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Logistics

Course notes (and references) are available from:

https://users.soe.ucsc.edu/~thanos

Many thanks to UCSC grad students:

Jizhou Kang

Hyotae Kim

Chunyi Zhao

Xiaotian Zheng

who will help with monitoring questions in the zoom chat.

(Xiaotian is presenting in Session C09; Jizhou, Hyotae and Chunyi are
presenting in Session C20)
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Course objectives

To provide an introduction to Bayesian nonparametric methods, with
emphasis on modeling approaches built from nonparametric mixtures.

Focus on ideas, methods, and modeling.

Examples drawn from density estimation, nonparametric regression,
dose-response modeling, and inference for point processes.

No previous experience with Bayesian nonparametrics is assumed.

We assume background on parametric Bayesian hierarchical modeling
and computing.
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Outline

1 Bayesian nonparametrics: introduction and motivation; overview of
nonparametric priors for spaces of random functions.

2 The Dirichlet process as a prior for random distributions: definitions;
properties; inference.

3 Dirichlet process mixture models: properties; posterior simulation;
applications.

4 Nonparametric priors for dependent distributions: Dependent
Dirichlet processes; hierarchical nonparametric prior models for finite
collections of distributions; spatial Dirichlet processes; applications.
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1. Bayesian Nonparametrics: Introduction and Motivation
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Parametric vs. nonparametric Bayes: a simple example

Let yi | G
i.i.d.∼ G , with G ∈ F∗,

F∗ = {N(y | µ, τ 2); µ ∈ R, τ ∈ R+}.

In this parametric specification a prior
on F∗ boils down to a prior on (µ, τ 2).

However, F∗ is tiny compared to

F = {all distributions on R}.

Nonparametric Bayes involves priors on
much larger subsets of F , in fact, gener-
ally on the entire space F .

Parametric vs. nonparametric Bayes:

finite-dimensional parameter space (e.g.,

two parameters for N(µ, τ 2)) vs. infinite-

dimensional space, {G(y) : y ∈ R}.
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Bayesian nonparametrics

Priors on spaces of functions, {g(·) : g ∈ G} (infinite-dimensional
spaces) vs usual parametric priors on Θ, where g(·) ≡ g(·; θ), θ ∈ Θ

In certain applications, we may seek more structure, e.g., monotone
regression functions or unimodal error densities.

Even though we focus on priors for distributions (priors for density or
distribution functions), the methods are more widely useful: hazard
or cumulative hazard functions, intensity functions, link functions,
spectral densities, covariance functions, ...

Wandering nonparametrically near a standard class.

More generally, enriching usual parametric models, typically leading
to semiparametric models.

Bayesian nonparametrics, an oxymoron? very different from classical
nonparametric estimation techniques.
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Bayesian vs. classical nonparametrics

Consider again estimation for a distribution on R.

Standard classical nonparametric estimates: histogram or empirical
distribution function

purely data-based estimates
no probability model for the underlying data-generating distribution
(nonparametric)
limitations in terms of uncertainty quantification for point estimates,
prediction, etc.

In contrast, Bayesian nonparametric methods build from probability
models for the unknown (random) distribution

the model for the distribution is not restricted to a parametric family
of distributions (nonparametric)
priors that support the entire space of distributions on R
advantages w.r.t. robust inference, uncertainty quantification, predic-
tion, etc., but with more demanding implementation.
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Bayesian vs. classical nonparametrics

Another example for a semiparametric model setting: linear regression
with unknown error distribution

continuous (real-valued) responses yi with covariate vector x i

yi = xT
i β + εi , εi

i.i.d.∼ G

where G is the error distribution.

Least-squares is a classical semiparametric estimation technique: it
provides estimates for the regression coefficients β without assuming
a probability model for the error distribution.

In contrast, a Bayesian semiparametric modeling approach would pro-
ceed with a parametric prior for β and a nonparametric prior for G ,
where now the space of interest involves all distributions on R with
zero mean (or median or mode).
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Bayesian nonparametrics

What objects are we modeling?

A frequent goal is means (Nonparametric Regression)

Usual approach: g(x ; θ) =
∑K

k=1 θkhk(x)
where {hk(x) : k = 1, ...,K} is a collection of basis functions (splines,
wavelets, Fourier series ...) → very large literature here
An alternative is to use process realizations, i.e., {g(x) : x ∈ X}, e.g.,
g(·) may be a realization from a Gaussian process over X .

Main focus: Modeling random distributions

Distributions can be over scalars, vectors, even over a stochastic
process (much more than c.d.f.s).
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Bayesian nonparametrics

Parametric modeling: based on parametric families of distributions
{G (· | θ) : θ ∈ Θ} → requires prior distributions over Θ.

Seek a richer class, i.e., {G : G ∈ G} → requires nonparametric prior
distributions over G.

How to choose G? how to specify the prior over G? → requires
specifying prior distributions for infinite-dimensional parameters.

What makes a nonparametric model “good”? (e.g., Ferguson, 1973)

The model should be tractable, i.e., it should be easily computed,
either analytically or through simulations.

The model should be rich, in the sense of having large support.

The hyperparameters in the model should be easily interpretable.
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Some references

Review papers on Bayesian nonparametrics:

Sinha & Dey (1997); Gelfand (1999); Walker, Damien, Laud & Smith
(1999); Müller & Quintana (2004); Hanson, Branscum & Johnson
(2005); Müller & Mitra (2013); Müller, Quintana & Page (2018).

Books/edited volumes:

Dey, Müller & Sinha (1998); Ghosh & Ramamoorthi (2003); Hjort,
Holmes, Müller & Walker (2010); Müller & Rodriguez (2013); Phadia
(2013); Mitra & Müller (2015); Müller, Quintana, Jara & Hanson
(2015); Ghosal & van der Vaart (2017).

Software:

The DPpackage in R (archived):
https://cran.r-project.org/web/packages/DPpackage/index.html

NIMBLE: https://r-nimble.org/
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Methods for construction of NPB models for distributions

The object is to define priors over spaces of distributions on a sample
space X ; say, X = R (although the space can be more general).

Methods for constructing nonparametric priors for distributions:

Random probability measures

Neutral to the right processes

Tailfree processes (Pólya tree priors)

Constructions through exchangeable sequences

Normalized random measures with independent increments

Countable representations for random discrete distributions

Nonparametric mixture models
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Constructing NPB priors through stochastic processes

A natural way to conceptualize a nonparametric prior is through a
stochastic process with sample paths that are distribution functions
or, more generally, distributions (probability measures) on the sample
space of interest, X .

Let X = R, and focus on space GF = {distribution functions F on R}.

Then, we can generate random distribution functions on R through
a stochastic process {F (ω, t) : ω ∈ Ω, t ∈ R}, with R for the index
set, and [0, 1] for the state space, such that

for any fixed ω ∈ Ω, Fω(·) ≡ F (ω, ·) : R → [0, 1] is a distribution
function on R (the sample paths are distribution functions)

for any fixed t ∈ R, Ft(·) ≡ F (·, t) : Ω→ [0, 1] is a random variable,
and for any fixed t1, ..., tk ∈ R, (Ft1 , ...,Ftk ) is a random vector.
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Constructing NPB priors through stochastic processes

A key example of the stochastic process approach for distribution
functions is the class of neutral to the right (NTTR) process priors
(Doksum, 1974; Ferguson and Phadia, 1979; Damien et al., 1995)

Usually applied to distribution functions on R+ (applications in survival
and reliability analysis).

Write the random distribution function as F (t) = 1 − exp(−Z(t)),
where Z = {Z(t) : t ∈ R+} is a NTTR Lévy process (here, we are
skipping ω from the notation for the sample paths).

By definition, a NTTR Lévy process Z has non-negative, independent
increments, and is, almost surely, non-decreasing, right continuous,
with limt→0 Z(t) = 0 and limt→∞ Z(t) = ∞ (the sample paths of Z
have at most countably many fixed points of discontinuity).

Since Z(t) = − log(1 − F (t)), in the context of survival analysis,
the prior for the distribution function is induced by a prior for the
cumulative hazard function.
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Constructing NPB priors through stochastic processes

Working with distribution functions for the stochastic process sample
paths is practical for distributions defined on (subsets of) R.

In full generality, we would like to define the prior as a stochastic
process with sample paths that are distributions on (X ,B).

Technical: B denotes the σ-field of measurable subsets of X (e.g., the
Borel σ-field for X ⊆ Rd).

Again, let X = R (although the sample space can now be much more
general), and now focus on space GQ = {distributions Q on R}.
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Constructing NPB priors through stochastic processes

Now, we seek to generate random distributions (random probability
measures) on R through a stochastic process {Q(ω,B) : ω ∈ Ω, B ∈ B},
with B for the index set, and [0, 1] for the state space, such that

for any fixed ω ∈ Ω, Qω(·) ≡ Q(ω, ·) : B → [0, 1] is a probability
measure (distribution) on R (the sample paths are distributions)

for any fixed B ∈ B, Q(B) : Ω → [0, 1] is a random variable, and
for any fixed B1, ...,Bk ∈ B, (Q(B1), ...,Q(Bk)) is a random vector
(switching to notation Q(B) for random variable QB).

To make the stochastic process approach for distributions operational,
we need finite dimensional distributions (f.d.d.s) for the random vector
(Q(B1), ...,Q(Bk)), which satisfy appropriate consistency conditions
for existence of the stochastic process.

f.d.d.s for collections of random probabilities? how about Dirichlet
f.d.d.s? → Dirichlet process!
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2. The Dirichlet Process
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The Dirichlet process as a model for random distributions

The Dirichlet process (DP), anticipated in the work of Freedman
(1963) and Fabius (1964), and formally developed by Ferguson (1973,
1974), is the first prior defined for spaces of distributions.

The original DP definition (Ferguson, 1973) involves a stochastic pro-
cess (random probability measure) that generates distributions (prob-
ability measures) on X , and thus, for X ⊆ Rd , it also generates
distribution functions on X .
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Consistency conditions

Defining the prior as a stochastic process with sample paths that are
distributions on a particular sample space X .

Consistency conditions for the finite dimensional distributions (f.d.d.s)
(see Ferguson, 1973, and Walker et al., 1999).

Let GQ be the space of probability measures (distributions) Q on
(X ,B). Consider a system of f.d.d.s for (Q(B1,1), ...,Q(Bm,k)) for
each finite collection B1,1, ...,Bm,k of pairwise disjoint sets in B. If:

Q(B) is a random variable taking values in [0, 1], for all B ∈ B;

Q(X ) = 1 almost surely; and

(Q(∪k
i=1B1,i ), ...,Q(∪k

i=1Bm,i )) and (
∑k

i=1 Q(B1,i ), ...,
∑k

i=1 Q(Bm,i ))
are equal in distribution

then, there exists a unique random probability measure (stochastic
process) on GQ with these f.d.d.s.
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Motivating the construction of the Dirichlet process

Consider a sample space with only two outcomes, X = {0, 1}, such
that defining a distribution on X requires only one probability, x .

A natural prior for x is the Beta distribution.

More generally, if X is finite with q elements, the distribution is given
by a probability vector, (x1, . . . , xq), i.e., xi ≥ 0 with

∑q
i=1 xi = 1.

Now, the natural prior for (x1, . . . , xq) is the Dirichlet distribution.

To handle uncountable spaces, such as X = R, consider finite col-
lections of (measurable) subsets of X , say, B1, ...,Bk , with the extra
structure that they form a partition of X .

The Dirichlet distribution is a natural candidate for the distribution of
the probability vector (Q(B1), ...,Q(Bk)).
But care is needed, a system of Dirichlet f.d.d.s must be consistent
with any other partition (any finite k and any collection (B1, ...,Bk)).
The Dirichlet distribution works with an appropriate choice for its
parameter vector (the key reason is an additivity property which arises
from the additivity of the gamma distribution).
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Definition/properties of the Dirichlet distribution

Start with independent random variables

Zj
ind.∼ gamma(aj , 1), j = 1, ..., k ,

with aj > 0.

Define

Yj =
Zj∑k
`=1 Z`

, j = 1, ..., k.

Then (Y1, ...,Yk) ∼ Dirichlet(a1, ..., ak).

This distribution is singular on Rk , since
∑k

j=1 Yj = 1.
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Definition/properties of the Dirichlet distribution

(Y1, ...,Yk−1) has density

Γ
(∑k

j=1 aj
)

∏k
j=1 Γ (aj)

(
1−

∑k−1

j=1
yj

)ak−1 k−1∏
j=1

y
aj−1
j .

Note that for k = 2, Dirichlet(a1, a2) ≡ Beta(a1, a2).

The moments of the Dirichlet distribution are:

E(Yj) =
aj∑k
`=1 a`

, E(Y 2
j ) =

aj(aj + 1)∑k
`=1 a`(1 +

∑k
`=1 a`)

,

E(YiYj) =
aiaj∑k

`=1 a`(1 +
∑k
`=1 a`)

, for i 6= j .

We can think about the Dirichlet as having two parameters:

g = {aj/(
∑k
`=1 a`) : j = 1, ..., k}, the mean vector.

α =
∑k
`=1 a`, a concentration parameter controlling its variance.
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Definition of the Dirichlet process

The DP is characterized by two parameters:

α → a positive scalar parameter;
Q0 → a specified probability measure (distribution) on (X ,B).

DEFINITION (Ferguson, 1973): The DP generates random proba-
bility measures (random distributions) Q on (X ,B) such that for any
finite measurable partition B1,...,Bk of X ,

(Q(B1), ...,Q(Bk)) ∼ Dirichlet(αQ0(B1), ..., αQ0(Bk)).

Here, Q(Bi ) (a random variable) and Q0(Bi ) (a constant) denote the
probability of set Bi under Q and Q0, respectively.
Also, the Bi , i = 1, ..., k, define a measurable partition if Bi ∈ B, they
are pairwise disjoint, and their union is X .

© Athanasios Kottas 2021 (thanos@soe.ucsc.edu) Applied Bayesian Nonparametric Mixture Modeling



Definition of the Dirichlet process

Regarding existence of the DP as a random probability measure, the
key property of the Dirichlet distribution is “additivity”, which results
from the additive property of the gamma distribution:

if Zr
ind.∼ gamma(ar , 1), r = 1, ...,N, then

∑N
r=1 Zr ∼ gamma(

∑N
r=1 ar , 1).

Additive property of the Dirichlet distribution:
if (Y1, ...,Yk) ∼ Dirichlet(a1, ..., ak), and m1, ...,mM are integers such
that 1 ≤ m1 < ... < mM = k , then the random vector

(
m1∑
i=1

Yi ,

m2∑
i=m1+1

Yi , ...,

mM∑
i=mM−1+1

Yi )

has a Dirichlet(
∑m1

i=1 ai ,
∑m2

i=m1+1 ai , ...,
∑mM

i=mM−1+1 ai ) distribution.

Using the additivity property of the Dirichlet distribution, the Kolmogorov
consistency conditions can be established for the f.d.d.s of (Q(B1), ...,Q(Bk))
in the DP definition (refer to Lemma 1 in Ferguson, 1973).

© Athanasios Kottas 2021 (thanos@soe.ucsc.edu) Applied Bayesian Nonparametric Mixture Modeling



Interpreting the parameters of the Dirichlet process

For any measurable subset B of X , we have from the definition that
Q(B) ∼ Beta(αQ0(B), αQ0(Bc)), and thus

E {Q(B)} = Q0(B), Var {Q(B)} =
Q0(B){1− Q0(B)}

α + 1

Q0 plays the role of the center of the DP (also referred to as baseline
probability measure, or baseline distribution).

α can be viewed as a precision parameter: for large α there is small
variability in DP realizations; the larger α is, the closer we expect a
realization Q from the process to be to Q0.
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Support of the Dirichlet process

The study of support requires a σ-field on the space of all distributions on X
→ one option: define Borel sets through the topology of weak convergence

Take X = R, such that GQ = {distributions Q on R}.
Def.: Qn → Q weakly as n→∞ if Qn((−∞, x])→ Q((−∞, x]) as n→∞,

for all x ∈ R such that Q({x}) = 0 (i.e., weak convergence for distributions

on R corresponds to convergence in distribution).

Ferguson (1973) shows that the support of the DP contains all probability
measures on (X ,B) that are absolutely continuous w.r.t. Q0.

If µ and λ are two probability measures on the same space Ω, λ is absolutely

continuous w.r.t. µ (notation, λ << µ) if-f λ(A) = 0 for any measurable

A ⊆ Ω such that µ(A) = 0.

Proposition 3 (Ferguson, 1973). Consider a DP on (X ,B) with base dis-

tribution Q0, and S a fixed distribution on (X ,B) with S << Q0. Then,

for any positive integer m, any measurable sets B1, ...,Bm, and any ε > 0,

P(|Q(Bi ) − S(Bi )| < ε, for i = 1, ...,m) > 0 (where P denotes the DP

random probability measure).

Practical implication: Q0 must have (at least) the same support with the

distributions modeled with the DP prior.
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Random c.d.f.s from the Dirichlet process

Analogous definition for the random distribution function G on
X ⊆ Rd generated from a DP with parameters α and G0, where
G0 is a specific distribution function on X .

For example, with X = R, B = (−∞, x ], x ∈ R, and Q(B) = G (x),

G (x) ∼ Beta(αG0(x), α{1− G0(x)}),

and thus

E {G (x)} = G0(x), Var {G (x)} =
G0(x){1− G0(x)}

α + 1
.

Notation: depending on the context, G will denote either the random
distribution (probability measure) or the random distribution function.

G ∼ DP(α,G0) will indicate that a DP prior is placed on G .
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Simulating c.d.f. realizations from a Dirichlet process

The definition can be used to simulate sample paths (which are dis-
tribution functions) from the DP – this is convenient when X ⊆ R.

Consider any grid of points x1 < x2 < ... < xk in X ⊆ R.

Then, the random vector

(G(x1),G(x2)− G(x1), ...,G(xk)− G(xk−1), 1− G(xk))

follows a Dirichlet distribution with parameter vector

(αG0(x1), α(G0(x2)− G0(x1)), ..., α(G0(xk)− G0(xk−1)), α(1− G0(xk)))

Hence, if (u1, u2, ..., uk) is a draw from this Dirichlet distribution,

then (u1, ...,
∑i

j=1 uj , ...,
∑k

j=1 uj) is a draw from the distribution of
(G (x1), ...,G (xi ), ...,G (xk)).

Example (Figure 2.1): X = (0, 1), G0(x) = x , x ∈ (0, 1) (Unif(0, 1)
centering distribution).

© Athanasios Kottas 2021 (thanos@soe.ucsc.edu) Applied Bayesian Nonparametric Mixture Modeling



Simulating c.d.f. realizations from a Dirichlet process
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Figure 2.1: C.d.f. realizations from a DP(α, G0 = Unif(0, 1)) for different α values. The solid black line corresponds to the baseline
uniform c.d.f., while the dashed colored lines represent multiple realizations.
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Further references on the Dirichlet process

Early work on study of theoretical properties of the DP; e.g., Kor-
war and Hollander (1973), James and Mosimann (1980), Hannum,
Hollander and Langberg (1981), Doss and Sellke (1982), Lo (1983).

The mean functional, µ(G ) =
∫
tdG (t), G ∼ DP(α,G0), has received

special attention.

It can be shown that if G0 has finite mean, then µ(G) is (almost surely)
finite. In this case, E(µ(G)) = µ(G0) =

∫
tdG0(t).

The distribution of µ(G) has been studied by Yamato (1984),
Cifarelli and Regazzini (1990), Diaconis and Kemperman (1996), and
Regazzini, Guglielmi and Di Nunno (2002).

An extensive review of the work on the DP up to 1990 can be found
in Ferguson, Phadia and Tiwari (1992).

Chapter 4 of Ghosal and van der Vaart (2017) provides a detailed
account of several properties of the Dirichlet process.
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Constructive definition of the DP

Due to Sethuraman and Tiwari (1982) and Sethuraman (1994).

Let {zr : r = 1, 2, ...} and {ϑ` : ` = 1, 2, ...} be independent
sequences of i.i.d. random variables

zr
i.i.d.∼ Beta(1, α), r = 1, 2, ....

ϑ`
i.i.d.∼ G0, ` = 1, 2, ....

Define ω1 = z1 and ω` = z`
∏`−1

r=1(1− zr ), for ` = 2, 3, ....

Then, a realization G from DP(α,G0) is (almost surely) of the form

G =
∞∑
`=1

ω` δϑ`

where δa denotes a point mass at a.
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Constructive definition of the DP

The DP generates distributions that have an (almost sure) represen-
tation as countable mixtures of point masses:

The locations ϑ` are i.i.d. draws from the base distribution.

The associated weights ω` are defined using a stick-breaking
construction.

This is not as restrictive as it might sound: Any distribution on Rd

can be approximated arbitrarily well using a countable mixture of point
masses.

The realizations we showed before already hinted at this fact.

Based on its constructive definition, it is evident that the DP generates
(almost surely) discrete distributions on X (this result was proved,
using different approaches, by Ferguson, 1973, and Blackwell, 1973).
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The stick-breaking construction

Start with a stick of length 1 (representing the total probability to be
distributed among the different atoms).

Draw a random z1 ∼ Beta(1, α), which defines the portion of the orig-
inal stick assigned to atom 1, so that ω1 = z1 → then, the remaining
part of the stick has length 1− z1.

Draw a random z2 ∼ Beta(1, α) (independently of z1), which de-
fines the portion of the remaining stick assigned to atom 2, therefore,
ω2 = z2(1 − z1) → now, the remaining part of the stick has length
(1− z2)(1− z1).

