can be reduced even

further by paging the partition with the object that it represents, thus splitting the trie

into two parts: the inactive paged partitions and an active trie containing the partitions

of those �les currently in the cache. For example, in a Unix �le system one could make

the partition part of an extended i-node structure. Then as each �le is fetched from the

disk and cached in the disk bu�er cache its partition would also be read in and held in an

active trie. This active trie would hold the partitions for each �le in the cache, allowing the

predictive cache to update these partitions as references occurred. As each �le is ushed

from the cache its partition would also be ushed. The result, is that the model memory

requirements become directly proportional to number of blocks in the cache.

4.2 Simulating a Partitioned Model

To explore the performance of this partitioned model, we modi�ed our predictive

cache simulator to implement it. In this experiment our primary goal was to see how closely

the partitioned model approximates the behavior of a non-partitioned model. Our secondary

objective was to examine how variations in partition size e�ect model performance, in order

to determine the best setting and the model stability. We again used the Sprite traces to

simulate predictive cache performance for the same ranges of cache size used in Chapter 3

and partition sizes ranging from two to 64. We found that with a partition size of 16 our

partitioned model would closely approximate the behavior of an unpartitioned model while
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using far less memory.

Table 4.1 shows the hit ratio of the three caching algorithms, and how the parti-

tioned predictive cache compares to the other two methods. Figure 4.2 shows the average

cache hit ratio versus cache size for the three caching methods. Figures 4.5 and 4.4 show

the same comparison for each individual trace. Both predictive caches use a second order

model and a prefetch threshold of 0.1. Partition size is limited to 16 nodes. These graphs

and tables show how a partitioned model closely approximates the behavior of a full trie,

averaging a di�erence of less than one percent.
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Figure 4.2: Average cache hit ratio versus cache size (2{120 megabytes, second order pre-
dictive models, prefetch threshold 0.1).

Table 4.1: Hit ratios for LRU and both predictive caches (cache size 4 megabytes, second
order model, threshold 0.1).

Trace A B C D E F G H Ave.

Predictive 56.1% 74.6% 75.0% 73.2% 72.1% 70.0% 77.7% 79.8% 72.3%
Pred. - Part. 0.6% 0.5% 1.0% 0.5% 1.2% 1.0% 1.3% 0.8% 0.8%

Partitioned 55.5% 74.1% 74.0% 72.7% 70.9% 69.0% 76.4% 79.0% 71.5%

Part. - LRU 7.0% 14.4% 14.2% 15.5% 16.0% 15.0% 18.0% 10.2% 13.8%

LRU 48.5% 59.7% 59.8% 57.2% 54.9% 54.0% 58.4% 68.8% 57.7%

To select this partition size of 16, we examined the relationship between partition
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size and cache hit ratio and found that a partition size of 16 or greater will capture the large

majority of the predictive nature of a �le within the Sprite traces. Figure 4.2 shows the

cache hit ratio as compared to the partition size limit, (the partition size of 99 represents

the full context model presented in Chapter 3 and thus an unlimited partition size). This

static limit on the number of nodes in a partition means that we can treat each partition as

a complete self-contained structure of a �xed size, signi�cantly simplifying implementation.

Restricting the partition size to 16 nodes or less will also enable us to use four bit pointers

within a partition, so each node in a partition would require 11 bytes (�le identi�er, 8

bytes; counter, 2 bytes; pointer to �rst child and next sibling, 4 bits each), making the

entire structure 176 bytes in size. Using this structure to model a four kilobyte object

would impose an overhead of approximately 4.3%. More speci�cally, a four megabyte cache

of four kilobyte blocks would require an active trie that was 176 kilobytes in size.
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Figure 4.3: Partition size versus cache hit ratio (second order model, prefetch threshold 0.1,
cache size four megabytes).

With this partitioned model we have traded a slight reduction in prediction accu-

racy for signi�cant reductions in model space. In fact the maximum memory a partitioned



30

model requires is less than one twentieth of the non-partitioned context model's buildup

over a 24 hour trace. Additionally, over longer trace periods it is likely that the partitioned

model will increase its prediction accuracy by adapting to areas of local activity.
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Figure 4.4: Cache hit ratio versus cache size for traces A through D (2{120 megabytes,
second order predictive models, prefetch threshold 0.1, 16 node partitions).
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Figure 4.5: Cache hit ratio versus cache size for traces E through H (2{120 megabytes,
second order predictive models, prefetch threshold 0.1, 16 node partitions).
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Chapter 5

Related Work

While focusing on predictive caching, this work draws from several areas, ranging

from discrete event prediction in machine learning and data compression to I/O system

cache management and wide area network performance. In this section, we will attempt to

highlight the research that has inuenced our e�orts.

