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Bayesian nonparametrics: introduction and
motivation
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Parametric vs. nonparametric Bayes: a simple example

Let yi | G
i.i.d.∼ G , with G ∈ F∗,

F∗ = {N(y | µ, τ 2); µ ∈ R, τ ∈ R+}.

In this parametric specification a prior
on F∗ boils down to a prior on (µ, τ 2).

However, F∗ is tiny compared to

F = {all distributions on R}.

Nonparametric Bayes involves priors on
much larger subsets of F , in fact, gener-
ally on the entire space F .

Parametric vs. nonparametric Bayes:

finite-dimensional parameter space (e.g.,

two parameters for N(µ, τ 2)) vs. infinite-

dimensional space, {G(y) : y ∈ R}.
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Bayesian nonparametrics

Priors on spaces of random distributions (or random functions)
{g(·) : g ∈ G} (infinite-dimensional spaces)

vs usual parametric priors on Θ, where g(·) ≡ g(·; θ), θ ∈ Θ.

In certain applications, we may seek more structure, e.g., monotone
regression functions or unimodal error densities.

More generally, enriching usual parametric models, typically leading
to semiparametric models.

Bayesian nonparametrics, an oxymoron? very different from classical
nonparametric estimation techniques.
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Bayesian vs. classical nonparametrics

An example for a semiparametric model setting: linear regression with
unknown error distribution

continuous (real-valued) responses yi with covariate vector x i

yi = xT
i β + εi , εi

i.i.d.∼ G

where G is the error distribution.

Least-squares or LAD are classical semiparametric estimation tech-
niques: they estimate the regression coefficients β without assuming
a probability model for the error distribution.

In contrast, a Bayesian semiparametric modeling approach proceeds
with a parametric prior for β and a nonparametric prior for G , where
now the space of interest involves all distributions on R with zero
mean (or median or mode).
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Bayesian nonparametrics

Parametric modeling: based on parametric families of distributions
{G (·; θ) : θ ∈ Θ} → requires prior distributions over Θ.

Seek a richer class, i.e., {G : G ∈ G} → requires nonparametric prior
distributions over G.

How to choose G? how to specify the prior over G? → requires
specifying prior distributions for infinite-dimensional parameters.

What makes a nonparametric model “good”? (Ferguson, 1973)

The model should be tractable, i.e., it should be easily computed,
either analytically or through simulations.

The model should be rich, in the sense of having large support.

The hyperparameters in the model should be easily interpretable.
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Methods for construction of NPB models for distributions

The object is to define priors over spaces of distributions G on a sam-
ple space X ; say, X = R (although the space can be more general).

Methods for constructing nonparametric priors for distributions:

Random probability measures

Neutral to the right processes

Tailfree processes (Pólya tree priors)

Constructions through exchangeable sequences

Normalized random measures with independent increments

Countable representations for random discrete distributions

Nonparametric mixture models
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The Dirichlet process
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Motivating the construction of the Dirichlet process

Consider a sample space with only two outcomes, X = {0, 1}, such that
defining a distribution on X requires only one probability, x .

A natural prior for x is the Beta distribution.

More generally, if X is finite with q elements, the distribution is given by a
probability vector, (x1, . . . , xq), i.e., xi ≥ 0 with

∑q
i=1 xi = 1.

Now, the natural prior for (x1, . . . , xq) is the Dirichlet distribution.

For uncountable spaces, such as X = R, consider finite collections of (mea-
surable) subsets of X , say, B1, ...,Bk , that form a partition of X .

The Dirichlet distribution is a natural candidate for the distribution of
the probability vector (G(B1), ...,G(Bk)).

But care is needed, a system of Dirichlet f.d.d.s must be consistent
with any other partition (any k and any collection (B1, ...,Bk)).

The Dirichlet distribution works with an appropriate choice for its
parameter vector (the key reason is an additivity property which arises
from the additivity of the gamma distribution).
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Definition of the Dirichlet process

The DP is characterized by two parameters:

α → a positive scalar parameter;
G0 → a specified probability measure (distribution) on X .