Continue ad infinitum ....
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The stick-breaking construction
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The stick-breaking construction

The random series
∑∞
`=1 ω` converges almost surely to 1:

note that
∑n
`=1 ω` = 1− Un, where Un =

∏n
r=1(1− zr )

using the independence of the zr , and their Beta(1, α) distribution,

E(Un) = E{
∏n

r=1
(1− zr )} =

∏n

r=1
E(1− zr ) = {α/(α + 1)}n

therefore, limn→∞ E(Un) = 0, i.e., {Un : n ≥ 1} converges to 0 in
mean of order 1, which implies that {Un : n ≥ 1} converges to 0 in
probability

moreover, {Un : n ≥ 1} is an (almost surely) decreasing sequence of
positive random variables, and thus its convergence in probability to
0 implies almost sure convergence to 0

therefore, the sequence of partial sums, {
∑n
`=1 ω` : n ≥ 1}, converges

almost surely to 1 as n → ∞, which, by definition, implies that the
random series

∑∞
`=1 ω` converges almost surely to 1.
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More on the constructive definition of the DP

The DP constructive definition yields another method to simulate
from DP priors — in fact, it provides (up to a truncation approxima-
tion) the entire distribution G , not just c.d.f. sample paths.

For example, a possible approximation is GJ =
J∑

j=1

pjδϑj , with pj = ωj

for j = 1, ..., J − 1, and pJ = 1−
∑J−1

j=1 ωj =
∏J−1

r=1 (1− zr ).

To specify J, a simple approach involves working with the expectation
for the partial sum of the stick-breaking weights:

E

 J∑
j=1

ωj

 = 1−
J∏

r=1

E(1− zr ) = 1−
J∏

r=1

α

α + 1
= 1−

(
α

α + 1

)J

Hence, J could be chosen such that {α/(α + 1)}J = ε, for small ε.
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More on the constructive definition of the DP
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Figure 2.2: Illustration for a DP with G0 = N(0, 1) and α = 20. In the left panel, the spiked lines are located at 1000 N(0, 1) draws
with heights given by the (truncated) stick-breaking weights. These spikes are then summed to generate one c.d.f. sample path. The right
panel shows 8 such sample paths indicated by the lighter jagged lines. The heavy smooth line indicates the N(0, 1) c.d.f.
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DP properties using the constructive definition

Mean functional. Consider X = R, and assume G ∼ DP(α,G0) such that

G0 has finite mean, i.e.,
∫
|x | dG0(x) <∞. Then, µ(G) =

∫
x dG(x) is an

(almost surely) finite r.v., and E(µ(G)) = µ(G0) =
∫
x dG0(x).

Let µ∗(G) =
∫
|x | dG(x). Then, using the DP constructive definition, G =∑∞

`=1 ω` δϑ` , and the monotone convergence theorem (MCT),

E(µ∗(G)) = E(
∑∞

`=1
ω` |ϑ`|) =

∑∞

`=1
E(ω` |ϑ`|) =

∑∞

`=1
E(ω`) E(|ϑ`|).

Now, E(|ϑ`|) is a finite constant that does not depend on ` (say, C), since

the ϑ` are i.i.d. G0, and G0 is assumed to have finite mean. Therefore,

E(µ∗(G)) = C
∑∞
`=1 E(ω`) = C <∞, using again MCT.

Since µ∗(G) is a positive valued r.v. with finite mean, we have that µ∗(G)

is finite almost surely, and thus µ(G) is absolutely convergent almost surely.

Now, µ(G) =
∫
x dG(x) =

∑∞
`=1 ω` ϑ` ≤ µ∗(G), with E(µ∗(G)) <∞, and

thus from the dominated convergence theorem (DCT)

E(µ(G)) =
∑∞

`=1
E(ω` ϑ`) =

∑∞

`=1
E(ω`) E(ϑ`) = µ(G0)

using MCT for the last equation.
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DP properties using the constructive definition

Analogously, we can obtain the prior expectation for the variance functional,

σ2(G) =
∫
x2 dG(x)− (

∫
x dG(x))2, and the prior variance for the mean

functional. For such results, we need G0 to have finite first and second

moments.

Consider X = R, and assume G ∼ DP(α,G0), with G0 = N(0, 1).

Using MCT and DCT, and the expression for E(ω2
`) (readily available

from the indepence of the beta r.v.s used to define the DP weights),
it can be shown that E(

∫
x2 dG(x)) = 1, and E{(

∫
x dG(x))2} =

1/(α + 1).

Therefore, E(σ2(G)) = α/(α + 1).

Similarly, Var(µ(G)) = 1/(α + 1).
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Generalizing the DP

Many random probability measures can be defined by means of a
stick-breaking construction → the zr are drawn independently from a
distribution on [0, 1].

For example, the Beta two-parameter process (Ishwaran & Zarepour,

2000) is defined by choosing zr
i.i.d.∼ Beta(a, b).

If zr
ind.∼ Beta(1− a, b + ra), for r = 1, 2, . . . and some a ∈ [0, 1) and

b ∈ (−a,∞) we obtain the two-parameter Poisson-Dirichlet process
(e.g., Pitman & Yor, 1997).

The general case, zr
i.i.d.∼ Beta(ar , br ) (Ishwaran & James, 2001).

The probit stick-breaking process: zr = Φ(xr ), where xr ∼ N(µ, σ2)
and Φ is the standard normal c.d.f. (Rodŕıguez & Dunson, 2011).
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Further extensions based on the DP constructive definition

The constructive definition of the DP has motivated several of its
extensions, including:

ε-DP (Muliere & Tardella, 1998), generalized DPs (Hjort, 2000); gen-
eral stick-breaking priors (Ishwaran & James, 2001).

Dependent DP priors (MacEachern, 1999, 2000).

Hierarchical DPs (Tomlinson & Escobar, 1999; Teh et al., 2006).

Spatial DP models (Gelfand, Kottas & MacEachern, 2005; Kottas,
Duan & Gelfand, 2008; Duan, Guindani & Gelfand, 2007).

Nested DPs (Rodriguez, Dunson & Gelfand, 2008).
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Pólya urn characterization of the DP

If, for i = 1, ..., n, Xi | G are i.i.d. from G , and G ∼ DP(α,G0), the
joint distribution for the Xi , induced by marginalizing G over its DP
prior, is given by

p(x1, ..., xn) = G0(x1)
n∏

i=2

 α

α + i − 1
G0(xi ) +

1

α + i − 1

i−1∑
j=1

δxj (xi )


That is, the sequence of the Xi follows a generalized Pólya urn scheme
such that:

X1 ∼ G0, and

for any i = 2, ..., n, Xi | X1 = x1, ...,Xi−1 = xi−1 follows a distribution
that places point mass (α+ i − 1)−1 at xj , for j = 1, ..., i − 1, and the
remaining mass α(α + i − 1)−1 on G0.
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Pólya urn characterization of the DP

The forward direction described above (i.e., starting with the DP prior
for G ) is readily established using results from Ferguson (1973).

Blackwell and MacQueen (1973) proved the other direction, thus,
characterizing the DP as the de Finetti measure for Pólya sequences.

A sequence of r.v.s, {Xn : n ≥ 1}, (w.l.o.g. on R) is a Pólya sequence
with parameters G0 (a distribution on R) and α (a positive scalar
parameter) if for any measurable B ⊂ R, Pr(X1 ∈ B) = G0(B),
and Pr(Xn+1 ∈ B | X1, ...,Xn) = (α + n)−1{αG0(B) +

∑n
i=1 δXi (B)}

(where δXi (B) = 1 if Xi ∈ B, and δXi (B) = 0 otherwise).

If {Xn : n ≥ 1} is a Pólya sequence with parameters α and G0, then:

(α+ n)−1{αG0 +
∑n

i=1 δXi } converges almost surely (as n→∞) to a
discrete distribution G
G ∼ DP(α,G0)
X1,X2, ... | G are independently distributed according to G .
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The Chinese restaurant process

The Pólya urn characterization of the DP can be visualized using the
Chinese restaurant analogy:

A customer arriving at the restaurant joins a table that already has
some customers, with probability proportional to the number of people
in the table, or takes the first seat at a new table with probability
proportional to α.

All customers sitting in the same table share a dish.
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Exchangeability and Nonparametric Bayes

de Finetti’s representation theorem provides an interesting connection be-

tween exchangeability and nonparametric priors on spaces of distributions.

Below is an overview focusing on distributions on X = R.

Def.: Random variables X1, ...,Xn are (finitely) exchangeable if their joint

distribution is invariant to permutations of the r.v. indexes, i.e., p(x1, ..., xn) =

p(xπ(1), ..., xπ(n)), for any permutation π of {1, ..., n}. A countable collec-

tion of r.v.s is (infinitely) exchangeable if the condition above holds true for

every finite subset of its r.v.s.

Representation theorem for binary r.v.s. Consider an exchangeable se-
quence of binary 0/1 r.v.s {Xi : i = 1, 2, ...}. Then, there exists a distribu-
tion (c.d.f.) G on (0, 1) such that for any n and any (x1, ..., xn):

p(x1, ..., xn) =

∫ 1

0

{
n∏

i=1

θxi (1− θ)1−xi

}
dG(θ)

Hence, for any n, the joint distribution of X1, ...,Xn can be obtained
by generating a probability θ from distribution G , and then taking

X1, ...,Xn | θ
i.i.d.∼ Bernoulli(θ).
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Exchangeability and Nonparametric Bayes

de Finetti’s representation theorem. Consider an exchangeable sequence
of R-valued r.v.s {Xi : i = 1, 2, ...} with joint distribution P. Then, there
exists a random probability measure P on the space of distributions on R
such that for any n and any (measurable) sets (B1, ...,Bn):

P(X1 ∈ B1, ...,Xn ∈ Bn) =

∫ { n∏
i=1

G(Bi )

}
dP(G)

Hence, for any n, the joint distribution of X1, ...,Xn can be obtained

by selecting G ∼ P, and then taking X1, ...,Xn | G
i.i.d.∼ G .

P is the de Finetti measure for the exchangeable sequence. Given the
joint distribution of the Xi , the de Finetti measure is unique.

The generalized Pólya sequence

X1 ∼ G0, Xn+1 | X1, ...,Xn ∼
αG0 +

∑n
i=1 δXi

α + n

can be verified to be exchangeable. Therefore, the DP(α,G0) is the de

Finetti measure for this exchangeable sequence.
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Prior to posterior updating with DP priors

The DP is a conjugate prior under i.i.d. sampling.

Assume data yi | G
i.i.d.∼ G , for i = 1, ..., n, and G ∼ DP(α,G0).

Then, the posterior distribution of G is the DP(α̃, G̃0), where

α̃ = α + n, G̃0 =
αG0 +

∑n
i=1 δyi

α + n

(Theorem 1, Ferguson (1973))

For X = R, the c.d.f. associated with G̃0 is

G̃0(y) =
α

α + n
G0(y) +

1

α + n

n∑
i=1

1[yi ,∞)(y)

All the results and properties developed for DPs can be used directly
for the posterior distribution of G .
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Prior to posterior updating with DP priors

Sketch of the proof for X = R.

Discretize the space through fixed grid x1 < ... < xK (K can be arbitrarily large).

The random c.d.f. G is represented (approximated) by parameter vector (G(x1), ...,G(xK )).

Equivalently, the random distribution G is represented in terms of its probabilities on

sets B0 = (−∞, x1], Bk−1 = (xk−1, xk ], for k = 2, ...,K , BK = (xK ,∞).

From the DP definition, (G(x1),G(x2)− G(x1), ...,G(xK )− G(xK−1), 1− G(xK )) ∼
Dirichlet(αG0(x1), α(G0(x2)−G0(x1)), ..., α(G0(xK )−G0(xK−1)), α(1−G0(xK ))).

Consider n = 1. Then, the “likelihood” for the single observation y is multinomial, so
up to proportionality constant:

(G(x1))δy (B0) (G(x2)−G(x1))δy (B1)
... (G(xK )−G(xK−1))δy (BK−1) (1−G(xK ))δy (BK )

where δy (Bk ) = 1 if y ∈ Bk (and δy (Bk ) = 0, otherwise), for k = 0, 1, ...,K .

Therefore, the posterior distribution for (G(x1),G(x2)−G(x1), ...,G(xK )−G(xK−1), 1−
G(xK )) is Dirichlet with updated parameters (αG0(x1) +δy (B0), α(G0(x2)−G0(x1)) +

δy (B1), ..., α(G0(xK )− G0(xK−1)) + δy (BK−1), α(1− G0(xK )) + δy (BK )).

Using the DP definition through its Dirichlet f.d.d.s, we conclude that G | y follows a

DP with updated finite measure αG0 +δy , equivalently, with precision parameter α+ 1

and centering distribution α(α + 1)−1G0 + (α + 1)−1δy .

The result can be extended to any n by induction.
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Prior to posterior updating with DP priors

For X = R, the posterior mean estimate for the random c.d.f. at any
point y , G (y), is given by:

E {G (y) | y1, ..., yn} =
α

α + n
G0(y) +

n

α + n
Gn(y)

where Gn(y) = n−1
∑n

i=1 1[yi ,∞)(y) is the empirical distribution func-
tion of the data (the standard classical nonparametric estimator).

For small α relative to n, little weight is placed on the prior guess G0.

For large α relative to n, little weight is placed on the data.

Hence, α can be viewed as a measure of faith in the prior guess G0

measured in units of number of observations (thus, α = 1 indicates
strength of belief in G0 worth one observation).

However, taking α very small does not correspond to a “noninforma-
tive” DP prior specification; recall that α controls both the variance
and the extent of discreteness for the DP prior.
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Prior to posterior updating with DP priors

How about posterior variability?

For any measurable set B, the posterior mean for G (B)

G̃0(B) = E {G (B) | y1, ..., yn} =
αG0(B) +

∑n
i=1 δyi (B)

α + n

and the posterior variance

Var {G (B) | y1, ..., yn} =
G̃0(B)(1− G̃0(B))

1 + α + n
≤ 1

4(1 + α + n)

as n→∞, the posterior distribution for the random probability G(B)
contracts to its mean.
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C.d.f. estimation using DP priors
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Figure 2.3: Estimating the distribution function under a DP prior, using simulated data. Both the true distribution generating the data
and the baseline distribution are Gaussian. The left panel corresponds to a sample of n = 10 observations while the right panel
corresponds to a sample of n = 50 observations.
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The DP prediction rule (Pólya urn scheme)

Having obtained the posterior distribution for G , it’s easy to derive the

generalized Pólya urn scheme through the posterior predictive distribution.

Start with Xi | G
i.i.d.∼ G , for i = 1, ..., n, and G ∼ DP(α,G0).

What is the distribution of Xn+1 given X1, ...,Xn? In the context of
Bayesian inference, this is the posterior predictive distribution (so,
X1, ...,Xn represent the r.v.s for the observables in the sample).

For any measurable set B,

p(Xn+1 ∈ B,G | X1, ...,Xn) = G(B) p(G | X1, ...,Xn)

and therefore marginalizing G over its posterior distribution

Pr(Xn+1 ∈ B | X1, ...,Xn) = E(G(B) | X1, ...,Xn) =
αG0(B) +

∑n
i=1 δXi (B)

α + n

This is the generalized Pólya conditional distribution, for any n ≥ 1.

For the first member of the sequence, note that X | G ∼ G and G ∼
DP(α,G0) implies the marginal Pr(X ∈ B) =

∫
Pr(X ∈ B | G) dP(G) =∫

G(B) dP(G) = E(G(B)) = G0(B).
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Connection with the Bayesian Bootstrap

Consider data = {y1, ..., yn} assumed to arise (conditionally) i.i.d. from

distribution G (say, on R).

Bootstrap (Efron, 1979): G ≈ n−1∑n
i=1 δyi , the empirical distribution

one bootstrap replication is a simple random sample of size n obtained
with replacement from {y1, ..., yn}
for any distribution functional h → compute ĥ, the bootstrap draw
based on the bootstrap sample → develop the bootstrap distribution
for h by sampling (independently) multiple ĥ values.

Bayesian Bootstrap (BB) (Rubin, 1981): same idea but with weighted re-

sampling from the data→ replace the empirical distribution with
∑n

i=1 wiδyi ,

where (w1, ...,wn) ∼ Dirichlet(1, ..., 1).

DP-based model: yi | G
i.i.d.∼ G , for i = 1, ..., n, with G ∼ DP(α,G0)

The weak limit of the posterior distribution DP(α̃, G̃0), as α → 0,
is a DP centered on the finite measure

∑n
i=1 δyi (so, the precision

parameter is n and the centering distribution is n−1∑n
i=1 δyi ) → the

distributions it generates are supported on the data points {y1, ..., yn}
→ this is essentially the BB distribution

∑n
i=1 wiδyi
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Some of the early references on inference under DP priors

Construction of confidence bands for the c.d.f. and interval estimates
for the associated mean and quantiles (Breth, 1978, 1979).

Inference for the survival function based on right censored data (Susarla
and van Ryzin, 1976, 1978; Blum and Susarla, 1977) and on grouped
data (Johnson and Christensen, 1986).

Semiparametric survival regression through the accelerated failure time
model (Christensen and Johnson, 1988; Johnson and Christensen,
1989). Inference scope extended through posterior simulation (Kuo
and Smith, 1992).

Variants of the DP can be found in Doss (1985a,b) and Newton,
Czado and Chappell (1996), including applications to median
estimation and binary regression, respectively.
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Mixtures of Dirichlet processes

A random distribution G follows a mixture of Dirichlet processes
(MDP) (Antoniak, 1974) if it arises from a DP, but now conditionally
on random DP prior parameters (random α and/or G0).

The MDP structure extends the DP to a hierarchical setting:

G | α,ψ ∼ DP(α,G0(· | ψ)),

where (parametric) priors are added to the precision parameter α
and/or the parameters of the centering distribution, ψ.

Mixtures of Dirichlet processes are different from Dirichlet process
mixture models, f (· | G ) =

∫
k(· | θ) dG (θ), where k is a parametric

kernel density, and G ∼ DP(α,G0).

However, there are important connections: the posterior distribution
for G follows the MDP structure (Antoniak, 1974).
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Inference for discrete distributions using MDP priors

The MDP can be used as a prior model for discrete distributions F .

As an example, consider a discrete distribution with support on {0, 1, 2, ...},
with observed count responses, data = {yi : i = 1, ..., n}.

MDP prior model with Poisson centering distribution:

yi | F
i.i.d.∼ F , i = 1, ..., n

F | α, λ ∼ DP(α,F0(·) = Poisson(· | λ))
α, λ ∼ π(α)π(λ)

Using results from Antoniak (1974), the joint posterior distribution
for F and (α, λ) can be developed through a DP for the conditional
posterior of F given (α, λ), and the marginal posterior for (α, λ).

Hence, the marginal posterior distribution for F follows the MDP
structure, and thus, the MDP is also a conjugate prior.
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Inference for discrete distributions using MDP priors

Joint posterior: p(F , α, λ | data) = p(α, λ | data)p(F | α, λ, data)
∝ π(α)π(λ)L(α, λ; data)p(F | α, λ, data)

Conditional posterior: p(F | α, λ, data) = DP(α + n, F̃0), where

F̃0(y) =
α

α + n
F0(y | λ) +

1

α + n

n∑
i=1

1[yi ,∞)(y)

Marginal likelihood (expression specific to DP priors with discrete F0):

L(α, λ; data) ∝ αn∗

α(n)

n∗∏
j=1

f0(y∗j | λ){αf0(y∗j | λ) + 1}(nj−1)

f0(· | λ) is the p.m.f. of F0(· | λ)
n∗ is the number of distinct values in (y1, ..., yn)
{y∗j : j = 1, ..., n∗} are the distinct values in (y1, ..., yn)
nj = |{i : yi = y∗j }|, for j = 1, ..., n∗

notation: z (m) = z(z + 1)× ...× (z +m−1), for m > 0, with z (0) = 1
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Inference for discrete distributions using MDP priors

Posterior simulation from p(F , α, λ | data) through:
MCMC sampling from p(α, λ | data) ∝ π(α)π(λ)L(α, λ; data); and
simulation from p(F | α, λ, data), using any of the DP definitions.

Posterior predictive distribution:

Pr(Y = y | data) = E{Pr(Y = y | F ) | data}, y = 0, 1, 2, ...

for y ≥ 1, E{Pr(Y = y | F ) | data} = E{F (y)− F (y − 1) | data}
E{Pr(Y = 0 | F ) | data} = E{F (1) − Pr(Y = 1 | F ) | data} =
E{F (1) | data} − Pr(Y = 1 | data)

For any y , the posterior distribution for the random c.d.f. at y , F (y),
can be sampled using the DP definition:

p(F (y) | data) =

∫∫
p(F (y) | α, λ, data)p(α, λ | data) dαdλ

where p(F (y) | α, λ, data) is a Beta distribution with parameters
(α + n)F̃0(y) and (α + n)(1− F̃0(y)).
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Semiparametric regression for categorical responses

Application of DP-based modeling to semiparametric regression with
categorical responses.

Categorical responses yi , i = 1, ...,N (e.g., counts or proportions).

Covariate vector x i for the i-th response, comprising either categorical
predictors or quantitative predictors with a finite set of possible values.

K ≤ N predictor profiles (cells), where each cell k (k = 1, ...,K ) is a
combination of observed predictor values.

k(i) denotes the cell corresponding to the i-th response.