5.1 Predictive Caching

Caching and prefetching have long been important topics in operating systems.

However, using reference pattern predictions to combine these two techniques and improve

cache performance is a relatively new and promising area of research.

Vitter, Krishnan and Curewitz [27, 28] were the �rst to examine the use of com-

pression modeling techniques to track reference patterns and prefetch data. They prove

that for a Markov source such techniques converge to an optimal on-line algorithm, and go

on to test this work for memory access patterns [8] in an object-oriented database and a

CAD System. Model size is dealt with by paging portions of the model to secondary mem-
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ory. They also suggest that such methods could have great success within a variety of other

applications such as hyper-text. Our work di�ers in the following ways. The reference pat-

terns present in I/O systems represent an entirely di�erent workload than those of memory

accesses. We have addressed the issues of restricting model space and adapting to changing

patterns. Our selection method di�ers in that we select based on a probability threshold,

while they select the n most likely pages, where n is a parameter of their algorithm. Finally,

we have adapted PPM in a di�erent manner, without the use of vine pointers.

Within the domain of �le systems, Gri�oen and Appleton [9] have developed a

predictive model that for each �le accumulates frequency counts of the next n �les (where n

is a parameter of the algorithm). These frequency counts are then used to drive a prefetching

cache. Their prediction model di�ers from ours in that they only consider a �rst order model

and look at the next n events, while we consider multiple model orders and examine only

the event immediately following. Nevertheless, they �rst presented the method of prefetch

selection based on a probability threshold.

Lei and Duchamp [20] have pursued modifying a Unix �le system to monitor a

process's use of the system calls fork, execve, open, chdir and exit. Using this infor-

mation they build a tree that represents the access patterns of the process. Then as a

process executes, its current access tree is compared with previously observed trees. If a

match is found then the previous access tree is used to prefetch �les. Since a current access

tree must be compared with all those previously seen the computational complexity of this

model limits its ability to scale to a large �le system.

Laird and Saul [19] propose the use of Transition Directed Acyclic Graphs (TDAG)

to learn the patterns in which items are requested from mass-storage devices and enable
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cache memories to minimize latency. They develop simulations based on a mass-storage sys-

tem modi�ed to use TDAG. Using a synthetic user workload they show that such techniques

show great promise.

Kuenning, Popek, and Reiher [18] have done extensive work analyzing the behavior

of �le system requests for various mobile environments with the intent of developing a

prefetching system that would predict needed �les and cache them locally. Their work has

concluded that such a predictive caching system has promise to be e�ective for a wide variety

of environments. Kuenning et al. [17] have extended this work, developing the concept of

a semantic distance, and using this to determine groupings of �les that should be kept on

local disks for mobile computers. For mobile computing predictive caching has the potential

not only to reduce latency but also to enhance disconnected operation by learning about

relationships between �les and prefetching related groups.

5.2 World Wide Web Caching

With the exponential growth of tra�c and the large latencies that result from wide

area distribution, cache performance has become a critical issue in the World Wide Web.

With this understanding many researchers have looked for ways to improve current caching

techniques. Padmanabhan and Mogul [23] have pursued using the model of Gri�oen and

Appleton to track requests at the server and then provide prefetching hints for the client.

They show that reference patterns from a web server also o�er useful information to support

prefetching.

Bestavros et al. [5] have presented a model for the speculative dissemination of

World Wide Web data. This work again shows that reference patterns from a web server
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can be used as an e�ective source of information to drive prefetching. These e�orts have

shown the value of reference pattern modeling within the World Wide Web, and emphasize

the challenges that caching in the Web present. Current Web growth rates dictate that any

predictive model must scale well or it will quickly become obsolete. Nevertheless the issues

of model size and adapting to changing reference patterns are barely, if at all, addressed

by previous e�orts. Extending this work from the �le system domain to the World Wide

Web will provide an environment that will only increase the challenges posed by long term

model buildup and changing reference patterns.

5.3 I/O Systems with Application Hints

Several researchers are exploring methods for cache resource management given

application-provided hints. Patterson et al. [24] present an informed prefetching model

that applies cost-bene�t analysis to allocate resources. Cao et al. [6] examine caching

and prefetching in combination and present four rules for successfully combining the two

techniques and evaluates several prefetching algorithms to including an aggressive prefetch

algorithm. Kimbrel et al. [13] present an algorithm that has the advantages of both informed

prefetching and aggressive prefetch while avoiding their limitations.