Assume that all responses in a cell are exchangeable with distribution
Fk , k = 1, ...,K .
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Semiparametric regression for categorical responses

Product of mixtures of Dirichlet processes prior (Cifarelli and Regazz-
ini, 1978) for the cell-specific random distributions Fk , k = 1, ...,K :

conditionally on hyperparameters αk and θk , the Fk are assigned inde-
pendent DP(αk ,F0k(· | θk)) priors, where, in general, θk = (θ1k , ..., θDk)

the Fk are related by modeling the αk (k = 1, ...,K) and/or the θdk
(k = 1, ...,K ; d = 1, ...,D) as linear combinations of the predictors
(through specified link functions hd , d = 0, 1, ...,D)

h0(αk) = xT
k γ, k = 1, ...,K

hd(θdk) = xT
k βd , k = 1, ...,K ; d = 1, ...,D

(parametric) priors for the vectors of regression coefficients γ and βd

DP-based prior model that induces dependence in the finite collection
of distributions {F1, ...,FK}, though a weaker type of dependence than
dependent DP priors (MacEachern, 2000).
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Semiparametric regression for categorical responses

Semiparametric structure centered around a parametric backbone
defined by the F0k(· | θk) → useful interpretation and connections
with parametric regression models.

Example: regression model for counts (Carota and Parmigiani, 2002)

yi | {F1, ...,FK} ∼
N∏
i=1

Fk(i)(yi )

Fk | αk , θk
ind.∼ DP(αk ,Poisson(· | θk)), k = 1, ...,K

log(αk) = xT
k γ log(θk) = xT

k β, k = 1, ...,K

with priors for β and γ

Related work for: change-point problems (Mira and Petrone, 1996);
dose-response modeling for toxicology data (Dominici and Parmigiani,
2001); variable selection in survival analysis (Giudici, Mezzetti and
Muliere, 2003).
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Dose-response modeling with Dirichlet process priors

Quantal bioassay problem: study potency of a stimulus by admin-
istering it at k dose levels to a number of subjects at each level.

xi : dose levels (with x1 < x2 < ... < xk).
ni : number of subjects at dose level i .
yi : number of positive responses at dose level i .

F (x) = Pr(positive response at dose level x) (i.e., the potency of
level x of the stimulus).

F is referred to as the potency curve, or dose-response curve, or
tolerance distribution.

Standard assumption in bioassay settings: the probability of a positive
response increases with the dose level, i.e., F is a non-decreasing
function, i.e., F can be modeled as a c.d.f. on X ⊆ R.
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Dose-response modeling with Dirichlet process priors

Questions of interest:

Inference for F (x) for specified dose levels x .

Inference for unknown (random) dose level x0 such that F (x0) = γ for
specified γ ∈ (0, 1).

Optimal selection of {xi , ni} to best accomplish goals 1 and 2 above
(design problem).

Parametric modeling: F is assumed to be a member of a parametric
family of c.d.f.s (e.g., logit or probit models).

Bayesian nonparametric modeling: nonparametric priors for F , i.e.,
priors for the space of c.d.f.s on X .

Work based on a DP prior for F : Antoniak (1974), Bhattacharya
(1981), Disch (1981), Kuo (1983), Gelfand and Kuo (1991),
Mukhopadhyay (2000).
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Dose-response modeling with Dirichlet process priors

Assuming (conditionally) independent outcomes at different dose

levels, the likelihood is given by
∏k

i=1 p
yi
i (1−pi )ni−yi , where pi = F (xi )

for i = 1, ..., k .

If the prior for F is a DP with precision parameter α > 0 and centering
c.d.f. F0 (the prior guess for the potency curve), then a priori

(p1, p2 − p1, ..., pk − pk−1, 1− pk)

follows a Dirichlet distribution with parameters

(αF0(x1), α(F0(x2)−F0(x1)), ..., α(F0(xk)−F0(xk−1)), α(1−F0(xk))).
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Dose-response modeling with Dirichlet process priors

The posterior for F is an MDP (Antoniak, 1974).

Posterior distribution is difficult to work with analytically; Antoniak
(1974) obtained the point estimate when k = 2.

MCMC techniques enable full inference for the dose-response curve
(Gelfand and Kuo, 1991) and for the dose that corresponds to a
specified probability of response (Mukhopadhyay, 2000).

Bioassay modeling with a DP prior for the dose-response curve is
an example of semiparametric isotonic regression, that is, regression
modeling with monotonic regression functions. Further work with DP
priors for:

continuous response distributions (Lavine and Mockus, 1995)

count responses (Farah, Kottas and Morris, 2013).
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3. Dirichlet Process Mixture Models
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Motivating Dirichlet process mixtures

Recall that the Dirichlet process (DP) is a conjugate prior for random
distributions under i.i.d. sampling.

However, posterior draws under a DP model correspond (almost surely)
to discrete distributions. This is somewhat unsatisfactory if we are
modeling continuous distributions.

In the spirit of kernel density estimation, one solution is to use
convolutions to smooth out posterior estimates.

In a model-based context, this leads to DP mixture models, i.e., a
mixture model where the mixing distribution is unknown and assigned
a DP prior (recall that this is different from a mixture of DPs, in which
the parameters of the DP are random).

Strong connection with finite mixture models.

More generally, we might be interested in using a DP as part of a
hierarchical Bayesian model to place a prior on the unknown distri-
bution of some of its parameters (e.g., random effects models). This
leads to semiparametric Bayesian models.
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Mixture distributions

Mixture models arise naturally as flexible alternatives to standard
parametric families.

Continuous mixture models (e.g., t, Beta-binomial, and Poisson-gamma
models) typically achieve increased heterogeneity but are still limited
to unimodality and usually symmetry.

Finite mixture distributions provide more flexible modeling, and are
now relatively easy to implement, using simulation-based model fitting
(e.g., Richardson and Green, 1997; Stephens, 2000; Jasra, Holmes and
Stephens, 2005).

Rather than handling the very large number of parameters of finite
mixture models with a large number of mixture components, it may be
easier to work with an infinite dimensional specification by assuming
a random mixing distribution, which is not restricted to a specified
parametric family.
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Finite mixture models

Recall the structure of a finite mixture model with K components, for
example, a mixture of K = 2 Gaussian densities:

yi | w , µ1, µ2, σ
2
1 , σ

2
2

ind.∼ wN(yi | µ1, σ
2
1) + (1− w)N(yi | µ2, σ

2
2),

that is, observation yi arises from a N(µ1, σ
2
1) distribution with prob-

ability w or from a N(µ2, σ
2
2) distribution with probability 1 − w

(independently for each i = 1, . . . , n, given the parameters).

In the Bayesian setting, we also set priors for the unknown parameters

(w , µ1, µ2, σ
2
1 , σ

2
2) ∼ p(w , µ1, µ2, σ

2
1 , σ

2
2).
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Finite mixture models

The model can be rewritten in a few different ways. For example, we
can introduce auxiliary random variables L1, . . . , Ln such that Li = 1
if yi arises from the N(µ1, σ

2
1) component (component 1) and Li = 2

if yi is drawn from the N(µ2, σ
2
2) component (component 2). Then,

the model can be written as

yi | Li , µ1, µ2, σ
2
1 , σ

2
2

ind.∼ N(yi | µLi , σ
2
Li

)

P(Li = 1|w) = w = 1− P(Li = 2|w)

(w , µ1, µ2, σ
2
1 , σ

2
2) ∼ p(w , µ1, µ2, σ

2
1 , σ

2
2)

If we marginalize over Li , for i = 1, ..., n, we recover the original
mixture formulation.

The inclusion of indicator variables is very common in finite mixture
models, and it is also used extensively for DP mixtures.
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Finite mixture models

We can also write

wN(yi | µ1, σ
2
1) + (1− w)N(yi | µ2, σ

2
2) =

∫
N(yi | µ, σ2)dG (µ, σ2),

where

G = w δ(µ1,σ2
1) + (1− w) δ(µ2,σ2

2)

A similar expression can be used for a general K mixture model.

Note that G is discrete (and random) → a natural alternative is to
use a DP prior for G , resulting in a Dirichlet process mixture (DPM)
model, or more general nonparametric priors for discrete distributions.

Working with a countable mixture (rather than a finite one) provides
theoretical advantages (full support) as well as practical benefits: the
number of mixture components is estimated from the data based on a
model that supports a countable number of components in the prior.
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Definition of the Dirichlet process mixture model

The Dirichlet process mixture model

F (y | G ) =

∫
K (y | θ) dG (θ), G ∼ DP(α,G0),

where K (y | θ) is a parametric distribution function (with parameters
θ) on the sample space of interest.

The Dirichlet process has been the most widely used prior for the
random mixing distribution G , following the early work by Antoniak
(1974), Lo (1984) and Ferguson (1983).

Corresponding mixture density (or probability mass) function,

f (y | G ) =

∫
k(y | θ) dG (θ),

where k(y | θ) is the density (or probability mass) function of K (y | θ).

Because G is random, F (y | G ) is a random c.d.f., and f (y | G ) is a
random density.
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Figure 3.1: Two realizations from a DP(α = 2, G0 = N(0, 1)) (left column) and the associated cumulative distribution function (center

column) and density function (right column) for a location DP mixture of Gaussian kernels with standard deviation 0.6.
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An equivalent formulation

In the context of DP mixtures, the (almost sure) discreteness of real-
izations G from the DP(α,G0) prior is an asset→ it allows ties in the
mixing parameters, and thus makes DP mixture models appealing for
many applications, including density estimation and regression.

Using the constructive definition of the DP, G =
∑∞
`=1 ω`δϑ` , the

prior probability model f (y | G ) admits an (almost sure) representa-
tion as a countable mixture of parametric densities,

f (y | G ) =
∞∑
`=1

ω` k(y | ϑ`)

Mixture weights: ω1 = z1, ω` = z`
∏`−1

r=1 (1− zr ), ` ≥ 2, with zr i.i.d.
Beta(1, α).
Locations: ϑ` i.i.d. G0 (and the sequences {zr : r = 1,2,. . . } and
{ϑ` : ` = 1,2,. . . } are independent).
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Modeling options

Contrary to the DP prior, DP mixtures can generate:

discrete distributions (e.g., K(y | θ) might be Poisson or binomial)

and continuous distributions, either univariate (K(y | θ) can be, e.g.,
normal, gamma, or uniform) or multivariate (with K(y | θ), say, mul-
tivariate normal).

Much more than density estimation:

Non-Gaussian and non-linear regression through DP mixture modeling
for the joint response-covariate distribution (density regression).

Flexible models for ordinal categorical responses.

Modeling of point process intensities through density estimation.

Time-series and/or spatial modeling, using dependent DP priors for
temporally and/or spatially dependent mixing distributions.
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Approximation or representation results for mixtures

(Discrete) normal location-scale mixtures,∑M

j=1
wj N(y | µj , σ

2
j ), y ∈ R

can approximate arbitrarily well (as M →∞) densities on the real line
(Ferguson, 1983; Lo, 1984). In fact, the result holds true for mixture
kernels from general location-scale families.

For any non-increasing density f (t) on the positive real line there
exists a distribution function G on R+ such that f can be represented
as a scale mixture of uniform densities:

f (t) =

∫
θ−11[0,θ)(t) dG (θ), t ∈ R+

The result yields flexible DP mixture models for symmetric unimodal
densities (Brunner and Lo, 1989; Brunner, 1995) as well as general
unimodal densities (Brunner, 1992; Lavine and Mockus, 1995; Kottas
and Gelfand, 2001; Kottas and Krnjajić, 2009).
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Approximation or representation results for mixtures

Consider a continuous density h on [0, 1], and let H be its c.d.f. Then,
the Bernstein density,∑K

j=1
{H(j/K )− H((j − 1)/K )}Beta(u | j ,K − j + 1), u ∈ [0, 1]

converges uniformly to h, as K →∞.

The Bernstein-Dirichlet prior model is based on a DP prior for H
(Petrone, 1999a,b).

Consider a continuous c.d.f. H on R+. Then, the c.d.f. of the Erlang
mixture density∑J

j=1
{H(jθ)− H((j − 1)θ)} gamma(t | j , θ), t ∈ R+

converges pointwise to H, as J →∞ and the scale parameter θ → 0.
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Support of Dirichlet process mixture models

Results on Kullback-Leibler support for various types of DP mixture
models (e.g., Wu and Ghosal, 2008).

Consider the space of densities defined on sample space X .

For any density f0 in that space, the Kullback-Leibler neighborhood
of size ε > 0 is given by

Kε(f0) =

{
f :

∫
f0(x) log

(
f0(x)

f (x)

)
dx < ε

}

A nonparametric prior model for densities satisfies the Kullback-Leibler
property if it assignes positive probability to Kε(f0) for any density f0
in the space of interest, and for any ε > 0 (e.g., Walker, Damien and
Lenk, 2004). Typically, several regularity conditions are needed for f0.
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Semiparametric Dirichlet process mixture models

In many applications, semiparametric DP mixtures are employed

yi | G , φ
i.i.d.∼ f (yi | G , φ) =

∫
k(yi | θ, φ) dG (θ), i = 1, . . . , n

G ∼ DP(α,G0)

with a parametric prior p(φ) placed on φ, and, typically, hyperpriors
for α and/or the parameters ψ of G0 ≡ G0(· | ψ).

For example, semiparametric linear regression model:

continuous (real-valued) responses yi with covariate vector x i

yi = xT
i β + εi ; εi | G

i.i.d.∼
∫

N(εi | 0, σ2) dG(σ2), G ∼ DP(α,G0)

scale normal DP mixture prior for the error distribution; parametric
prior for the vector of regression coefficients.
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Hierarchical formulation for DP mixture models

Consider w.l.o.g. the fully nonparametric DP mixture

f (y | G ) =

∫
k(y | θ) dG (θ), G | α,ψ ∼ DP(α,G0(· | ψ))

With θi a (continuous) latent mixing parameter associated with yi :

yi | θi
ind.∼ k(yi | θi ) i = 1, . . . , n

θi | G
i.i.d.∼ G i = 1, . . . , n

Alternatively, with discrete latent variables Li :

yi | Li , {Z`}
ind.∼ k(yi | ZLi ) i = 1, . . . , n

Li | {ω`}
i.i.d.∼

∞∑
`=1

ω` δ` i = 1, . . . , n

where ω1 = z1, ω` = z`
∏`−1

r=1 (1− zr ), ` ≥ 2, with zr i.i.d. Beta(1, α), and

Z` | ψ
i.i.d.∼ G0(· | ψ).
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Parametric models in the two limits for α

Two limiting special cases of the DP mixture model.

One distinct component, when α→ 0+

yi | θ, φ
ind.∼ k(yi | θ, φ), i = 1, . . . , n

θ | ψ ∼ G0(· | ψ)

φ, ψ ∼ p(φ)p(ψ)

n components (one associated with each observation), when α→∞

yi | θi , φ
ind.∼ k(yi | θi , φ), i = 1, . . . , n

θi | ψ
i.i.d.∼ G0(· | ψ), i = 1, . . . , n

φ, ψ ∼ p(φ)p(ψ)

The DP mixture model gives rise to hierarchical structures in between
the two parametric extremes above.
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Connection with finite mixture models

The countable sum formulation of the DP mixture model has
motivated the study of several variants and extensions.

It also provides a link between limits of finite mixtures, with prior
for the weights given by a symmetric Dirichlet distribution, and DP
mixture models (e.g., Ishwaran and Zarepour, 2000).

Consider the finite mixture model with J components:

J∑
j=1

qj k(y | ϑj),

with (q1, . . . , qJ) ∼ Dir(α/J, . . . , α/J) and ϑj
i.i.d.∼ G0, j = 1, . . . , J.

When J →∞, this model corresponds to a DP mixture with kernel k
and a DP(α,G0) prior for the mixing distribution.

As J →∞,
∑J

j=1 qjδϑj converges weakly to
∑∞
`=1 ω` δϑ` ∼ DP(α,G0).
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Prior specification

Taking expectation over G with respect to its DP prior DP(α,G0),
we obtain:

E{F (y | G , φ)} = F (y | G0, φ), E{f (y | G , φ)} = f (y | G0, φ).

These expressions facilitate prior specification for the parameters ψ of
G0(· | ψ).

On the other hand, recall that for the DP(α,G0), α controls how close
a realization G is to G0, but also the extent of discreteness of G .

In the DP mixture model, α controls the prior distribution of the
number of distinct elements n∗ of vector θ = (θ1, . . . , θn), and hence
the number of distinct mixture components associated with a sample
of size n (Antoniak, 1974; Escobar and West, 1995; Liu, 1996).
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Pólya urn revisited

Consider the joint prior distribution for θ = (θ1, . . . , θn) that arises

from the prior model for the mixing parameters, θi | G
i.i.d.∼ G with

G | α,ψ ∼ DP(α,G0(· | ψ)), after integrating G over its DP prior.

As is essentially always the case for DP mixtures, assume that G0 is a
continuous distribution (i.e., it has no atoms) such that ties can only
arise by setting θi equal to θj , for j < i . Denote by g0 the density
function of G0.

Using the Pólya urn characterization of the DP,

p(θ | α,ψ) = g0(θ1 | ψ)
n∏

i=2

{
α

α + i − 1
g0(θi | ψ) +

1

α + i − 1

i−1∑
j=1

δθj (θi )

}
.
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Pólya urn revisited

The prior distribution p(θ | α,ψ) can be written in an equivalent
form which makes explicit the partitioning (clustering) induced by the
discreteness of the DP prior (Antoniak, 1974; Lo, 1984).

Denote by π = {sj : j = 1, ..., n∗} a generic partition of {1, ..., n},
where: n∗ is the number of cells of the partition; nj is the number of
elements in cell sj ; ej,1 < ... < ej,nj are the elements of cell sj .

Letting Pn denote the set of all partitions of {1, ..., n},

p(θ | α,ψ) =
∑
π∈Pn

p(π | α)


n∗∏
j=1

g0(θej,1 | ψ)
∏nj

i=2
δθej,1 (θej,i )


where p(π | α) is the DP induced prior probability for partition π,

p(π | α) =
(∏n

m=1
(α + m − 1)

)−1

αn∗
n∗∏
j=1

(nj − 1)!
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Number of distinct components

Prior expectation and variance for the number of distinct elements
(partition cells), n∗ ≡ n∗(n), of vector (θ1, . . . , θn).

Let Ui , for i = 1, ..., n, be binary random variables with Ui indicating
whether θi is a new value drawn from G0 (Ui = 1) or not (Ui = 0).

Conditional on α, the Ui are independent Bernoulli random variables
with Pr(Ui = 1 | α) = α/(α + i − 1), for i = 1, ..., n.

Since n∗ =
∑n

i=1 Ui , we obtain

E(n∗ | α) =
n∑

i=1

α

α + i − 1
and Var(n∗ | α) =

n∑
i=1

α(i − 1)

(α + i − 1)2

The prior moments for n∗ can be used to guide the choice of the value
for α, or the prior parameters for α. (The conditional expectation
E(n∗ | α) can be averaged over the prior for α to obtain E(n∗).)
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Number of distinct components

A fairly accurate approximation (for practically all values of n and α):

E(n∗ | α) ≈ α log{1 + (n/α)}.

Hence, E(n∗ | α) increases at a logarithmic rate with n (for fixed α).

Therefore, E(n∗(n) | α) → ∞, as n → ∞. In fact, n∗(n) converges
almost surely to ∞, as n→∞ (Korwar and Hollander, 1973).

Even though new distinct values are increasingly rare, the DP prior
implies n∗ which is steadily increasing with n.

The full prior for the number of distinct elements can also be derived:

Pr(n∗ = m | α) = cn(m) n!αm Γ(α)

Γ(α + n)
, m = 1, . . . , n,

where the factors cn(m) = Pr(n∗ = m | α = 1) can be computed
using certain recurrence formulas (Antoniak, 1974; Escobar and West,
1995; Ghosal and van der Vaart, 2017).

If α has prior p(α), Pr(n∗ = m) =
∫

Pr(n∗ = m | α)p(α)dα.
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Methods for posterior inference

Data = {yi , i = 1, . . . , n} i.i.d., conditionally on G and φ, from
f (· | G , φ). (If the model includes a regression component, the data
also include the covariate vectors xi , and, in such cases, φ, typically,
includes the vector of regression coefficients).

Interest in inference for the latent mixing parameters θ = (θ1, . . . , θn),
for φ (and the hyperparameters α, ψ), for f (y0 | G , φ), and, in general,
for functionals H(F (· | G , φ)) of the random mixture F (· | G , φ)
(e.g., c.d.f. function, hazard function, mean and variance functionals,
percentile functionals).

Full inference, given the data, for all these random quantities is based
on the joint posterior distribution of the DP mixture model

p(G , φ,θ, α, ψ | data)
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Marginal posterior simulation methods

The joint posterior distribution can be expressed as

p(G , φ,θ, α, ψ | data) = p(G | θ, α, ψ)p(θ, φ, α, ψ | data)

p(θ, φ, α, ψ | data) is the marginal posterior for the finite-dimensional
portion of the full parameter vector (G , φ,θ, α, ψ).

G | θ, α, ψ ∼ DP(α̃, G̃0), where α̃ = α + n, and

G̃0(·) =
α

α + n
G0(· | ψ) +

1

α + n

n∑
i=1

δθi (·).

(Hence, the c.d.f., G̃0(t) = α
α+nG0(t | ψ) + 1

α+n

∑n
i=1 1[θi ,∞)(t)).

Sampling from the DP(α̃, G̃0) is possible using one of its definitions.
We can thus obtain full posterior inference under DP mixture models
if we sample from the marginal posterior p(θ, φ, α, ψ | data).
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Marginal posterior simulation methods

The marginal posterior p(θ, φ, α, ψ | data) corresponds to the marginal-
ized version of the DP mixture model, obtained after integrating G
over its DP prior (Blackwell and MacQueen, 1973),

yi | θi , φ
ind.∼ k(yi | θi , φ), i = 1, . . . , n

θ = (θ1, . . . , θn) | α,ψ ∼ p(θ | α,ψ),

φ, α, ψ ∼ p(φ)p(α)p(ψ).

The prior distribution p(θ | α,ψ) for the mixing parameters θi can be
developed through the Pólya urn characterization of the DP,

p(θ | α,ψ) = g0(θ1 | ψ)
n∏

i=2

 α

α+ i − 1
g0(θi | ψ) +

1

α+ i − 1

i−1∑
j=1

δθj (θi )

 .

Equivalently, the expression in terms of the DP induced partition
structure can be used.

Either way, for increasing sample sizes, the joint prior p(θ | α,ψ) gets
increasingly complex to work with.
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Marginal posterior simulation methods

Therefore, the marginal posterior

p(θ, φ, α, ψ | data) ∝ p(θ | α,ψ)p(φ)p(α)p(ψ)
n∏

i=1

k(yi | θi , φ)

is difficult to work with — even point estimates practically impossible
to compute for moderate to large sample sizes.

Early work for posterior inference:

Some results for certain problems in density estimation, i.e., expres-
sions for Bayes point estimates of f (y0 | G) (e.g., Lo, 1984; Brunner
and Lo, 1989).
Approximations for special cases, e.g., for binomial DP mixtures (Berry
and Christensen, 1979).
Monte Carlo integration algorithms to obtain point estimates for the
θi (Ferguson, 1983; Kuo, 1986a,b).
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Simulation-based model fitting

Note that, although the joint prior p(θ | α,ψ) has an awkward ex-
pression for samples of realistic size n, the prior full conditionals have
convenient expressions:

p(θi | {θj : j 6= i}, α, ψ) =
α

α+ n − 1
g0(θi | ψ) +

1

α+ n − 1

∑
j 6=i

δθj (θi )

Key idea (Escobar, 1988; 1994): setup a Markov chain to explore
the posterior p(θ, φ, α, ψ | data) by simulating only from posterior
full conditional distributions, which arise by combining the likelihood
terms with the corresponding prior full conditionals (in fact, Escobar’s
algorithm is essentially a Gibbs sampler developed for a specific class
of models!).

Several other Markov chain Monte Carlo (MCMC) methods that im-
prove on the original algorithm (e.g., West et al., 1994; Escobar and
West, 1995; Bush and MacEachern, 1996; Neal, 2000; Jain and Neal,
2004).
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Simulation-based model fitting

A key property for the implementation of the Gibbs sampler is the
discreteness of G , which induces a partition (clustering) of the θi .

n∗: number of distinct elements (clusters) in the vector (θ1, . . . , θn).
θ∗j , j = 1,. . . ,n∗: the distinct θi .
w = (w1, . . . ,wn): vector of configuration indicators, defined by wi =
j if and only if θi = θ∗j , i = 1,. . . ,n.
nj : size of j-th cluster, i.e., nj = | {i : wi = j} |, j = 1, . . . , n∗.

(n∗,w , (θ∗1 , . . . , θ∗n∗)) is equivalent to (θ1, . . . , θn).

Standard Gibbs sampler to draw from p(θ, φ, α, ψ | data) (Escobar
and West, 1995) is based on the following full conditionals:

1 p(θi | {θi′ : i ′ 6= i} , α, ψ, φ, data), for i = 1, . . . , n.

2 p(φ | {θi : i = 1, . . . , n} , data).

3 p(ψ |
{
θ∗j : i = 1, . . . , n∗

}
, n∗, data).

4 p(α | n∗, data).

(The expressions include conditioning only on the relevant variables, exploiting the

conditional independence structure of the model and properties of the DP).
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Simulation-based model fitting

1 For each i = 1, . . . , n, p(θi | {θi ′ : i ′ 6= i} , α, ψ, φ, data) is simply a
mixture of n∗− point masses and the posterior for θi based on yi ,

αq0

αq0 +
∑n∗−

j=1 n−j qj
h(θi | ψ, φ, yi ) +

n∗−∑
j=1

n−j qj

αq0 +
∑n∗−

j=1 n−j qj
δ
θ∗−j

(θi ).

qj = k(yi | θ∗−j , φ)
q0 =

∫
k(yi | θ, φ)g0(θ | ψ)dθ

h(θi | ψ, φ, yi ) ∝ k(yi | θi , φ)g0(θi | ψ)
g0 is the density of G0

The superscript “−” denotes all relevant quantities when θi is removed
from the vector (θ1, . . . , θn), e.g., n∗− is the number of clusters in
{θi′ : i ′ 6= i}.

Updating θi implicitly updates wi , i = 1,. . . ,n; before updating θi+1,
we redefine n∗, θ∗j for j = 1, . . . , n∗, wi for i = 1, . . . , n, and nj , for
j = 1, . . . , n∗.
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Simulation-based model fitting

2 The posterior full conditional for φ does not involve the nonparametric
part of the DP mixture model,

p(φ | {θi : i = 1, . . . , n} , data) ∝ p(φ)
n∏

i=1

k(yi | θi , φ).

3 Regarding the parameters ψ of G0,

p(ψ |
{
θ∗j , j = 1, . . . , n∗

}
, n∗, data) ∝ p(ψ)

n∗∏
j=1

g0(θ∗j | ψ),

leading to standard updates under a conditionally conjugate prior
p(ψ).
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Simulation-based model fitting

4 Although the posterior full conditional for α is not of a standard form,
an augmentation method facilitates sampling if α has a gamma prior
(say, with mean aα/bα) (Escobar and West, 1995),

p(α | n∗, data) ∝ p(α)αn∗ Γ(α)

Γ(α + n)

∝ p(α)αn∗−1(α + n)Beta(α + 1, n)

∝ p(α)αn∗−1(α + n)

∫ 1

0

ηα(1− η)n−1dη

Introduce an auxiliary variable η such that

p(α, η | n∗, data) ∝ p(α)αn∗−1 (α + n) ηα (1− η)n−1

Extend the Gibbs sampler to draw η | α, data ∼ Beta(α + 1, n), and
α | η, n∗, data from the two-component gamma mixture:

ε gamma(aα+n∗, bα−log(η))+(1−ε) gamma(aα+n∗−1, bα−log(η))

where ε = (aα + n∗ − 1)/ {n(bα − log(η)) + aα + n∗ − 1}.
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Improved marginal Gibbs sampler

(West et al., 1994; Bush and MacEachern, 1996): adds one more
step where the cluster locations θ∗j are resampled at each iteration to
improve the mixing of the chain.

At each iteration, once step (1) is completed, we obtain a specific
number of clusters n∗ and configuration w = (w1, . . . ,wn).

After the marginalization over G , the prior for the θ∗j , given the par-

tition (n∗,w), is given by
∏n∗

j=1 g0(θ∗j | ψ), i.e., given n∗ and w , the
θ∗j are i.i.d. from G0.

Hence, for each j = 1,. . . ,n∗, the posterior full conditional

p(θ∗j | w, n∗, ψ, φ, data) ∝ g0(θ∗j | ψ)
∏
{i :wi=j}

k(yi | θ∗j , φ).
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More general marginal MCMC algorithms

The Gibbs sampler can be difficult or inefficient to implement if:

The integral
∫
k(y | θ, φ)g0(θ | ψ)dθ is not available in closed form

(and numerical integration is not feasible or reliable).

Random generation from h(θ | ψ, φ, y) ∝ k(y | θ, φ)g0(θ | ψ) is not
readily available.

For such cases, alternative MCMC algorithms have been proposed in
the literature (e.g., MacEachern and Müller, 1998; Neal, 2000; Dahl,
2005; Jain and Neal, 2007).

Extensions for data structures that include missing or censored
observations are also possible (Kuo and Smith, 1992; Kuo and Mallick,
1997; Kottas, 2006).
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Posterior predictive distributions

Implementing one of the available MCMC algorithms for DP mixture
models, we obtain B posterior samples

{θb = (θib : i = 1, . . . , n), αb, ψb, φb} , b = 1, . . . ,B,

from p(θ, φ, α, ψ | data).

Or, equivalently, posterior samples{
n∗b ,wb,θ

∗
b = (θ∗jb : j = 1, . . . , n∗b), αb, ψb, φb

}
, b = 1, . . . ,B,

from p(n∗,w,θ∗ = (θ∗j : j = 1, . . . , n∗), φ, α, ψ | data).

Bayesian density estimate is based on the posterior predictive density
p(y0 | data) corresponding to a new y0 (with associated θ0).
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Posterior predictive distributions

Using, again, the Pólya urn structure for the DP,

p(θ0 | n∗,w,θ∗, α, ψ) =
α

α + n
g0(θ0 | ψ) +

1

α + n

n∗∑
j=1

njδθ∗j (θ0).

The posterior predictive density is given by

p(y0 | data) =

∫ ∫
k(y0 | θ0, φ)p(θ0 | n∗,w,θ∗, α, ψ)

p(n∗,w,θ∗, α, ψ, φ | data)dθ0dwdθ∗dαdψdφ

Hence, a sample {y0,b : b = 1, . . . ,B} from the posterior predictive
distribution can be obtained using the MCMC output, where, for each
b = 1, . . . ,B:

we first draw θ0,b from p(θ0 | n∗b ,wb,θ
∗
b , αb, ψb)

and then, draw y0,b from K(· | θ0,b, φb).
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Posterior predictive distributions

To further highlight the mixture structure, note that we can also write

p(y0 | data) =∫ {
α

α + n

∫
k(y0 | θ, φ)g0(θ | ψ)dθ +

n

α + n

n∗∑
j=1

nj
n
k(y0 | θ∗j , φ)

}
p(n∗,w,θ∗, α, ψ, φ | data)dwdθ∗dαdψdφ

The integrand above is a mixture of:

the prior predictive density, E{f (y0 | G , φ)}; and
a finite mixture with n∗ components, with mixing parameters defined
by the distinct θ∗j , and weights given by nj/n. This term dominates
when α is small relative to n.

The posterior predictive density for y0 is obtained by averaging this
mixture with respect to the posterior distribution of n∗, w , θ∗ and all
other parameters.
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Inference for general functionals of the random mixture

Note that p(y0 | data) is the posterior point estimate for the density
f (y0 | G , φ) (at point y0), i.e., p(y0 | data) = E(f (y0 | G , φ) | data).

The Bayesian density estimate under a DP mixture model can be
obtained without sampling from the posterior distribution of G .

Analogously, we can obtain posterior moments for H(F (· | G , φ)) =∫
H(K (· | θ, φ))dG (θ), where H is a linear functional (Gelfand and

Mukhopadhyay, 1995).

For linear functionals, the functional of the mixture is the mixture
of the functionals applied to the parametric kernel (e.g., density and
c.d.f. functionals, mean functional).

How about more general types of inference?

Interval estimates for F (y0 | G , φ) or f (y0 | G , φ), for specified y0?
Inference for non-linear functions of the c.d.f., e.g., cumulative hazard,
− log(1 − F (y0 | G , φ)), or hazard, f (y0 | G , φ)/(1 − F (y0 | G , φ)),
functions?
Inference for other non-linear functionals, e.g., for percentiles?
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Inference for general functionals of the random mixture

Such inferences require the posterior distribution of G . Recall

p(G , φ,θ, α, ψ | data) = p(G | θ, α, ψ)p(θ, φ, α, ψ | data)

and

G | θ, α, ψ ∼ DP

(
α + n, G̃0(·) =

α

α + n
G0(· | ψ) +

1

α + n

∑n

i=1
δθi (·)

)

Hence, given posterior samples (θb, αb, ψb, φb), for b = 1, . . . ,B,
from the marginalized version of the DP mixture, we can draw Gb

from p(G | θb, αb, ψb) using:

The original DP definition if we only need sample paths for the c.d.f.
of the mixture (and y is univariate) (e.g., Krnjajić et al., 2008).

More generally, the DP constructive definition with a truncation ap-
proximation (Gelfand and Kottas, 2002; Ishwaran and Zarepour, 2002).
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Inference for general functionals of the random mixture

Applying directly the DP constructive definition,

Gb = ζ1 δU1 +
L−1∑
`=2

{
ζ`
∏`−1

r=1
(1− ζr )

}
δU` +

{∏L−1

r=1
(1− ζr )

}
δUL

where the ζ`, ` = 1, ..., L− 1, are i.i.d. Beta(1,α+ n), and (indepen-
dently) the U`, ` = 1, ..., L, are i.i.d. G̃0.

A more efficient truncation approximation through an alternative
representation for the conditional posterior of G (Pitman, 1996)

G | (n∗,w ,θ∗), α, ψ D
= qn∗+1G

∗ +
n∗∑
j=1

qj δθ∗j

where G∗ | α,ψ ∼ DP(α,G0(ψ)) and, independently of G∗, the vector
of weights, (q1, ..., qn∗ , qn∗+1) | α,w ∼ Dirichlet(n1, ..., nn∗ , α).

Finally, the posterior samples Gb yield posterior samples
{H(F (· | Gb, φb)) : b = 1, . . . ,B} for any functional H(F (· | G , φ)).
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Density estimation data example

As an example, we analyze the galaxy data set: velocities (km/second)
for 82 galaxies, drawn from six well-separated conic sections of the
Corona Borealis region.

The model is a location-scale DP mixture of Gaussian distributions,
with a conjugate normal-inverse gamma baseline distribution:

f (y | G ) =

∫
N(y | µ, σ2) dG (µ, σ2), G ∼ DP(α,G0),

where G0(µ, σ2) = N(µ | µ0, σ
2/κ)IGamma(σ2 | ν, s).

We consider four different prior specifications to explore the effect of
increasing flexibility in the DP prior hyperparameters.

Figure 3.2 shows posterior predictive density estimates obtained using
the function DPdensity in the R package DPpackage.
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Density estimation data example

Figure 3.2: Histograms of the raw data and posterior predictive densities under four prior choices for the galaxy data. In the top left panel
we set α = 1, µ0 = 0, s = 2, ν = 4, κ ∼ Gam(0.5, 50); the top right panel uses the same settings except s ∼ IGamma(4, 2); in the
bottom left panel we add hyperprior µ0 ∼ N(0, 100000); and in the bottom right panel we further add hyperprior α ∼ Gam(2, 2).
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Conditional posterior simulation methods

The main characteristic of the marginal MCMC methods is that they
are based on the posterior distribution of the DP mixture model,
p(θ, φ, α, ψ | data), resulting after marginalizing the random mixing
distribution G (thus, referred to as marginal or collapsed methods).

Although posterior inference for G is possible under the collapsed
sampler, it is of interest to study alternative conditional posterior
simulation approaches that impute G as part of the MCMC algorithm,
and also improve on the mixing of marginal samplers.

Methods based on finite truncation approximation of G , using its
stick-breaking representation – main example: Blocked Gibbs sampler
(Ishwaran and Zarepour, 2000; Ishwaran and James, 2001).

Other approaches based on retrospective sampling techniques (Pa-
paspiliopoulos and Roberts, 2008), slice sampling methods (Walker,
2007; Kalli et al., 2011), as well as combinations of retrospective and
slice sampling (Yau et al., 2011).
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Blocked Gibbs sampler

Builds from truncation approximation to mixing distribution G given,
for finite N, by

GN =
N∑
`=1

p` δZ`

The Z`, ` = 1, . . . ,N, are i.i.d. G0.
The weights arise through stick-breaking (with truncation)

p1 = V1, p` = V`

`−1∏
r=1

(1− Vr ), ` = 2, . . . ,N − 1, pN =

N−1∏
r=1

(1− Vr ),

where the V`, ` = 1, . . . ,N − 1, are i.i.d. Beta(1, α).

The joint prior for p = (p1, . . . , pN), given α, corresponds to a special
case of the generalized Dirichlet distribution (Connor and Mosimann,
1969),

f (p | α) = αN−1pα−1
N (1−p1)−1(1− (p1 +p2))−1× . . .× (1−

∑N−2

`=1
p`)
−1.
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The generalized Dirichlet distribution

Assume that V`
ind.∼ Beta(a`, b`), for ` = 1, ...,N − 1, and define a

probability vector, p = (p1, ..., pN), through

p1 = V1, p` = V`

`−1∏
r=1

(1− Vr ), ` = 2, . . . ,N − 1, pN =
N−1∏
r=1

(1− Vr ).

Then, p follows a generalized Dirichlet distribution, with parameters
a = (a1, ..., aN−1) and b = (b1, ..., bN−1), and with density given by

f (p | a, b) =

{
N−1∏
`=1

Γ(a` + b`)

Γ(a`)Γ(b`)

}
pa1−1

1 × . . .× p
aN−1−1

N−1 p
bN−1−1

N (1− p1)b1−(a2+b2)

(1− (p1 + p2))b2−(a3+b3) × . . .×
(

1−
∑N−2

`=1
p`

)bN−2−(aN−1+bN−1)

If b`−1 = a` + b`, for ` = 2, ...,N − 1, the distribution reduces to a
Dirichlet(c1, ..., cN) with c` = a`, for ` = 1, ...,N−1, and cN = bN−1.
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Truncation level specification

The DP truncation level N can be chosen to any desired level of
accuracy.

A simple approach based on the prior expectation for the partial sum

of DP stick-breaking weights, E(
∑N
`=1 ω` | α) = 1 − {α/(α + 1)}N

(can be averaged over the prior for α to estimate E(
∑N
`=1 ω`)).

For example, E(
∑25
`=1 ω` | α = 2) = 0.99996, and E(

∑75
`=1 ω`) =

0.99997 under an exponential prior for α with mean 2.

A more general approach, which involves also the sample size n, is
available through Th. 2 in Ishwaran and James (2001): approximate
upper bound of 4n exp{−(N − 1)/α} on the L1 distance between
the prior predictive probability of the sample under the countable
representation for G and its truncated version GN .

For example, with α = 2, the bound is 0.00001656 for n = 102 and
N = 35, and it is 0.00001678 for n = 107 and N = 58.
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Blocked Gibbs sampler

Replacing G with GN ≡ (p,Z), where Z = (Z1, . . . ,ZN), in the generic
DP mixture model hierarchical formulation, we have:

yi | θi , φ
ind.∼ k(yi | θi , φ), i = 1, . . . , n,

θi | p,Z
i.i.d.∼ GN , i = 1, . . . , n,

p,Z | α,ψ ∼ f (p | α)
N∏
`=1

g0(Z` | ψ),

φ, α, ψ ∼ p(φ)p(α)p(ψ).

If we marginalize over the θi in the first two stages of the hierarchical
model, we obtain a finite mixture model for the yi ,

f (y | p,Z, φ) =
N∑
`=1

p` k(y | Z`, φ)

(conditionally on (p,Z) and φ), which replaces the countable DP
mixture, f (y | G , φ) =

∫
k(y | θ, φ) dG (θ) =

∑∞
`=1 ω` k(y | ϑ`, φ).
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Blocked Gibbs sampler

Now, having approximated the countable DP mixture with a finite
mixture, the mixing parameters θi can be replaced with configuration
variables L = (L1, . . . , Ln). Each Li takes values in {1, . . . ,N} such
that Li = ` if only if θi = Z`, for i = 1, . . . , n and ` = 1, . . . ,N.

Final version of the hierarchical model:

yi | Z, Li , φ
ind.∼ k(yi | ZLi , φ), i = 1, . . . , n,

Li | p
i.i.d.∼

N∑
`=1

p`δ`(Li ), i = 1, . . . , n,

Z` | ψ
i.i.d.∼ G0(· | ψ), ` = 1, . . . ,N,

p | α ∼ f (p | α),

φ, α, ψ ∼ p(φ)p(α)p(ψ).

Marginalizing over the Li , we obtain the same finite mixture model
for the yi : f (y | p,Z, φ) =

∑N
`=1 p` k(y | Z`, φ).
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Posterior full conditional distributions

1 To update Z` for ` = 1, . . . ,N:

Let n∗ be the number of distinct values {L∗j : j = 1, . . . , n∗} of vector
L.
Then, the posterior full conditional for Z`, ` = 1, . . . ,N, can be
expressed in general as:

p(Z` | . . . , data) ∝ g0(Z` | ψ)
n∗∏
j=1

∏
{i :Li=L∗j }

k(yi | ZL∗j
, φ)

If ` /∈ {L∗j : j = 1, . . . , n∗}, Z` is drawn from G0(· | ψ)
For ` = L∗j , j = 1, . . . , n∗,

p(ZL∗j
| . . . , data) ∝ g0(ZL∗j

| ψ)
∏

{i :Li=L∗j }

k(yi | ZL∗j
, φ)
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2 The posterior full conditional for p is

p(p | . . . , data) ∝ f (p | α)
∏N

`=1
pM`` ,

where M` = |{i : Li = `}|, ` = 1, . . . ,N.

Results in a generalized Dirichlet distribution, which can be sampled
through independent latent Beta variables.

V ∗`
ind.∼ Beta(1 + M`, α +

∑N
r=`+1 Mr ), for ` = 1, . . . ,N − 1.

p1 = V ∗1 ; p` = V ∗`
∏`−1

r=1 (1 − V ∗r ), for ` = 2, . . . ,N − 1; and pN =

1−
∑N−1
`=1 p`.

3 Updating the Li , i = 1, . . . , n:

Each Li is drawn from the discrete distribution on {1, . . . ,N} with
probabilities p̃`i ∝ p`k(yi | Z`, φ), for ` = 1, . . . ,N.
Note that the update for each Li does not depend on the other Li′ ,
i ′ 6= i . This aspect of this Gibbs sampler, along with the block updates
for the Z`, are key advantages over Pólya urn based marginal MCMC
methods.
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4 The posterior full conditional for φ is

p(φ | . . . , data) ∝ p(φ)
n∏

i=1

k(yi | θi , φ).