While these methods o�er signi�cant improvements in latency and are of great

value to scienti�c applications that process large data �les in consistent patterns, they are

dependent on the applications ability to know its future actions. For example, cc would only

know which header �les it would need once it had read in the line #include program.h,

while our predictive model could notice that every access to program.c caused an access

to program.h. Further, an application-informed method would not be able to make use of
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relationships that exist across applications (e.g. make ) cc, ld).

5.4 Data Compression

E�orts in data compression strive to improve the computational complexity, adapt-

ability and accuracy of content modeling techniques. Mo�at et al. [21] addressed the model

size by periodically constricting a new model with the last 2048 events and then using it

to replace the current trie. More recently, Cleary et al. [7] have presented methods for

extending PPM to support unbounded context lengths. In test cases these contexts rarely

extended beyond a length of 10 characters. While this model improved accuracy and saw

a 6% increase in compression, it also signi�cantly increased computational complexity and

model size. Improvements detailed in Chapter 6{ speci�cally removing model order con-

straints and using the partition size limit to restrict model size and consequently model

order{ should enable this new model to exploit these higher order contexts, while reducing

the computational complexity and model size. Investigating the e�ectiveness of a parti-

tioned multi-order context model for text compression is one key area we have noted for

future work.

5.5 Summary

Our work o�ers several contributions that have not previously been explored. To

our knowledge this work is the �rst use of multi-order context models for �le systems, and

this is the �rst e�ort to address the issues of e�ciently restricting model size and adapting

to changing reference patterns. Nevertheless, the extensive amount of related work helps
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to make the point that there are many issues that still require further research.
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Chapter 6

Future Work

While this work has shown that �le system reference patterns provide valuable

information for caching, and that such information can be tracked within reasonable resource

constraints, we have also found many areas that o�er potential for further gain. This chapter

briey surveys some of the areas intended for future exploration.

While cache hit ratios o�er signi�cant insight into cache performance, a more

detailed simulation of I/O systems will o�er us the ability to better understand the e�ects

that predictive caching has on cache performance. The distributions for metrics such as

read-wait, cache hits, overwrite rate, computational overhead, throughput and increased

disk activity all require further investigation.

The partitioned model presented here is one successful method for e�ciently re-

stricting �nite multi-order context models. Other variations of this model still require fur-

ther exploration. Options such as using other metrics like recency to maintain partition size

and prefetch selection present one option for improvement. Another possible improvement

is partitioning the trie based on some set of nodes (representing a set of reference patterns)
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other than simply all the �rst order patterns. For example, one approach could be to select

some set of reference patterns and statically limit the number of nodes descended from the

nodes representing those patterns. A frequently accessed �les such as make could have

separate partition for its four most frequent children and then one partition for the rest.

Since this new model limits the number of descendants of any node, excluding

the root node, can we remove the limit on model order? Since the partition size will

constrain our model it can also serve as a limit on the maximum order modeled. This

change could signi�cantly increase the exibility of this model. It would allow partitions

to extend linearly (increasing in depth) for reference patterns that consistently repeated in

the same sequence, and laterally (increasing in breadth) for those reference patterns that

contained greater variation.

While the system presented here uses a model to prefetch �les, it still uses LRU

to determine which �les to expel from the cache when space is needed. It is quite possible

that these or similar models could be used to a�ect replacement policies as well.

Finally, the success of our partitioned context model for predicting �le system

events leads us to question how well such a predictive model would do for text compression.
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Chapter 7

Conclusions

This work o�ers the following new contributions. We have shown that well-known

context modeling techniques are e�ective in modeling the reference patterns of a �le system

to drive prefetching. We have also shown how such techniques can be improved to work in

reduced model space and adapt to changing reference patterns.

Our ability to e�ectively predict future events based on previous �le reference

patterns provides strong empirical evidence to support our original hypothesis: that there

exist consistent and exploitable relationships between �le references (e.g. make ) cc, ld

: : : ). Therefore, conventional caches, which ignore reference patterns, are failing to make

full use of the information available. Our simulations have shown that prefetching based on

previous �le reference patterns o�ers a performance increase that cannot be easily matched

by increasing the cache size.

We have also demonstrated that for any model to be realistic it must address

the issues of model space constraints and of adapting to changing reference patterns. By

partitioning the context model and limiting partition size, we have presented a method
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that addresses these issues. This partitioned model closely approximates the accuracy of

an unpartitioned context model, while working in linear space with respect to the alphabet

size, and constant run-time.

With the continued growth of processor speeds and new performance challenges

from the World Wide Web the performance bottle-neck presented by I/O will only increase.

By exploiting the highly related nature intrinsic to computer systems, methods such as

predictive caching enable a computer system to manage resources with more complete in-

formation, dramatically improving cache performance and reducing the I/O bottleneck.
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