5 The posterior full conditional for ψ is

p(ψ | . . . , data) ∝ p(ψ)
n∗∏
j=1

g0(ZL∗j
| ψ).

6 The posterior full conditional for α is proportional to p(α)αN−1pαN ,
which with a gamma(aα, bα) prior for α, results in a
gamma(N+aα−1, bα−log(pN)) distribution. (For numerical stability,

compute log(pN) = log
∏N−1

r=1 (1− V ∗r ) =
∑N−1

r=1 log(1− V ∗r ).)

Note that the posterior samples from p(Z,p, L, φ, α, ψ | data) yield
directly the posterior for GN , and thus, full posterior inference for any
functional of the (approximate) DP mixture f (· | GN , φ) ≡ f (· | p,Z, φ).
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Posterior predictive inference

Posterior predictive density for new y0, with corresponding configura-
tion variable L0,

p(y0 | data) =

∫
k(y0 | ZL0 , φ)

(
N∑
`=1

p`δ`(L0)

)
p(Z, p, L, φ, α, ψ | data)dL0 dZ dL dp dφ dα dψ

=

∫ ( N∑
`=1

p`k(y0 | Z`, φ)

)
p(Z, p, L, φ, α, ψ | data)dZ dL dp dφ dα dψ

= E(f (y0 | p,Z, φ) | data).

Hence, p(y0 | data) can be estimated over a grid in y0 by drawing
samples {L0b : b = 1, . . . ,B} for L0, based on the posterior samples
for p, and computing the Monte Carlo estimate

B−1
∑B

b=1
k(y0 | ZL0b

, φb),

where B is the posterior sample size.
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Model checking/comparison for DP mixtures

Posterior predictive estimation/sampling is straightforward for DP
mixtures, and this allows using standard model checking/comparison
techniques for (hierarchical) Bayesian models. Two examples are
discussed next.

Posterior predictive loss criterion (Gelfand and Ghosh, 1998): choose
model that minimizes Dk(M) = P(M) + {k/(k + 1)}G (M), where:

P(M) =
∑n

i=1 Var(M)(ynew,i | data) is a penalty term, and

G(M) =
∑n

i=1{yi − E(m)(ynew,i | data)}2 is a goodness of fit term.

E(M)(ynew,i | data) and Var(M)(ynew,i | data) is the posterior predictive
mean and posterior predictive variance under model M for replicated
response ynew,i ; in regression problems, the posterior predictive distri-
bution for ynew,i is evaluated for the observed vector of covariates x i .

k ≥ 0 controls the weight assigned to the goodness of fit term.
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Model checking/comparison for DP mixtures

Conditional predictive ordinate (CPO) for observation yi under model

M: CPO
(M)
i = p(M)(yi | {yj : j 6= i}), that is, the value of the

posterior predictive density at yi , given the data set excluding yi .

Ratio CPO
(M1)
i /CPO

(M2)
i describes how well model M1 supports obser-

vation yi relative to model M2.

“Pseudo Bayes factor”, B12 =
∏n

i=1(CPO
(M1)
i /CPO

(M2)
i ), is an aggre-

gate summary of how well supported the data are by model M1 relative
to model M2 (Geisser and Eddy, 1979).

“Log pseudo marginal likelihood” (LPML) for model M: LPMLM =

log
∏n

i=1 CPO
(M)
i , such that B12 = exp(LPMLM1 − LPMLM2 ).

The Bayes factor requires the non-trivial computation of the DP
mixture model marginal likelihood, m(y), where y = (y1, ..., yn).

m(y) =
∫
L(y ;φ, α, ψ)p(φ)p(α)p(ψ) dφdαdψ

L(y ;φ, α, ψ) =
∫
{
∏n

i=1 k(yi | θi , φ)}p(θ | α,ψ) dθ
One approach is given in Basu and Chib (2003), using sequential
importance sampling to estimate the likelihood ordinate L(y ;φ, α, ψ).
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Alternative computational inference schemes

Alternative (to MCMC) fitting techniques have been studied.

Sequential importance sampling (Liu, 1996; Quintana, 1998;
MacEachern et al., 1999; Quintana and Newton, 2000; Carvalho et
al., 2010).

Weighted Chinese restaurant algorithms (Ishwaran and Takahara, 2002;
Ishwaran and James 2003).

Monte Carlo EM (Naskar and Das, 2004).

Predictive recursion (Newton and Zhang, 1999; Tokdar et al., 2009).
Variational algorithms (e.g., Blei and Jordan, 2006; Zobay, 2009).

Posterior simulation for DP mixture models (and, more generally,
Bayesian nonparametric models) for large datasets is an active area of
research – some of the earlier contributions to scalable NPB methods
include Guha (2010) and Wang and Dunson (2011).
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Variational algorithms

An alternative to MCMC methods which is very popular in the
machine learning literature, and is gaining some traction within the
statistics community; see Blei et al. (2017) for a review.

Consider a generic model where y denotes the data and θ collects all
parameters. Variational algorithms aim at replacing the intractable
posterior distribution p(θ | y) with a more tractable approximation
qη(θ) whose parameters η are chosen to minimize

K (p||q) =

∫
log

(
qη(θ)

p(θ | y)

)
qη(θ) dθ

the Kullback-Leibler divergence between p(θ | y) and qη(θ).

Variational inference methods reformulate the problem of computing
the posterior distribution as an easier (and faster!) to handle opti-
mization problem. The main drawback is that, in contrast to MCMC
methods, there is no general theory that ensures convergence to the
posterior distribution.
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Variational algorithms

The minimization of K (p||q) can be alternatively approached as
maximization of a lower bound on the log marginal likelihood:

log p(y) ≥ Eq {log p(θ, y)} − Eq {log qη(θ)}

The gap in the bound is the K-L divergence between qη and the true
posterior: log p(y) = Eq {log p(θ, y)} − Eq {log qη(θ)}+ K(p||q)

Recall that K(p||q) ≥ 0 (with equality if-f p = q).

Two key ingredients for an efficient algorithm: the particular form of
the variational distribution qη, and the optimization procedure.

In principle, there is a lot of freedom in choosing qη. Practical limi-
tations arise from the need to have a tractable approximation and to
compute the expectations Eq {log qη(θ)} and Eq {log p(θ, y)}.
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Mean-field variational algorithms

Mean-field methods use a factorized variational distribution

qη(θ) =
K∏

k=1

qk,ηk
(θk)

where θ = (θ1, ..., θK ), and are very popular due to their tractability.

In particular, if the conditional posterior distribution for each θk
belongs to the exponential family, it is natural to select qk,ηk

(θk)
as a member of the conditionally conjugate prior family.

Then, the optimization of the K-L divergence w.r.t. a single variational
parameter ηk is achieved by computing the expectation (w.r.t. qη) of
the exponential family natural parameter for θk .

Recursively updating each ηk by computing this expectation corre-
sponds to performing coordinate ascent in the K-L divergence.

Hence, the algorithm has the flavor of a Gibbs sampler.
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Mean-field variational algorithms

More specifically:
assume the posterior full conditional distribution for θk is a member
of the exponential family

p(θk | θ(−k), y) ∝ exp

{
p∑

r=1

Ak,r (θ(−k), y)Br (θk) − C(θk)

}
where θ(−k) = (θ1, ..., θk−1, θk+1, ..., θK )

take the variational approximation to be

qk,ηk
(θk) ∝ exp

{
p∑

r=1

ηk,r Br (θk) − H(θk)

}
where ηk = (ηk,1, ..., ηk,p)

then, the maximum of the log marginal likelihood lower bound w.r.t.
ηk,r (fixing all other variational parameters) is attained at

η̂k,r = Eq

{
Ak,r (θ(−k), y)

}
(see, e.g., Appendix A in Blei and Jordan, 2006)
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Mean-field variational algorithms

Coordinate ascent algorithm: iteratively maximize the lower bound w.r.t.
each ηk holding the other variational parameters fixed.

For models with posterior full conditionals in the exponential family,
each iteration of the algorithm involves recursive computing of expec-
tations (much less computationally intensive than simulation).

Variational approximations are relatively straightforward to work with in

conditionally conjugate models. Extensions for non-conjugate models are

more challenging.

In general, (mean-field) variational algorithms are sensitive to initial values

(under conditions, the coordinate ascent algorithm finds a local maximum),

tend to underestimate the uncertainty in the posterior distribution, and can

not capture the dependence among parameters.

Main inference focus on posterior predictive estimation; inference for more

general functionals becomes more computationally intensive.

An early example of mean-field methods for DP mixture models with ex-

ponential family kernels and the corresponding conjugate prior as the DP

centering distribution (Blei and Jordan, 2006).
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Mean-field variational methods for DP mixtures

Example: location normal mixture model

Consider the (blocked Gibbs sampler) truncated DP mixture model formu-
lation (with fixed DP prior hyperparameters)

yi | Z , Li , φ
ind.∼ N(yi | ZLi , φ

−1) i = 1, . . . , n

Li | V
i.i.d.∼

N∏
`=1

(p`(V ))1(Li=`) i = 1, . . . , n

Z`
i.i.d.∼ N(Z` | m, s2) ` = 1, . . . ,N

V`
i.i.d.∼ Beta(V` | 1, α) ` = 1, . . . ,N − 1

φ ∼ ga(φ | aφ, bφ)

where ga(a, b) is the gamma distribution with mean a/b, and

p1 = V1, p` = V`

`−1∏
r=1

(1− Vr ), ` = 2, . . . ,N − 1, pN =
N−1∏
r=1

(1− Vr )
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Mean-field variational methods for DP mixtures

Parameter vector, θ = (Z ,V , L, φ), with p(θ, y) given by

ga(φ | aφ, bφ)

N−1∏
`=1

Beta(V` | 1, α)
N∏
`=1

N(Z` | m, s2)
n∏

i=1

p(Li | V )
n∏

i=1

N(yi | ZLi , φ
−1)

where p(Li | V ) =
∏N
`=1(p`(V ))1(Li=`) =

∏N−1
`=1 V

1(Li=`)
` (1− V`)

1(Li>`)

Mean-field variational approximation:

qη(θ) = qβ(φ)
N−1∏
`=1

qγ`(V`)
N∏
`=1

qξ`(Z`)
n∏

i=1

qπi (Li )

where qβ(φ) = ga(φ | β1, β2), qγ`(V`) = Beta(V` | γ`1, γ`2), qξ`(Z`) =

N(Z` | ξ`1, ξ`2), and qπi (Li ) =
∏N
`=1 π

1(Li=`)
i`

Full set of variational parameters

η = (β1, β2, {(γ`1, γ`2)}N−1
`=1 , {(ξ`1, ξ`2)}N`=1, {(πi1, ..., πiN)}ni=1)
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Mean-field variational methods for DP mixtures

Updating parameters {(γ`1, γ`2) : ` = 1, ...,N − 1}
For any ` = 1, ...,N − 1

p(V` | ..., y) = Beta

(
1 +

n∑
i=1

1(Li = `), α +
n∑

i=1

1(Li > `)

)

∝ exp

{(
n∑

i=1

1(Li = `)

)
log(V`) +

(
α− 1 +

n∑
i=1

1(Li > `))

)
log(1− V`)

}

Variational approximation

qγ` (V`) = Beta(V` | γ`1, γ`2) ∝ exp {(γ`1 − 1) log(V`) + (γ`2 − 1) log(1− V`)}

Therefore, γ̂`1 − 1 = Eq(
∑n

i=1 1(Li = `)), and γ̂`2 − 1 = Eq(α − 1 +∑n
i=1 1(Li > `)), which yields

γ̂`1 = 1 +
n∑

i=1

πi` and γ̂`2 = α +
n∑

i=1

N∑
r=`+1

πir
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Mean-field variational methods for DP mixtures

Updating parameters {(ξ`1, ξ`2) : ` = 1, ...,N}
For any ` = 1, ...,N, the posterior full conditional for Z` is normal with
mean = (m+s2φ

∑n
i=1 yi1(Li = `))/(1+s2φ

∑n
i=1 1(Li = `)), and variance

= s2/(1 + s2φ
∑n

i=1 1(Li = `)). Therefore,

p(Z` | ..., y) ∝ exp

{(
m + s2φ

∑n
i=1 yi1(Li = `))

s2

)
Z` −

(
1 + s2φ

∑n
i=1 1(Li = `)

2s2

)
Z 2
`

}

Variational approximation

qξ` (Z`) = N(Z` | ξ`1, ξ`2) ∝ exp
{

(ξ`1/ξ`2)Z` − (1/2ξ`2)Z2
`

}

Therefore, ξ̂−1
`2 = s−2{1 + s2Eq(φ) Eq(

∑n
i=1 1(Li = `))}, and ξ̂`1ξ̂

−1
`2 =

s−2{m + s2Eq(φ) Eq(
∑n

i=1 yi1(Li = `))}, which yields

ξ̂`1 =
m + s2β1β

−1
2

∑n
i=1 yi πi`

1 + s2β1β
−1
2

∑n
i=1 πi`

and ξ̂`2 =

(
s−2 + β1β

−1
2

n∑
i=1

πi`

)−1
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Mean-field variational methods for DP mixtures

Updating parameters {(πi1, ..., πiN) : i = 1, ..., n}
For i = 1, ..., n, Pr(Li = ` | ..., y) ∝ p`(V ) N(yi | Z`, φ−1), for ` = 1, ...,N, so

p(Li | ..., y) ∝ exp

{
N∑
`=1

1(Li = `) log{φ1/2 exp(−0.5φ (yi − Z`)
2) p`(V )}

}

Variational approximation: qπi (Li ) =
∏N
`=1 π

1(Li=`)
i` ∝ exp

{∑N
`=1 1(Li = `) log(πi`)

}
So, for ` = 2, ...,N − 1 (the expressions for ` = 1 and ` = N are special cases):

log(π̂i`) ∝ 0.5 Eq(log(φ))− 0.5 Eq(φ) Eq{(yi−Z`)2}+ Eq(log(V`)) +
∑`−1

r=1
Eq(log(1−Vr ))

which yields π̂i` ∝ exp(W`), where

W` = 0.5{Ψ(β1)− log(β2)} − 0.5β1β
−1
2 {y

2
i − 2yiξ`1 + ξ`2 + ξ

2
`1}

+ {Ψ(γ`1)− Ψ(γ`1 + γ`2)} +
∑`−1

r=1
{Ψ(γr2)− Ψ(γr1 + γr2)}

using two results for the gamma and Beta distributions:

if X ∼ ga(α, β), with mean α/β, then E(log(X )) = Ψ(α) − log(β), where Ψ(α) =
d
dα log(Γ(α)) = Γ′(α)

Γ(α) is the digamma function.

if X ∼ Beta(α, β), with mean α/(α + β), then E(log(X )) = Ψ(α)− Ψ(α + β).
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Mean-field variational methods for DP mixtures

Updating parameters (β1, β2)

p(φ | ..., y) is a gamma distribution with shape and rate parameter given by

aφ + 0.5
∑N
`=1

∑n
i=1 1(Li = `) and bφ + 0.5

∑N
`=1

∑n
i=1 1(Li = `)(yi − Z`)

2,
respectively. Therefore, p(φ | ..., y) can be written proportional to

exp

{(
aφ − 1 + 0.5

N∑
`=1

n∑
i=1

1(Li = `)

)
log(φ)−

(
bφ + 0.5

N∑
`=1

n∑
i=1

1(Li = `)(yi − Z`)2

)
φ

}

Variational approximation

qβ(φ) = ga(φ | β1, β2) ∝ exp {(β1 − 1) log(φ)− β2 φ}

Therefore, β̂1 = aφ + 0.5
∑n

i=1

∑N
`=1 Eq{1(Li = `)}, and β̂2 = bφ +

0.5
∑N
`=1

∑n
i=1 Eq{1(Li = `)}Eq{(yi − Z`)

2}, which yields

β̂1 = aφ + 0.5 n and β̂2 = bφ + 0.5
N∑
`=1

n∑
i=1

πi` (y2
i − 2yiξ`1 + ξ`2 + ξ2

`1)
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Mean-field variational methods for DP mixtures

Approximation to the posterior predictive density, replacing the posterior
distribution with the (estimated) variational distribution:

p(y0 | y) =

∫ { N∑
`=1

p`(V ) N(y0 | Z`, φ−1)

}
p(θ | y)dθ

≈
∫ { N∑

`=1

p`(V ) N(y0 | Z`, φ−1)

}
qβ̂(φ)

N−1∏
`=1

qγ̂` (V`)
N∏
`=1

qξ̂`
(Z`) dφdV dZ

≈
N∑
`=1

Eq{p`(V )}Eq{N(y0 | Z`, φ−1)}

Eq{p`(V )} = Eq{V`
∏`−1

r=1 (1−Vr )} = γ̂`1
γ̂`1+γ̂`2

∏`−1
r=1

γ̂r2
γ̂r1+γ̂r2

, for ` = 2, ...,N−1

(the expressions for ` = 1 and ` = N are special cases).

However, we do not have a closed form expression for Eq{N(y0 | Z`, φ−1)} =∫∫
{(2π)−1/2φ1/2 exp(−0.5φ(y0 − Z`)

2)}N(Z` | ξ̂`1, ξ̂`2) ga(φ | β̂1, β̂2) dZ`dφ.

Use MC integration, with samples from ga(φ | β̂1, β̂2), after integrating w.r.t.
Z` to obtain:

Eq{N(y0 | Z`, φ−1)} =

∫
{2π(ξ̂`2 + φ

−1)}−1/2e
− (y0−ξ̂`1)2

2(ξ̂`2+φ−1) ga(φ | β̂1, β̂2) dφ
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Applications of DP mixture models: some references

Dirichlet process mixture models, and their extensions, have largely
dominated applied Bayesian nonparametric work, after the technology for
their simulation-based model fitting was introduced. Included below is a
sample of references categorized by methodological/application area.

Density estimation, mixture deconvolution, and density regression:
West et al. (1994); Escobar and West (1995); Cao and West (1996);

Gasparini (1996); Müller et al. (1996); Ishwaran and James (2002); Do,

Müller and Tang (2005); Leslie et al. (2007); Lijoi, Mena and Prünster

(2007); Taddy and Kottas (2010).

Generalized linear, and linear mixed, models; methods for longitudi-
nal data analysis: Bush and MacEachern (1996); Kleinman and Ibrahim

(1998a,b); Mukhopadhyay and Gelfand (1997); Müller and Rosner (1997);

Quintana (1998); Kyung, Gill and Casella (2010); Hannah et al. (2011);

Quintana et al. (2016).
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Applications of DP mixture models: some references

Methods for longitudinal cluster analysis and for functional clustering:
Ray and Mallick (2006); Bigelow and Dunson (2009); Petrone, Guindani

and Gelfand (2009).

Regression modeling with structured error distributions and/or
regression functions: Brunner (1995); Lavine and Mockus (1995); Kottas

and Gelfand (2001); Dunson (2005); Kottas and Krnjajić (2009).

Regression models for survival/reliability data: Kuo and Mallick (1997);

Gelfand and Kottas (2003); Merrick et al. (2003); Argiento et al. (2009);

De Iorio et al. (2009).

Models for binary and ordinal data: Basu and Mukhopadhyay (2000);

Hoff (2005); Das and Chattopadhyay (2004); Kottas, Müller and Quintana

(2005); Shahbaba and Neal (2009); Bao and Hanson (2015); DeYoreo and

Kottas (2015, 2018a,b).
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Applications of DP mixture models: some references

Errors-in-variables models; multiple comparisons problems; analysis of
selection models: Müller and Roeder (1997); Gopalan and Berry (1998);

Lee and Berger (1999).

ROC data analysis: Erkanli et al. (2006); Hanson, Kottas and Branscum

(2008).

Meta-analysis and nonparametric ANOVA models: Mallick and Walker

(1997); Tomlinson and Escobar (1999); Burr et al. (2003); De Iorio et al.

(2004); Müller et al. (2004); Müller et al. (2005).

Mixture models for Markov time series; time series modeling and
econometrics applications: Müller, West and MacEachern (1997); Chib

and Hamilton (2002); Hirano (2002); Hasegawa and Kozumi (2003); Grif-

fin and Steel (2004); Tang and Ghosal (2007); Di Lucca et al. (2013);

Antoniano-Villalobos and Walker (2016); DeYoreo and Kottas (2017); Kalli

and Griffin (2018).
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Semiparametric random effects models

Linear random effects models (e.g., Laird and Ware, 1982) are a widely
used class of models for repeated measurements,

y i = Xiβ + Zibi + εi , i = 1, . . . , n,

where: y i is the response vector for the i-th subject; β is the vector of
fixed effects regression parameters; bi is the vector of random effects;
Xi and Zi are covariate matrices associated with the fixed and random
effects, respectively; and εi is the vector of observational errors.

It is common to assume that bi is independent from εi , and that
εi ∼ N(0, σ2I ).

Furthermore, it is very common to assume that bi ∼ N(0,D), mostly
because of computational convenience.
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Semiparametric random effects models

Consider a special case, the random intercepts model:

yij = µ+ θi + εij , θi ∼ N(0, τ 2), εij ∼ N(0, σ2),

for j = 1, . . . ,mi and i = 1, . . . , n.

A Bayesian formulation of this model also includes priors on µ, τ 2 and
σ2, e.g,

µ ∼ N(µ0, κ
2) σ2 ∼ IG(a, b) τ 2 ∼ IG(c , d)

(When selecting hyperparameters, recall that an improper prior for σ2

would be OK, but improper priors for τ 2 are not.)

When is the assumption of normality for the random effects distribu-
tion reasonable?
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Random effects distributions

Normality is, in general, an inappropriate assumption for the random
effects distribution.
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Instead, we would often expect the random effects distribution to
present multimodalities because of the effects of covariates that have
not been included in the model.
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Bayesian semiparametric random effects models

Bayesian semiparametric random effects models have been discussed
in Bush and MacEachern (1996), Kleinman and Ibrahim (1998a,b),
Mukhopadhyay and Gelfand (1997), Burr and Doss (2005), and Kyung,
Gill and Casella (2010), in addition to a number of applied papers.

General formulation:

y i | β,bi , σ
2 ∼ N(Xiβ + Zibi , σ

2I ), i = 1, . . . , n

bi | G ∼ G , i = 1, . . . , n

G | α,D ∼ DP(α,N(0,D))

β, σ2, α,D ∼ p(β, σ2, α,D)
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Bayesian semiparametric random intercepts model

For the random intercepts model:

yij | θi , σ2 ∼ N(θi , σ
2), j = 1, . . . ,mi , i = 1, . . . , n

θi | G ∼ G , i = 1, . . . , n

G | α, µ, τ 2 ∼ DP(α,N(µ, τ 2))

with hyperpriors for σ2 and (some of) the DP parameters (α, µ, τ 2)
(note that, without loss of generality, we absorbed the intercept µ).

For α→∞ we recover the traditional Gaussian random effects model,
whereas for α→ 0, the model reduces to a parametric model without
random effects.

For values of α in between, the model induces ties among the θi .
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Density regression using Dirichlet process mixtures

Two dominant trends in the Bayesian regression literature: seek
increasingly flexible regression function models, and accompany these
models with general error distributions.

Typically, Bayesian nonparametric modeling focuses on either the
regression function or the error distribution.

Bayesian nonparametric models for density regression (aka conditional
regression) (West et al., 1994; Müller et al., 1996).

Flexible nonparametric mixture modeling for the joint distribution of
response(s) and covariates.
Inference for the conditional response distribution given covariates.

Both the response distribution and, implicitly, the regression
relationship are modeled nonparametrically, thus providing a flexible
framework for the general regression problem.
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Density regression using Dirichlet process mixtures

Focus on univariate continuous response y (though extensions for
categorical and/or multivariate responses also possible).

DP mixture model for the joint density f (y , x) of the response y and
the vector of covariates x:

f (y , x) ≡ f (y , x | G ) =

∫
k(y , x | θ) dG (θ), G ∼ DP(α,G0(ψ)).

For the mixture kernel k(y , x | θ) use:

Multivariate normal for (R-valued) continuous response and
covariates.
Mixed continuous/discrete distribution to incorporate both categorical
and continuous covariates.
Kernel component for y supported by R+ for problems in survival/reliability
analysis.
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Density regression using Dirichlet process mixtures

For any grid of values (y0, x0), obtain posterior samples for:

Joint density f (y0, x0 | G), marginal density f (x0 | G), and therefore,
conditional density f (y0 | x0,G).
Conditional expectation E(y | x0,G), which, estimated over grid in x,
provides inference for the mean regression relationship.
Conditioning in f (y0 | x0,G) and/or E(y | x0,G) may involve only a
portion of vector x.
Inverse inferences: inference for the conditional distribution of
covariates given specified response values, f (x0 | y0,G).

Key features of the modeling approach:

Model for both non-linear regression curves and non-standard shapes
for the conditional response density.
Model does not rely on additive regression formulations; it can uncover
interactions between covariates that might influence the regression
relationship.
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Mean regression functional under normal DP mixtures

Assume a normal DP mixture for the joint response-covariate density
(univariate response y , covariate vector x = (x1, ..., xp))

f (y , x | G ) =
∞∑
`=1

ω` Np+1(y , x | µ`,Σ`)

Consider the decomposition of µ` = (µy
` ,µ

x
` ) and Σ` = (Σy

` ,Σ
yx
` ,Σ

x
` )

into components that correspond to the response and covariates.

Then, f (y | x ,G ) =
∑∞
`=1 q`(x) N(y | λ`(x), τ 2

` ), where

q`(x) = ω`Np(x | µx
` ,Σ

x
`)/{

∑∞
s=1 ωsNp(x | µx

s ,Σ
x
s )}

λ`(x) = µy
` + Σyx

` (Σx
`)−1(x − µx

`) and τ 2
` = Σy

` − Σyx
` (Σx

`)−1(Σyx
` )T

Mean regression function:

E(y | x ,G ) =
∞∑
`=1

q`(x){β0` + β1`x1 + . . .+ βp`xp}

where β0` = µy
` − Σyx

` (Σx
` )−1µx

` , and βr`, for r = 1, ..., p, are the
elements of vector Σyx

` (Σx
` )−1.
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Synthetic data example

Simulated data set with a continuous response y , one continuous
covariate xc , and one binary categorical covariate xd .

xci independent N(0, 1).
xdi | xci independent Ber(probit(xci )).
yi | xci , xdi ind. N(h(xci ), σxdi ), with σ0 = 0.25, σ1 = 0.5, and

h(xc) = 0.4xc + 0.5 sin(2.7xc) + 1.1(1 + x2
c )−1.

Two sample sizes: n = 200 and n = 2000.

DP mixture model with a mixed normal/Bernoulli kernel:

f (y , xc , xd | G ) =

∫
N2(y , xc | µ,Σ)πxd (1− π)1−xd dG (µ,Σ, π),

with

G ∼ DP(α,G0(µ,Σ, π) = N2(µ; m,V )IW(Σ; ν, S)Beta(π; a, b)).
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Synthetic data example
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Figure 3.3. Posterior point and 90% interval estimates (dashed and dotted lines) for conditional response expectation
E(y | xc , xd = 0, G) (left panels), E(y | xc , xd = 1, G) (middle panels), and E(y | xc , G) (right panels). The corresponding data is
plotted in grey for the sample of size n = 200 (top panels) and n = 2000 (bottom panels). The solid line denotes the true curve.
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Quantile regression

In regression settings, the covariates may have effect not only on the
location of the response distribution but also on its shape.

Model-based nonparametric approach to quantile regression.
Model joint density f (y , x) of the response y and the M-variate vector
of (continuous) covariates x with a DP mixture of normals:

f (y , x | G) =

∫
NM+1(y , x | µ,Σ)dG(µ,Σ), G ∼ DP(α,G0),

with G0(µ,Σ) = NM+1(µ | m,V )IW(Σ | ν, S).

For any grid of values (y0, x0), obtain posterior samples for:
Conditional density f (y0 | x0,G) and conditional c.d.f. F (y0 | x0,G).
Conditional quantile regression qp(x0 | G), for any 0 < p < 1.

Key features of the DP mixture modeling framework:
Enables simultaneous inference for more than one quantile regression.
Allows flexible response distributions and non-linear quantile
regression relationships.
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Quantile regression: data example

Moral hazard data on the relationship between shareholder concen-
tration and several indices for managerial moral hazard in the form of
expenditure with scope for private benefit (Yafeh & Yoshua, 2003).

Data set includes a variety of variables describing 185 Japanese indus-
trial chemical firms listed on the Tokyo stock exchange.

Response y : index MH5, consisting of general sales and administrative
expenses deflated by sales.

Four-dimensional covariate vector x: Leverage (ratio of debt to total
assets); log(Assets); Age of the firm; and TOPTEN (the percent of
ownership held by the ten largest shareholders).
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Quantile regression: data example
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Figure 3.4. Posterior mean and 90% interval estimates for median regression for MH5 conditional on each individual covariate. Data
scatterplots are shown in grey.
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Quantile regression: data example
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Figure 3.5. Posterior mean and 90% interval estimates for 90th percentile regression for MH5 conditional on each individual covariate.
Data scatterplots are shown in grey.
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Quantile regression: data example
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Leverage and TOPTEN. The posterior mean is shown on the top row and the posterior interquartile range on the bottom.
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Quantile regression: data example
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DP mixture density regression: applications

Regression modeling with categorical responses (Shahbaba & Neal,
2009; Dunson & Bhattacharya, 2011; Hannah et al., 2011; DeYoreo
& Kottas, 2015, 2018a,b).

Functional data analysis through density estimation (Rodriguez et al.,
2009).

Markov switching regression (Taddy & Kottas, 2009), and fully
nonparametric quantile regression (Taddy & Kottas, 2010).

Product partition models with regression on covariates (Müller &
Quintana, 2010; Park & Dunson, 2010), and regression modeling
with enriched DP priors (Wade et al., 2014).

Nonparametric survival regression (Poynor & Kottas, 2017).

NPB density autoregression (Heiner & Kottas, 2020).

© Athanasios Kottas 2021 (thanos@soe.ucsc.edu) Applied Bayesian Nonparametric Mixture Modeling



Modeling for multivariate ordinal data

Values of k ordinal categorical variables Y1, . . . ,Yk recorded for n
subjects:

Cj ≥ 2: number of categories for the j-th variable, j = 1, . . . , k.
n`1···`k : number of observations such that

Y = (Y1, . . . ,Yk) = (`1, . . . , `k).

p`1···`k = Pr(Y1 = `1, . . . ,Yk = `k) is the classification probability for
the (`1, . . . , `k) cell.

The data can be summarized in a k-dimensional contingency table
with C =

∏k
j=1 Cj cells, with frequencies {n`1···`k} constrained by∑

`1···`k n`1···`k = n.
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Modeling for multivariate ordinal data

A possible modeling strategy (alternative to log-linear models) in-
volves the introduction of k continuous latent variables Z = (Z1, . . . ,Zk)
whose joint distribution yields through discretization the classification
probabilities for the table cells,

p`1···`k = Pr

 k⋂
j=1

{
γj,`j−1 < Zj ≤ γj,`j

}
for cutoff points −∞ = γj,0 < γj,1 < · · · < γj,Cj−1 < γj,Cj = ∞, for
each j = 1, . . . , k (e.g., Johnson and Albert, 1999).

Common distributional assumption: Z ∼ Nk(0,S) (probit model).

ρst = Corr(Zs ,Zt) = 0, s 6= t, implies independence of the
corresponding categorical variables.
Coefficients ρst , s 6= t: polychoric correlation coefficients (traditionally
used in the social sciences as a measure of association).
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Modeling for multivariate ordinal data

Richer modeling and inference based on normal DP mixtures for the
latent variables Zi associated with data vectors Yi , i = 1, . . . , n.

Model Zi | G i.i.d. f , with f (· | G ) =
∫
Nk(· | m,S)dG (m,S), where

G | α,λ,Σ,D ∼ DP(α,G0(m,S) = Nk(m | λ,Σ)IWk(S | ν,D))

Advantages of the DP mixture modeling approach:

Can accommodate essentially any pattern in k-dimensional
contingency tables.
Allows local dependence structure to vary accross the contingency
table.
Implementation does not require random cutoffs (so the complex
updating mechanisms for cutoffs are not needed).
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Modeling for multivariate ordinal data: data example

A data set on Interrater Agreement: data on the extent of scleral
extension (extent to which a tumor has invaded the sclera or “white
of the eye”) as coded by two raters for each of n = 885 eyes.

The coding scheme uses five categories: 1 for “none or innermost
layers”; 2 for “within sclera, but does not extend to scleral surface”;
3 for “extends to scleral surface”; 4 for “extrascleral extension without
transection”; and 5 for “extrascleral extension with presumed residual
tumor in the orbit”.

Results under the DP mixture model (and, for comparison, using also
a probit model).

The (0.25, 0.5, 0.75) posterior percentiles for n∗ are (6, 7, 8); in fact,
Pr(n∗ ≥ 4 | data) = 1.
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Modeling for multivariate ordinal data: data example

For the interrater agreement data, observed cell relative frequencies (in bold) and posterior
summaries for table cell probabilities (posterior mean and 95% central posterior intervals). Rows
correspond to rater A and columns to rater B.

.3288 .3264 .0836 .0872 .0011 .0013 .0011 .0020 .0011 .0008
(.2940, .3586) (.0696, .1062) (.0002, .0041) (.0003, .0055) (.0, .0033)

.2102 .2136 .2893 .2817 .0079 0.0080 .0079 .0070 .0034 .0030
(.1867, .2404) (.2524, .3112) (.0033, .0146) (.0022, .0143) (.0006, .0074)

.0023 .0021 .0045 .0060 .0 .0016 .0023 .0023 .0 .0009
(.0004, .0059) (.0021, .0118) (.0004, .0037) (.0004, .0059) (.0, .0030)

.0034 .0043 .0113 .0101 .0011 .0023 .0158 .0142 .0023 .0027
(.0012, .0094) (.0041, .0185) (.0004, .0058) (.0069, .0238) (.0006, .0066)

.0011 .0013 .0079 .0071 .0011 .0020 .0090 .0084 .0034 .0039
(.0001, .0044) (.0026, .0140) (.0003, .0054) (.0033, .0159) (.0011, .0090)
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Modeling for multivariate ordinal data: data example

Posterior predictive distributions p(Z0 | data) (see Figure 3.8) – DP mixture
version is based on the posterior predictive distribution for corresponding
mixing parameter (m0, S0).

Inference for the association between the ordinal variables:

For example, Figure 3.8 shows posteriors for ρ0, the correlation coef-
ficient implied in S0.
The probit model does not capture successfully the association of the
ordinal variables, since it fails to recognize the clustering suggested by
the data (revealed by the DP mixture model).

Figure 3.9 shows inferences for log-odds ratios,

ψij = logpi,j + log pi+1,j+1 − log pi,j+1 − log pi+1,j .

Utility of mixture modeling for this data example: one of the clusters dom-
inates the others, but identifying the other three is important; one of them
corresponds to agreement for large values in the coding scheme; the other
two indicate regions of the table where the two raters tend to agree less
strongly.
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Modeling for multivariate ordinal data: data example
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Figure 3.8. For the interrater agreement data, draws from p(Z0 | data) and p(ρ0 | data) under the DP mixture model (panels (a) and
(c), respectively) and the probit model (panels (b) and (d), respectively).
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Modeling for multivariate ordinal data: data example
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Figure 3.9. For the interrater agreement data, posteriors for four log-odds ratios under the DP mixture model (solid lines) and the probit
model (dashed lines). The circles denote the corresponding empirical log-odds ratios.
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Nonparametric multivariate ordinal regression

k ordinal variables Y = (Y1, . . . ,Yk), with yj ∈ {1, . . . ,Cj}, and p
(continuous) covariates X = (X1, . . . ,Xp).

Again, Yj = ` if-f γj,`−1 < Zj ≤ γj,`, for j = 1, ..., k, and ` = 1, ...,Cj .

Now, model the joint distribution of the latent continuous responses,
Z = (Z1, . . . ,Zk), and the covariates, X, with a multivariate normal
DP mixture → implies a regression model, Pr(Y | x), which is a
mixture of probit regressions with covariate-dependent weights.

Large support under fixed cut-offs:

for any mixed ordinal-continuous distribution, p0(x , y), that satisfies
certain regularity conditions, the prior model assigns positive proba-
bility to all Kullback-Leibler (KL) neighborhoods of p0(x , y), as well
as to all KL neighborhoods of the implied conditional distribution,
p0(y | x).
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Ozone concentration data example

Data set comprising 111 measure-
ments of ozone concentration (ppb),
wind speed (mph), radiation (lan-
gleys), and temperature (degrees
Fahrenheit).

Ozone concentration recorded on continuous scale.

To construct an ordinal response: define “high” as above 100 ppb,
“medium” as (50, 100] ppb, and “low” as less than 50 ppb.

Comparison of inferences from the model for (Y ,X) with those from
a DP mixture of normals model for (Z ,X).
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Ozone concentration data example
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Figure 3.10. Posterior mean (solid) and 95% interval estimates (dashed) for Pr(Y = ` | xm, G) (black) compared to
Pr(γ`−1 < Z ≤ γ` | xm, G) (red).
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Ozone concentration data example
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Figure 3.11. Posterior mean estimates for Pr(Y = ` | x1, x2, G), for ` = 1, 2, 3, corresponding to low (left), medium (middle) and
high (right). Red represents a value of 1, white represents 0.

© Athanasios Kottas 2021 (thanos@soe.ucsc.edu) Applied Bayesian Nonparametric Mixture Modeling



Nonparametric inference for Poisson processes

Point processes are stochastic process models for events that occur
separated in time or space.

Applications of point process modeling in traffic engineering, software
reliability, neurophysiology, weather modeling, forestry, ...

Poisson processes, along with their extensions (Poisson cluster pro-
cesses, marked Poisson processes, etc.), play an important role in the
theory and applications of point processes. (e.g., Kingman, 1993;
Guttorp, 1995; Moller & Waagepetersen, 2004).

Bayesian nonparametric work based on gamma processes, weighted
gamma processes, and Lévy processes (e.g., Lo & Weng, 1989; Kuo
& Ghosh, 1997; Wolpert & Ickstadt, 1998; Gutiérrez-Peña & Nieto-
Barajas, 2003; Ishwaran & James, 2004).
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Definition of Poisson processes on the real line

For a point process over time, let N(t) be the number of event
occurrences in the time interval (0, t].

The point process N = {N(t) : t ≥ 0} is a non-homogeneous Poisson
process (NHPP) if:

For any t > s ≥ 0, N(t) − N(s) follows a Poisson distribution with
mean Λ(t)− Λ(s).
N has independent increments, i.e., for any 0 ≤ t1 < t2 ≤ t3 < t4,
N(t2)− N(t1) and N(t4)− N(t3) are independent random variables.

Λ is the mean measure (or cumulative intensity function) of the NHPP.

For any t ∈ R+, Λ(t) =
∫ t

0
λ(u)du, where λ is the NHPP intensity

function – λ is a non-negative and locally integrable function (i.e.,∫
B
λ(u)du <∞, for all bounded B ⊂ R+).

So, from a modeling perspective, the main functional of interest for
a NHPP is its intensity function.
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Nonparametric inference for Poisson processes

Consider a NHPP observed over the time interval (0,T ] with events
that occur at times 0 < t1 < t2 < . . . < tn ≤ T .

The likelihood for the NHPP intensity function λ is proportional to

exp

{
−
∫ T

0

λ(u)du

}
n∏

i=1

λ(ti ).

Key observation: f (t) = λ(t)/γ, where γ =
∫ T

0
λ(u)du, is a density

function on (0,T ).

Hence, a nonparametric prior model for f , with a parametric prior for
γ, will induce a semiparametric prior for λ.

Since γ only scales λ, it is f that determines the shape of the intensity
function λ.
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Nonparametric inference for Poisson processes

Beta DP mixture model for f :

f (t) ≡ f (t | G ) =

∫
Beta(t | µ, τ)dG (µ, τ), G ∼ DP(α,G0)

where Beta(t | µ, τ) is the Beta density on (0,T ) with mean µ ∈
(0,T ) and scale parameter τ > 0, and G0(µ, τ) = Uni(µ | 0,T )
IG(τ | c , β) with random scale parameter β.

Flexible density shapes through mixing of Betas (e.g., Diaconis and
Ylvisaker, 1985) – Beta mixture model avoids edge effects (a drawback
of the normal DP mixture model in this setting).

Full Bayesian model:

e−γγn

{
n∏

i=1

∫
Beta(ti | µi , τi )dG (µi , τi )

}
p(γ)DP(G | α,G0(β))p(α)p(β)

Reference prior for γ, p(γ) ∝ γ−1.
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Nonparametric inference for Poisson processes

Letting θ = {(µi , τi ) : i = 1, . . . , n}, we have

p(γ,G ,θ, α, β | data) = p(γ | data)p(G | θ, α, β)p(θ, α, β | data)

where:

p(γ | data) is a gamma(n, 1) distribution.

MCMC is used to sample from p(θ, α, β | data).

p(G | θ, α, β) is a DP with updated parameters (can be sampled as
discussed earlier).

Full posterior inference for λ, Λ, and any other NHPP functional.

Extensions to inference for spatial NHPP intensities, using DP
mixtures with bivariate Beta kernels (Kottas and Sansó, 2007).

© Athanasios Kottas 2021 (thanos@soe.ucsc.edu) Applied Bayesian Nonparametric Mixture Modeling



Data examples

Example for temporal NHPPs: times of 191 explosions in mines, lead-
ing to coal-mining disasters with 10 or more men killed, over a time
period of 40,550 days, from 15 March 1851 to 22 March 1962.

Specification for DP(α,G0(µ, τ | β) = Uni(µ | 0,T )IG(τ | 2, β)).

gamma(aα, bα) prior for α.
Exponential prior for β – its mean can be specified using a prior guess
at the range, R, of the event times ti (e.g., R = T is a possible default
choice).

Inference for the NHPP intensity under three prior choices: priors for
β and α based on R = T , E(n∗) ≈ 7; R = T , E(n∗) ≈ 15; and
R = 1.5T , E(n∗) ≈ 7.

Examples for spatial NHPPs, using two forestry data sets:

locations of 62 redwood seedlings in a square of 23 m;
locations of 514 maple trees in a 19.6 acre square plot in Lansing
Woods, Clinton County, MI.
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Data examples

************** ************************************************************************************************************************ *** ************** ** *** ** ************************ ***** * * **
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Figure 3.12. Coal-mining disasters data. Posterior point and 95% interval estimates for the intensity function under three prior settings.
The observed times of the 191 explosions in mines are plotted on the horizontal axis.
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Data examples
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Figure 3.13. Redwood seedlings data. Contour plots of posterior mean intensity estimates under two different priors for α. The dots
indicate the locations of the redwood seedlings.
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Data examples
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Figure 3.14. Maples data. Panels (a) and (b) include the posterior mean intensity estimate (contour and perspective plot, respectively).
Panels (c) and (d) show contour plots for the posterior median and interquartile range intensity estimates, respectively. The dots denote
the locations of the maple trees.
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Nonparametric modeling for NHPPs: further work

Applications to neuronal data analysis (Kottas and Behseta, 2010;
Kottas et al., 2012).

Inference for marked Poisson processes (Taddy & Kottas, 2012).

Dynamic modeling for spatial NHPPs (Taddy, 2010).

Risk assessment of extremes from spatially dependent environmental
time series (Kottas et al., 2012) and from correlated financial markets
(Rodriguez et al., 2017).

Dynamic modeling for time-varying seasonal intensities, with an
application to predicting hurricane damage (Xiao et al., 2015).

More recent work on prior models for the NHPP intensity, based on
weighted combinations of Erlang densities (Kim & Kottas, 2020) or
Bernstein densities (Zhao & Kottas, 2021).
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4. Nonparametric Priors for Dependent Distributions
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Nonparametric priors for dependent distributions

So far we have mainly focused on problems where a single (possibly
multivariate) distribution is assigned a nonparametric prior. This is
consistent with the earlier developments in the Bayes nonparametrics
literature.

However, in many applications, the objective is modeling a collection
of distributions G = {Gs : s ∈ S}, indexed by s ∈ S

S might be: a discrete, finite set indicating different “groups”; a time
interval; a spatial region; or a covariate space.

Obvious options:

Assume that the distribution is the same everywhere, e.g.,
Gs ≡ G ∼ DP(α,G0) for all s. This is too restrictive.
Assume that the distributions are independent and identically
distributed, e.g., Gs ∼ DP(α,G0) independently for each s. This is
wasteful.

We would like something in between.
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Nonparametric priors for dependent distributions

A similar question arises in parametric models. Recall the random
intercepts model:

yij = θi + εij , εij
i.i.d.∼ N(0, σ2),

θi = µ+ νi , νi
i.i.d.∼ N(0, τ 2),

with µ ∼ N(m, s2).

If τ 2 → 0, we have θi = µ for all i , i.e., all means are the same.
“Maximum” borrowing of information across groups.
If τ 2 → ∞, all the means are different (and independent from each
other). No information is borrowed.

In a traditional random effects model, estimating τ 2 provides some-
thing in between (some borrowing of information across effects).

How can we generalize this idea to random distributions?

Note that a nonparametric prior for the random effects distribution is
not enough, as the distribution of the errors is still Gaussian.
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Modeling dependence in collections of random distributions

A number of modeling approaches have been presented in the
literature, including:

Introducing dependence through the baseline distributions of condi-
tionally independent nonparametric priors: for example, product of
mixtures of DPs. Simple but restrictive.

Structured priors for a finite number of distributions through linear
combinations of realizations from independent DPs (e.g., Müller et
al., 2004; Kolossiatis et al., 2013).

Hierarchical nonparametric prior models for finite collections of distri-
butions (analysis of densities model, hierarchical DP, nested DP).

Dependent Dirichlet process (DDP): Starting with the stick-breaking
construction of the DP, and replacing the weights and/or atoms with
appropriate stochastic processes on S (MacEachern, 1999; 2000).
Very general procedure, most of the models discussed here can be
framed as DDPs.
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Outline and further references

DDP priors.

Hierarchical nonparametric priors for finite collections of distributions: hi-

erarchical DPs (Teh. et al., 2006), which are related to the “analysis of

densities” model (Tomlinson and Escobar, 1999); and nested DPs (Ro-

driguez et al., 2008).

Spatial DPs (Gelfand et al., 2005; Kottas et al., 2008)

Two applications of DDP modeling: risk assessment in developmental toxic-

ity studies (Fronczyk and Kottas, 2014a), and inference for dynamic ordinal

regression relationships (DeYoreo and Kottas, 2018b).

However, this is by no means an exhaustive list: order-depedent DDPs (Grif-

fin and Steel, 2006); generalized spatial DP (Duan, Guindani and Gelfand,

2007); kernel stick-breaking processes (Dunson and Park, 2008); depen-

dent Pólya tree regression models (Trippa et al., 2011); stick-breaking

autoregressive processes (Griffin and Steel, 2011); dependent normalized

completely random measures (Griffin et al., 2013; Lijoi et al., 2014) .....
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Definition of the dependent Dirichlet process

Recall the DP constructive definition: if G ∼ DP(α,G0), then

G =
∞∑
`=1

ω` δθ`

where the θ` are i.i.d. from G0, and ω1 = z1, ω` = z`
∏`−1

r=1(1 − zr ),
` = 2, 3, . . ., with zr i.i.d. Beta(1, α).

To construct a DDP prior for the collection of random distributions,
G = {Gs : s ∈ S}, define Gs as

Gs =
∞∑
`=1

ω`(s) δθ`(s)

with {θ`(s) : s ∈ S}, for ` = 1, 2, ..., independent realizations from a
(centering) stochastic process G0,S defined on S

and stick-breaking weights defined through independent realizations
{zr (s) : s ∈ S}, r = 1, 2, ..., from a stochastic process on S with
marginals zr (s) ∼ Beta(1, α(s)) (or with common α(s) ≡ α).
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Dependent Dirichlet processes

For any fixed s, this construction yields a DP prior for distribution Gs.

The support of DDP priors is studied in Barrientos et al. (2012).

For uncountable index sets S , smoothness (e.g., continuity) properties of the
centering process G0,S and the stochastic process that defines the weights
drive smoothness of DDP realizations.

For instance, for spatial regions S , we typically seek smooth evolution
for the distributions Gs, with the level of dependence between Gs and
Gs′ driven by the distance between spatial sites s and s′.

For specified set A, {Gs(A) : s ∈ S} is a stochastic process with beta

marginals. The covariance between Gs(A) and Gs′(A) can be used to study

the dependence structure under a particular DDP prior.

Effective inference under DDP prior models requires some form of replicate

responses across the observed index points.

As with DP priors, the DDP prior is typically used to model the distribution

of parameters in a hierarchical model, resulting in DDP mixture models.
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“Common-weights” dependent Dirichlet processes

“Common-weights” (or “single-p”) DDP models: the weights do not
depend on s; dependence is induced across atoms in the stick-breaking
construction:

Gs =
∞∑
`=1

ω` δθ`(s)

where ω1 = z1, ω` = z`
∏`−1

r=1(1−zr ), ` ≥ 2, with zr i.i.d. Beta(1, α).

Advantage⇒ Computation is relatively simple, since common-weights
DDP mixture models can be written as DP mixtures for an appropriate
baseline distribution.

Disadvantage ⇒ Dependent weights can generate local dependence
structure which is desirable in temporal or spatial applications.

Some applications of common-weights DDP models: De Iorio et al. (2004);

Rodriguez and ter Horst (2008); De Iorio et al. (2009); Di Lucca et al.

(2013); Fronczyk and Kottas (2014a,b).
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“Common-atoms” dependent Dirichlet processes

“Common-atoms” DDP models: the alternative simplification where
the atoms are common to all distributions:

Gs =
∞∑
`=1

ω`(s) δθ`

where the θ` are i.i.d. from G0.

Advantage ⇒ The structure with common atoms across distributions
that have weights that change with s may be attractive in certain
applications. When the dimension of θ is moderate to large, it also re-
duces significantly the number of stochastic processes over S required
for a full DDP specification.

Disadvantage ⇒ Prediction at new s (say, forecasting when s corre-
sponds to discrete time) can be problematic.

Examples of modeling with common-atoms DDP priors: Taddy (2010) and

Nieto-Barajas et al. (2012).
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ANOVA dependent Dirichlet process models

Consider a space S such that s = (s1, . . . , sp) corresponds to a vector

of categorical variables. For instance, in a clinical setting, Gs1,s2 might

correspond to the random effects distribution for patients treated at levels

s1 and s2 of two different drugs.

For example, consider the normal mixture

ys1,s2,k | Gs1,s2 , σ
2 ∼

∫
N(ys1,s2,k | η, σ

2)dGs1,s2 (η), Gs1,s2 =
∞∑
h=1

ωh δθh,s1,s2

with θh,s1,s2 = mh + Ah,s1 + Bh,s2 + ABh,s1,s2 and

mh ∼ Gm
0 , Ah,s1 ∼ GA

0 , Bh,s2 ∼ GB
0 , ABh,s1,s2 ∼ GAB

0 .

Typically, Gm
0 , GA

0 , GB
0 and GAB

0 are normal distributions, and we introduce

identifiability constrains, e.g., Ah,1 = Bh,1 = 0 and ABh,1,s2 = ABh,s1,1 = 0.
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ANOVA dependent Dirichlet process models

Note that the atoms of Gs1,s2 have a structure that resembles a two way

ANOVA.

Indeed, the ANOVA-DDP mixture model can be reformulated as a DP
mixture of ANOVA models where, in principle, there can be up to one
different ANOVA for each observation:

ys1,s2,k | F , σ
2 ∼

∫
N(ys1,s2,k | ds1,s2 η, σ

2) dF (η), F ∼ DP(α,G0)

where ds1,s2 is a design vector selecting the appropriate coefficients from η

and G0 = Gm
0 GA

0 G
B
0 GAB

0 .

In practice, just a small number of ANOVA models. If a single component

is used, we recover a parametric ANOVA model.

Rephrasing the ANOVA-DDP model as a DP mixture simplifies posterior
simulation.

Function LDDPdensity in DPpackage implements ANOVA-DDP models.
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Linear-DDP models

An analogue of the ANOVA-DDP for continuous covariates. Consider

w.l.o.g. a single continuous covariate, x .

Example: linear-DDP normal mixture model

f (y | Gx , σ
2) =

∫
N(y | θ, σ2) dGx(θ) with Gx =

∞∑
`=1

ω` δβ0`+β1`x

i.e., use common weights and a linear function (rather than a full stochastic

process) for the atoms: θ`(x) = β0` + β1`x , with (β0`, β1`)
ind.∼ G0.

The model can be written as a DP mixture of normal linear regressions:

f (y | Gx , σ
2) =

∞∑
`=1

ω` N(y | β0` + β1`x , σ
2) =

∫
N(y | β0 + β1x , σ

2) dF (β0, β1)

where F =
∑∞
`=1 ω` δ(β0`,β1`), i.e., F ∼ DP(α,G0).

Flexible in terms of non-Gaussian response distributions, but not in terms

of regression relationships: E(y | Gx) =
∑∞
`=1 ω` (β0` + β1`x), a mixture of

linear regressions, but without local (covariate-dependent) weights.
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Fully nonparametric “random effects” models

As an example, consider modeling the distribution of SAT scores on
different schools.

So, data point yij corresponds to the SAT score obtained by student
j = 1, . . . ,mi in school i = 1, . . . , n.

A standard parametric model for the (possibly transformed) SAT
scores is the Gaussian random intercepts model:

yij | θi , σ2 ind.∼ N(yij | θi , σ2), θi | µ, τ 2 i.i.d.∼ N(µ, τ 2)

with hyperpriors assigned to µ and τ 2. Here, θi is the school-specific
random effect.

But, what if the distributions of scores appear to be non-Gaussian?

Can we develop prior models that allow flexible SAT score distributions
and general dependence structures to borrow strength across the SAT
score distributions over all schools?
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Fully nonparametric “random effects” models

DP mixture models with school-specific mixing distributions:

yij | Gi , σ
2 ind.∼

∫
N(yij | θ, σ2) dGi (θ)

Gi | αi ,G0
ind.∼ DP(αi ,G0)

Dependence? borrowing of strength?

introduce dependence through a hierarchical prior for the αi and/or
parameters ψi of G0? restrictive, weak form of dependence
a parametric G0 is in general restrictive

Use a nonparametric prior structure for G0

analysis of densities model: G0 ∼ DP mixture prior
hierarchical DP (HDP): G0 ∼ DP prior
nested DP (NDP): G0 = DP

(typically, αi ≡ α for the HDP; we must have αi ≡ α for the NDP).
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Analysis of densities model

School-specific mixing distributions arising conditionally independent
from a DP with a DP mixture prior for its centering distribution:

yij | Gi , σ
2 ind.∼

∫
N(yij | θ, σ2) dGi (θ)

Gi | αi ,G0
ind.∼ DP(αi ,G0)

G0(u | F , τ 2) =

∫
N(u | µ, τ 2) dF (µ), F ∼ DP(α0,F0)

The DP mixture for G0 encourages similar (though not identical) Gi ,
and thus grouping of the SAT score distributions.

Note that the mixing distributions Gi have different atoms and
different weights (even under αi ≡ α).

The model structure is reminiscent of the Gaussian random effects
model, but it is built at the level of the distributions.
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Hierarchical Dirichlet processes

Consider again the example with SAT scores from different schools.

Hierarchical Dirichlet process (HDP) mixture models estimate the
school-specific distribution by identifying latent classes of students
that appear (possibly with different frequencies) in all schools.

Let

yij | Gi
ind.∼
∫

k(yij | η)dGi (η), Gi | G0
ind.∼ DP(α,G0), G0 ∼ DP(β,H)

Conditionally on G0, the mixing distribution for each school is an
independent realization from the DP(α,G0)

dependence across schools is introduced, since they all share the same
baseline distribution G0.

As with the analysis of densities model, we recognize a random effects
model structure for distributions.
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Hierarchical Dirichlet processes

Since G0 is drawn from a DP, it is (a.s.) discrete, G0 =
∑∞
`=1 ω` δφ` .

Therefore, when we draw the atoms for Gi we are forced to choose
among φ1, φ2, . . ., i.e., we can write Gi as:

Gi =
∞∑
`=1

π`i δφ`

Note that the HDP resembles the structure of a common-atoms DDP
prior model.

The weights assigned to the atoms are not independent. Intuitively,
if φ` has a large weight ω` under G0, then the weight π`i under Gi

will likely be large for every i .

Indeed, πi | ω ∼ DP(α,ω), where πi = (π1i , π2i , . . .) and ω =
{ω` : ` = 1, 2, ...} (see the next page), such that E(π`i | ω) = ω`.
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Hierarchical Dirichlet processes

Assume H is a continuous distribution on R.

Consider a partition (A1, ...,Ar ) of R, and let Ks = {` : φ` ∈ As}, for
s = 1, ..., r , such that (K1, ...,Kr ) is a partition of Z+ = {1, 2, ...}.
(Since H is continuous, the φ` are distinct a.s., and therefore there is
an one-to-one correspondence between the partitions of R and Z+.)

Now, (Gi (A1), ...,Gi (Ar )) | G0 ∼ Dirichlet(αG0(A1), ..., αG0(Ar )), for
each i , that is,(∑

`∈K1

π`i , . . . ,
∑
`∈Kr

π`i

)
| ω ∼ Dirichlet

(
α
∑
`∈K1

ω`, . . . , α
∑
`∈Kr

ω`

)

for any partition (K1, ...,Kr ) of Z+. Hence, πi | ω ∼ DP(α,ω),
where the centering DP distribution ω is a distribution on Z+.
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Hierarchical Dirichlet processes

Using the previous result for partition (K1 = {1, ..., ` − 1},K2 =
{`},K3 = {`+ 1, `+ 2, ...}), we have:

(
∑`−1

s=1 πsi , π`i ,
∑∞

s=`+1 πsi ) | ω ∼ Dirichlet(α
∑`−1

s=1 ωs , αω`, α
∑∞

s=`+1 ωs)

and, using Dirichlet distribution properties, π∗`i = (1−
∑`−1

s=1 πsi )
−1π`i

follows, conditional on ω, a Beta(αω`, α(1−
∑`

s=1 ωs)) distribution.

Therefore, for each i , the π`i admit a stick-breaking representation:

π1i = π∗1i and π`i = π∗`i
∏`−1

s=1(1− π∗si ), for ` ≥ 2, based on the Beta
distributed variables π∗`i .

This structure can be used to obtain E(π`i | ω) = ω`.

An MCMC sampler can be devised for posterior simulation by com-
posing two Pólya urns, one built from (α,G0) and one from (β,H).
The resulting MCMC algorithm is similar to the marginal sampler for
DP mixture models, but bookkeeping is harder.
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Nested Dirichlet Processes

Also a model for exchangeable distributions. Rather than borrowing
strength by sharing clusters among all distributions, the nested DP
(NDP) borrows information by clustering similar distributions.

An example: assessment for quality of care in hospitals nationwide.

yij : percentage of patients in hospital j = 1, . . . ,mi within state i =
1, . . . , n who received the appropriate antibiotic on admission.
We may want to cluster states with similar distributions of quality
scores, and simultaneously cluster hospitals with similar outcomes.

Let yij | Gi
ind.∼
∫
k(yij | η)dGi (η), where

Gi | Q
ind.∼ Q =

∞∑
k=1

ωkδG∗k G∗k =
∞∑
`=1

π`kδθ`k ,

where θ`k ∼ H, π`k = u`k
∏

r<`(1− urk) with u`k ∼ Beta(1, β), and
ωk = vk

∏
r<k(1− vr ) with vk ∼ Beta(1, α).
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Nested Dirichlet Processes

So, in this case, Gi | Q
ind.∼ Q, with Q ∼ DP(α,DP(β,H)).

Note that the NDP generates two layers of clustering: states, and hospi-

tals within groups of states. However, groups of states are conditionally

independent from each other.

The HDP vs. the NDP

Under the HDP, Pr(Gi = Gi′) = 0; same atoms, but different weights
for Gi and Gi′ ; clustering only for observations.

Under the NDP, we have either Gi = Gi′ or entirely different Gi and
Gi′ ; if Gi = Gi′ , observations from groups i and i ′ can be clustered
together; clustering on both observations and distributions.

Fixing an issue with the NDP→ latent nested processes (Camerlenghi
et al., 2019)

© Athanasios Kottas 2021 (thanos@soe.ucsc.edu) Applied Bayesian Nonparametric Mixture Modeling



The HDP vs. the NDP

G0

G∗1 G∗2

G∗3 G∗4

HDP G1 G1 NDP

G2 G2

G3 G3
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Linear combinations of realizations from independent DPs

Structured hierarchical model through linear combinations of
realizations from independent DPs:

Gi = εi H0 + (1− εi )Hi i = 1, ..., n

Hi
ind.∼ DP(αi ,F0) i = 0, 1, ..., n

Special case of the model with εi ≡ ε.

The prior for the εi (or for ε) includes point masses at 0 and at 1.

H0 is a common component for all distributions Gi , whereas the Hi

are idiosyncratic components.

Under this model, Gi = Gi ′ if-f εi = εi ′ = 1, in which case we have
Gi = Gi ′ = H0.
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Spatial Dirichlet process models

Spatial data modeling: based on Gaussian processes (distributional
assumption) and stationarity (assumption on the dependence struc-
ture).

Basic model for a spatial random field YD = {Y (s) : s ∈ D}, with
D ⊆ Rd :

Y (s) = µ(s) + θ(s) + ε(s)

µ(s) is a mean process, e.g., µ(s) = x ′(s)β.
θ(s) is a spatial process, typically, a mean 0 isotropic Gaussian process,
i.e., Cov(θ(si ), θ(sj) | σ2, φ) = σ2ρφ(||si − sj ||) = σ2(H(φ))i,j
ε(s) is a pure error (nugget) process, e.g., ε(s) i.i.d. N(0, τ 2).

Induced model for observed sample (point referenced spatial data),
Y = (Y (s1), . . . ,Y (sn)), at sites s(n) = (s1, . . . , sn) in D

Y | β, σ2, φ, τ 2 ∼ N(X ′β, σ2H(φ) + τ 2In).
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Spatial Dirichlet process models

Objective of Bayesian nonparametric modeling: develop prior
models for the distribution of θD = {θ(s) : s ∈ D}, and thus for the
distribution of YD = {Y (s) : s ∈ D}, that relax the Gaussian and
stationarity assumptions.

In general, a fully nonparametric approach requires replicate observa-
tions at each site, Yt = (Yt(s1), . . . ,Yt(sn))′, t = 1, . . . ,T , though
imbalance or missingness in the Yt(si ) can be handled.

Temporal replications available in various applications, e.g., in
epidemiology, environmental contamination, and weather modeling.

Direct application of the methodology for spatial processes (when
replications can be assumed approximately independent).
More generally, extension to spatio-temporal modeling, e.g., through
dynamic spatial process modeling viewing Y (s, t) ≡ Yt(s) as a tem-
porally evolving spatial process (Kottas, Duan and Gelfand, 2008).
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Spatial Dirichlet process models

Spatial Dirichlet process: arises as a dependent DP where G0 is
extended to G0D , a random field over D, e.g., a stationary Gaussian
process — thus, in the DP constructive definition, each θ` is extended
to θ`,D = {θ`(s) : s ∈ D} a realization from G0D , i.e., a random
surface over D.

Hence, the spatial DP is defined as a random process over D

GD =
∞∑
`=1

ω`δθ`,D ,

which is centered at G0D .

A process defined in this way is denoted GD ∼ SDP(α,G0D).
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Spatial Dirichlet process models

Key property: if

θD = {θ(s) : s ∈ D} | GD ∼ GD , GD ∼ SDP(α,G0D)

then for any s(n) = (s1, . . . , sn), GD induces G (s(n)) ≡ G (n), a random

distribution for (θ(s1), . . . , θ(sn)), and G (n) ∼ DP(α,G
(n)
0 ), where

G
(n)
0 ≡ G

(s(n))
0 .

If G0D is a Gaussian process, then G
(s(n))
0 is n-variate normal.
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Spatial Dirichlet process models

For stationary G0D , the smoothness of realizations from SDP(α,G0D)
is determined by the choice of the covariance function of G0D .

For instance, if G0D produces a.s. continuous realizations, then
G (s) − G (s′) → 0 a.s. as ||s − s ′|| → 0.
We can learn about G (s) more from data at neighboring locations than
from data at locations further away (as in usual spatial prediction).

Random process GD is centered at a stationary Gaussian process, but
it is nonstationary, it has nonconstant variance, and it yields non-
Gaussian finite dimensional distributions.

More general spatial DP models?

Allow weights to change with spatial location, i.e., allow realization at
location s to come from a different surface than that for the realization
at location s ′ (Duan, Guindani and Gelfand, 2007).
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Spatial Dirichlet process models

Almost sure discreteness of realizations from GD?

Mix GD against a pure error process K (i.i.d. ε(s) with mean 0 and
variance τ 2) to create random process over D with continuous support.

Spatial DP mixture model: If GD ∼ SDP(α,G0D), θD | GD ∼ GD ,
and YD − θD | τ 2 ∼ K

F
(
YD | GD , τ

2
)

=

∫
K
(
YD − θD | τ 2

)
dGD (θD)

i.e., Y (s) = θ(s) + ε(s); θ(s) from a spatial DP; ε(s), say, i.i.d.
N(0, τ 2) (again, process F is non-Gaussian and nonstationary).

Adding covariates, the induced model at locations s(n) = (s1, . . . , sn),

f
(

Y | G (n), β, τ 2
)

=

∫
Nn

(
Y | X ′β + θ, τ 2In

)
dG (n) (θ) ,

where Y = (Y (s1), . . . ,Y (sn))′, θ = (θ(s1), . . . , θ(sn))′, and X is
a p × n matrix with Xij the value of the i-th covariate at the j-th
location.
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Spatial Dirichlet process models

Data: for t = 1, . . . ,T , response Yt = (Yt(s1), . . . ,Yt(sn))′ (with
latent vector θt = (θt(s1), . . . , θt(sn))′), and design matrix Xt .

G
(n)
0 (· | σ2, φ) = Nn(0n, σ

2Hn(φ)) where (Hn(φ))i,j = ρφ(si − sj) (or
ρφ(||si−sj ||)), induced by a mean 0 stationary (or isotropic) Gaussian
process. (Exponential covariance function ρφ(|| · ||) = exp(−φ|| · ||),
φ > 0, used for the data example.)

Bayesian model: (conjugate DP mixture model)

Yt | θt , β, τ 2 ind.∼ Nn(Yt | X ′t β + θt , τ
2In), t = 1, . . . ,T ,

θt | G (n) i.i.d.∼ G (n), t = 1, . . . ,T ,

G (n) | α, σ2, φ ∼DP(α,G
(n)
0 ); G

(n)
0 = Nn(· | 0n, σ

2Hn(φ)),

with hyperpriors for β, τ 2, α,σ2, and φ.

Posterior inference using standard MCMC techniques for DP mixtures
— extensions to accommodate missing data — methods for prediction
at new spatial locations.
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Data example

Precipitation data from the Languedoc-Rousillon region in southern
France.

Data were discussed, for example, in Damian, Sampson and Guttorp
(2001).

Original version of the dataset includes 108 altitude-adjusted 10-day
aggregated precipitation records for the 39 sites in Figure 4.1.

We work with a subset of the data based on the 39 sites but only
75 replicates (to avoid records with too many 0-s), which have been
log-transformed with site specific means removed.

Preliminary exploration of the data suggests that spatial association
is higher in the northeast than in the southwest.

In the interest of validation for spatial prediction, we removed two
sites from each of the three subregions in Figure 4.1, specifically, sites
s4, s35, s29, s30, s13, s37, and refitted the model using only the data
from the remaining 33 sites.

© Athanasios Kottas 2021 (thanos@soe.ucsc.edu) Applied Bayesian Nonparametric Mixture Modeling



Data example
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Figure 4.1: Geographic map of the Languedoc-Roussillon region in southern France.
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Data example
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Figure 4.2: French precipitation data. Image plots based on functionals of posterior
predictive distributions at observed sites and a number of new sites (darker colors
correspond to smaller values).
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Data example
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Figure 4.3: French precipitation data. Bivariate posterior predictive densities for pairs
of sites (s4, s35), (s29, s30), (s13, s37) and (s4, s13) based on model fitted to data after
removing sites s4, s35, s29, s30, s13 and s37 (overlaid on data observed at the
corresponding pairs of sites in the full dataset).
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DDP modeling for developmental toxicity studies

Birth defects induced by toxic chemicals are investigated through
developmental toxicity studies.

A number of pregnant laboratory animals (dams) are exposed to a
toxin. Recorded from each animal are:

the number of resorptions and/or prenatal deaths;

the number of live pups, and the number of live malformed pups;

data may also include continuous outcomes from the live pups
(typically, body weight).

Key objective is to examine the relationship between the level of ex-
posure to the toxin (dose level) and the probability of response for the
different endpoints: embryolethality; malformation; low birth weight.

© Athanasios Kottas 2021 (thanos@soe.ucsc.edu) Applied Bayesian Nonparametric Mixture Modeling



Developmental toxicology data

Focus on clustered categorical responses.

Data structure for Segment II designs (exposure after implantation).

Data at dose (toxin) levels, xi , i = 1, ...,N, including a control group
(dose = 0).

ni dams at dose level xi .

For the j-th dam at dose xi :

mij : number of implants.

Rij : number of resorptions and prenatal deaths (Rij ≤ mij ).

y∗ij = {y∗ijk : k = 1, ...,mij − Rij}: binary malformation indicators for

the live pups.

yij =
∑mij−Rij

k=1 y∗ijk : number of live pups with a malformation.
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Developmental toxicology data

To begin with, consider simplest data form, {(mij , zij ) : i = 1, . . . ,N, j = 1, . . . , ni},
where zij = Rij + yij is the number of combined negative outcomes
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Figure 4.4: 2,4,5-T data (left) and DEHP data (right). Each circle is for a particular dam, the size of the circle is proportional to the
number of implants, and the coordinates of the circle are the toxin level and the proportion of combined negative outcomes.
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Objectives of DDP modeling

Develop nonparametric Bayesian methodology for risk assessment in
developmental toxicology.

Overcome limitations of parametric approaches, while retaining a fully
inferential probabilistic model setting.

Modeling framework that provides flexibility in both the response
distribution and the dose-response relationship.

Build flexible risk assessment inference tools from nonparametric
modeling for dose-dependent response distributions.

Nonparametric mixture models with increasing levels of complexity in
the kernel structure to account for the different data types.

DDP priors for the dose-dependent mixing distributions.

Emphasis on properties of the implied dose-response relationships.
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DDP mixture model formulation

Begin with a DDP mixture model for the simplest data structure,
{(mij , zij) : i = 1, . . . ,N, j = 1, . . . , ni}, where zij is the number
of combined negative outcomes on resorptions/prenatal deaths and
malformations.

Number of implants is a random variable, though with no information
about the dose-response relationship (the toxin is administered after
implantation).

f (m) = Poisson(m | λ), m ≥ 1 (more general models can be used).

Focus on dose-dependent conditional response distributions f (z | m):

for dose level x , model f (z | m) ≡ f (z | m,Gx) through a nonpara-
metric mixture of Binomial distributions;

common-weights DDP prior for the collection of mixing distributions
{Gx : x ∈ X ⊆ R+}.
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DDP mixture model formulation

DDP mixture of Binomial distributions:

f (z | m,GX ) =

∫
Bin

(
z | m, exp(θ)

1 + exp(θ)

)
dGX (θ), GX ∼ DDP(α,G0X )

Gaussian process (GP) for G0X with:

linear mean function, E(θ`(x) | β0, β1) = β0 + β1x ;

constant variance, Var(θ`(x) | σ2) = σ2;

isotropic power exponential correlation function,
Corr(θ`(x), θ`(x

′) | φ) = exp(−φ|x − x ′|d) (with fixed d ∈ [1, 2]).

Hyperpriors for α and ψ = (β0, β1, σ
2, φ).

MCMC posterior simulation using blocked Gibbs sampling.

Posterior predictive inference over observed and new dose levels, using
the posterior samples from the model and GP interpolation for the
DDP locations.
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DDP mixture model formulation

Key aspects of the DDP mixture model:

Flexible inference at each observed dose level through a nonparametric
Binomial mixture (overdispersion, skewness, multimodality).

Prediction at unobserved dose levels (within and outside the range of
observed doses).

Level of dependence between Gx and Gx′ , and thus between f (z |
m,Gx) and f (z | m,Gx′), is driven by the distance between x and x ′.

In prediction for f (z | m,Gx), we learn more from dose levels x ′ nearby
x than from more distant dose levels.

Inference for the dose-response relationship is induced by flexible
modeling for the underlying response distributions.

Linear mean function for the DDP centering GP enables connections
with parametric models, and is key for flexible inference about the
dose-response relationship.
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Dose-response curve

Exploit connection of the DDP Binomial mixture for the negative
outcomes within a dam and a DDP mixture model with a product
of Bernoullis kernel for the set of binary responses for all implants
corresponding to that dam.

Using the equivalent mixture model formulation for the underlying
binary outcomes, define the dose-response curve as the probability of
a negative outcome for a generic implant expressed as a function of
dose level:

D(x) =

∫
exp(θ)

1 + exp(θ)
dGx(θ) =

∞∑
`=1

ω`
exp(θ`(x))

1 + exp(θ`(x))
, x ∈ X

If β1 > 0, the prior expectation E(D(x)) is non-decreasing with x ,
but prior (and thus posterior) realizations for the dose-response curve
are not structurally restricted to be non-decreasing (a model asset!).
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Data examples: 2,4,5-T data
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Figure 4.5: 2,4,5-T data. Data set from a developmental toxicity study regarding the
effects of the herbicide 2,4,5-trichlorophenoxiacetic (2,4,5-T) acid.
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Data examples: 2,4,5-T data
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Figure 4.6: 2,4,5-T data. For the 6 observed and 2 new doses, posterior mean
estimates (denoted by “o”) and 90% uncertainty bands (red) for f (z | m = 12,Gx ).
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Data examples: 2,4,5-T data
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Figure 4.7: 2,4,5-T data. Posterior mean estimate and 90% uncertainty bands for the
dose-response curve under a Binomial-logistic model (left), a Beta-Binomial model
(middle), and the DDP Binomial mixture model (right).
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Data examples: DEHP data

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dose mg/kg x 1000

30 26 26 17 9
dams

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dose mg/kg x 1000

Figure 4.8: DEHP data. Left panel: data from an experiment that explored the effects
of diethylhexalphthalate (DEHP), a commonly used plasticizing agent. Right panel:
Posterior mean estimate and 90% uncertainty bands for the dose-response curve; the
dip at small toxin levels may indicate a hormetic dose-response relationship.
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Modeling for multicategory classification responses

Full version of the DEHP data

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

R/m

dose mg/kg x 1000

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y/(m-R)

dose mg/kg x 1000

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(R+y)/m

dose mg/kg x 1000

Figure 4.9: Clustered categorical responses: for the j-th dam at dose xi , Rij

resorptions and prenatal deaths, Rij ≤ mij (left panel), and yij malformations among
the live pups, yij ≤ mij − Rij (middle panel). The right panel plots the combined
negative outcomes, Rij + yij ≤ mij , as in Figure 4.8.
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Modeling for multicategory classification responses

DDP mixture model for endpoints of embryolethality (R) and
malformation for live pups (y):

f (R, y | m,GX ) =

∫
Bin (R | m, π(γ)) Bin (y | m − R, π(θ)) dGX (γ, θ)

π(v) = exp(v)/{1 + exp(v)}, v ∈ R, denotes the logistic function;

GX =
∑∞
`=1 ω`δη`X ∼ DDP(α,G0X ), where η`(x) = (γ`(x), θ`(x));

G0X defined through two independent GPs with linear mean functions,
E(γ`(x) | ξ0, ξ1) = ξ0 + ξ1x , and E(θ`(x) | β0, β1) = β0 + β1x .

Equivalent mixture model (with product Bernoulli kernels) for binary
responses: R∗ non-viable fetus indicator; y∗ malformation indicator.
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Dose-response curves

Probability of embryolethality:

Pr(R∗ = 1 | Gx) =

∫
π(γ) dGx(γ, θ), x ∈ X

(monotonic in prior expectation provided ξ1 > 0).

Probability of malformation:

Pr(y∗ = 1 | R∗ = 0,Gx) =

∫
{1− π(γ)}π(θ) dGx(γ, θ)∫
{1− π(γ)} dGx(γ, θ)

, x ∈ X

Combined risk function:

Pr(R∗ = 1 or y∗ = 1 | Gx) = 1−
∫
{1−π(γ)}{1−π(θ)} dGx(γ, θ), x ∈ X

(monotonic in prior expectation provided ξ1 > 0 and β1 > 0).
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DEHP data (full version)
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Figure 4.10: DEHP data. Posterior mean estimates and 90% uncertainty bands for the
three dose-response curves. The model identifies the malformation endpoint as the
sole contributor to the hormetic shape of the combined risk function.

© Athanasios Kottas 2021 (thanos@soe.ucsc.edu) Applied Bayesian Nonparametric Mixture Modeling



Density regression for ordinal responses

Recall the nonparametric ordinal regression model from Notes 2.

Density regression approach: focus on applications, including
problems in ecology and the environmental sciences, where it is
natural/necessary to model the joint stochastic mechanism for the
response(s) and covariates.

k ordinal variables Y = (Y1, . . . ,Yk), with yj ∈ {1, . . . ,Cj}, and p
(continuous) covariates X = (X1, . . . ,Xp).

Assume Yj = ` if-f γj,`−1 < Zj ≤ γj,`, for j = 1, ..., k, and ` = 1, ...,Cj

(with γj,0 = −∞ and γj,Cj =∞).

Now, model the joint distribution of the latent continuous responses,
Z = (Z1, . . . ,Zk), and the covariates, X , with a multivariate normal
DP mixture → implies a regression model, Pr(Y | x), which is a
mixture of probit regressions with covariate-dependent weights.
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Density regression for ordinal responses

DP mixture model for f (z , x):

f (z , x | G ) =

∫
N(z , x | µ,Σ) dG (µ,Σ), G | α,ψ ∼ DP(α,G0(· | ψ))

Implied regression functions provide a nonparametric extension of
probit regression (with random covariates):

Pr(Y = (l1, . . . , lk) | x ,G) =
∞∑
r=1

wr (x)

∫ γk,lk

γk,lk−1

···
∫ γ1,l1

γ1,l1−1

N(z | mr (x),Sr )dz

with covariate dependent weights wr (x) ∝ pr N(x | µx
r ,Σ

xx
r )

and covariate dependent probabilities, where
mr (x) = µz

r + Σzx
r (Σxx

r )−1(x − µx
r ) and Sr = Σzz

r − Σzx
r (Σxx

r )−1Σxz
r

© Athanasios Kottas 2021 (thanos@soe.ucsc.edu) Applied Bayesian Nonparametric Mixture Modeling



Density regression for ordinal responses

The normal mixture kernel can accommodate continuous covariates,
as well as ordinal categorical covariates.

The prior model has large support under fixed cutoffs.

For any mixed ordinal-continuous distribution, p0(x , y), that satisfies
certain regularity conditions, the prior assigns positive probability to
all Kullback-Leibler (KL) neighborhoods of p0(x , y), as well as to all
KL neighborhoods of the implied conditional distribution, p0(y | x).

More flexible ordinal regression relationships and simpler posterior
simulation (due to fixed cutoffs) than parametric models.

Posterior simulation: given the continuous latent responses, we can
use MCMC methods for normal DP mixture models (the only extra
step involves imputing the latent variables).
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Extension to dynamic ordinal regression modeling

Focusing on a univariate ordinal response, we seek to extend to a
model for Prt(Y | x), for t ∈ T = {1, 2, . . . }

Build on the earlier framework by extending to a prior model for
{f (z , x | Gt) : t ∈ T }, and thus for {Pr(Y | x ,Gt) : t ∈ T }

Motivating application: data from NMFS on female Chilipepper rock-
fish collected between 1993 and 2007 along the coast of California

sample sizes per year range from 37 to 396, with no data available for
three years (2003, 2005 and 2006)
three ordinal levels for maturity: immature (1), pre-spawning mature
(2), and post-spawning mature (3)
length measured in millimeters
age recorded on an ordinal scale: age j implies the fish was between j
and j + 1 years of age (data range: 1 to 25) → incorporate age into
the model in the same fashion with the maturity variable.
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Rockfish data

0 5 10 15 20 25

20
0

40
0

t=1993

age

0 5 10 15 20 25

20
0

40
0

t=1994

age

len
gt
h

0 5 10 15 20 25

20
0

40
0

t=1995

age

len
gt
h

0 5 10 15 20 25

20
0

40
0

t=1996

age

0 5 10 15 20 25

20
0

40
0

t=1997

age
len
gt
h

0 5 10 15 20 25

20
0

40
0

t=1998

age

len
gt
h

0 5 10 15 20 25

20
0

40
0

t=1999

age

0 5 10 15 20 25

20
0

40
0

t=2000

age

len
gt
h

0 5 10 15 20 25

20
0

40
0

t=2001

age

len
gt
h

0 5 10 15 20 25

20
0

40
0

t=2002

0 5 10 15 20 25

20
0

40
0

t=2004

len
gt
h

0 5 10 15 20 25
20
0

40
0

t=2007

len
gt
h

Figure 4.11: Bivariate plots of length versus age at each year of data, with data points
colored according to maturity level: red level 1; green level 2; blue level 3.
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DDP model extension

To retain model properties at each t, use DDP prior for {Gt : t ∈ T }

Time-dependent weights and atoms:

f (z , x | Gt) =
∞∑
r=1

{
(1− βr ,t)

∏r−1

m=1
βm,t

}
N(z , x | µr ,t ,Σr )

Vector autoregressive model for the {µr ,t : t ∈ T }
µr,t | µr,t−1,Θ,m,V ∼ N(m + Θµr,t−1,V )

Σr | ν,D
i.i.d.∼ IW(ν,D)

hyperpriors for (Θ,m,V ) and for D
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DDP model extension

Stochastic process with beta(α, 1) marginals:

B =

{
βt = exp

(
−ζ

2 + η2
t

2α

)
: t ∈ T

}
where ζ ∼ N(0, 1) and, independently, {ηt : t ∈ T } arises from a
time series model with N(0, 1) marginals

Build model for the {βr ,t : t ∈ T } from βr ,t = exp{−(ζ2
r +η2

r ,t)/(2α)}

ζr
ind.∼ N(0, 1)

AR(1) process for {ηr,t : t ∈ T }: ηr,t | ηr,t−1, φ ∼ N(φηr,t−1, 1− φ2)

with |φ| < 1 (and ηr,1
ind.∼ N(0, 1))

Different types of correlations can be studied: correlation of the time-
dependent stick-breaking weights, and corr(Gt(A),Gt+1(A)), for any
subset A in the support of the Gt .
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Rockfish data
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Figure 4.12: Posterior mean estimates for f (age, length).
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Rockfish data
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Figure 4.13: Posterior mean and 95% interval bands for the expected value of length
over (continuous) age, across three years. Overlaid are the data (in blue) and the
estimated von Bertalanffy growth curves (in red).
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Rockfish data

300 400 500

0.
0

0.
4

0.
8

t=1994

length

pr
t (
y|
x)

250 350 450

0.
0

0.
4

0.
8

t=1996

length

pr
t (
y|
x)

300 350 400 450 500

0.
0

0.
4

0.
8

t=1998

length

pr
t (
y|
x)

300 400 500

0.
0

0.
4

0.
8

t=2000

length

pr
t (
y|
x)

200 300 400 500

0.
0

0.
4

0.
8

t=2002

length

pr
t (
y|
x)

250 350 450

0.
0

0.
4

0.
8

t=2004

length
pr
t (
y|
x)

Figure 4.14: Posterior mean and 95% interval bands for the maturation probability
curves associated with length: immature (solid); pre-spawning mature (dashed);
post-spawning mature (dotted).
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Rockfish data
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Figure 4.15: Posterior mean and 95% interval bands for the maturation probability
curves associated with age: immature (solid); pre-spawning mature (dashed);
post-spawning mature (dotted).
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Rockfish data
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Figure 4.16: Posterior mean and 90% intervals for the smallest value of age above 2
years at which probability of maturity first exceeds 0.9 (left), and similar inference for
length (right).

© Athanasios Kottas 2021 (thanos@soe.ucsc.edu) Applied Bayesian Nonparametric Mixture Modeling



Rockfish data
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Figure 4.17: Posterior mean estimates for f (age, length | Y = 1), with corresponding
data overlaid.
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Rockfish data
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Figure 4.18: Results from posterior predictive model checking. Proportion of age = 6
pre-spawning mature fish (left), proportion of age ≥ 7, and length > 400 mm
pre-spawning mature fish (middle), and sample correlation between length and age for
pre-spawning mature fish. The blue circles in the left and middle panels denote the
actual data proportions, and in the right panel the data-based correlation.
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Conclusions

Bayesian nonparametric methods free the data analyst from customary
parametric modeling restrictions yielding more general inference and
more reliable predictions.

A broad research field that involves: theoretical work on probability
models for spaces of distributions and functions; methodological work
on incorporating nonparametric priors into statistical models; compu-
tational work on posterior simulation algorithms; and applications.

About 50 years of history by now, but still going strong!

© Athanasios Kottas 2021 (thanos@soe.ucsc.edu) Applied Bayesian Nonparametric Mixture Modeling



Many thanks!

PhD students:
Hyotae Kim, Xiaotian Zheng, Chunyi Zhao, Yunzhe Li, Jizhou Kang, Zach
Horton

PhD alumni:
Matt Heiner, Yifei Yan, Annalisa Cadonna, Robert Richardson, Sai Xiao,
Maria DeYoreo, Valerie Poynor, Ziwei Wang, Marian Farah, Kassandra
Fronczyk, Matt Taddy, Milovan Krnjajić
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