Definition (Ferguson, 1973): The DP generates random probability
measures (random distributions) G on X such that for any finite
measurable partition B1,...,Bk of X ,

(G (B1), ...,G (Bk)) ∼ Dirichlet(αG0(B1), ..., αG0(Bk)).

Here, G(Bi ) (a random variable) and G0(Bi ) (a constant) denote the
probability of set Bi under G and G0, respectively.

Athanasios Kottas (thanos@soe.ucsc.edu) Nonparametric Bayesian density regression



Definition of the Dirichlet process

Regarding existence of the DP as a random probability measure, the key
property of the Dirichlet distribution is “additivity”, which results from the
additive property of the gamma distribution:

if Zr
ind.∼ gamma(ar , 1), r = 1, ...,N, then

∑N
r=1 Zr ∼ gamma(

∑N
r=1 ar , 1).

Additive property of the Dirichlet distribution:
if (Y1, ...,Yk) ∼ Dirichlet(a1, ..., ak), and m1, ...,mM are integers such that
1 ≤ m1 < ... < mM = k, then the random vector

(

m1∑
i=1

Yi ,

m2∑
i=m1+1

Yi , ...,

mM∑
i=mM−1+1

Yi )

has a Dirichlet(
∑m1

i=1 ai ,
∑m2

i=m1+1 ai , ...,
∑mM

i=mM−1+1 ai ) distribution.

Using the additivity property of the Dirichlet distribution, the Kolmogorov

consistency conditions can be established for the f.d.d.s of (G(B1), ...,G(Bk))

in the DP definition.
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Interpreting the parameters of the Dirichlet process

For any measurable subset B of X , we have from the definition that
G (B) ∼ Beta(αG0(B), αG0(Bc)), and thus

E {G (B)} = G0(B), Var {G (B)} =
G0(B){1− G0(B)}

α + 1

G0 plays the role of the center of the DP (also referred to as the
baseline distribution).

α can be viewed as a precision parameter: for large α there is small
variability in DP realizations; the larger α is, the closer we expect a
realization G from the process to be to G0.

Chapter 4 of Ghosal and van der Vaart (2017) provides a detailed account

of several properties of the Dirichlet process.
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Simulating c.d.f. realizations from a Dirichlet process

α = 0.1 α = 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

D
is

tri
bu

tio
n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

D
is

tri
bu

tio
n

α = 10 α = 100

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

D
is

tri
bu

tio
n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

D
is

tri
bu

tio
n

DP(α,G0 = Unif(0, 1)) c.d.f. realizations. The solid black line corresponds to the
baseline c.d.f., while the dashed colored lines represent multiple realizations.
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Constructive definition of the DP

Due to Sethuraman and Tiwari (1982) and Sethuraman (1994).

Let {zr : r = 1, 2, ...} and {ϑ` : ` = 1, 2, ...} be independent
sequences of i.i.d. random variables

zr
i.i.d.∼ Beta(1, α), r = 1, 2, ....

ϑ`
i.i.d.∼ G0, ` = 1, 2, ....

Define ω1 = z1 and ω` = z`
∏`−1

r=1(1− zr ), for ` = 2, 3, ....

Then, a realization G from DP(α,G0) is (almost surely) of the form

G =
∞∑
`=1

ω` δϑ`

where δa denotes a point mass at a.

Hence, the DP generates discrete distributions (proved earlier by Ferguson,

1973, and Blackwell, 1973).
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The stick-breaking construction

The random series
∑∞
`=1 ω` converges almost surely to 1.
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More on the constructive definition of the DP

The DP constructive definition yields another method to simulate
from DP priors → in fact, it provides (up to a truncation approxima-
tion) the entire distribution G , not just c.d.f. sample paths.

For example, a possible approximation is GJ =
J∑

j=1

pjδϑj , with pj = ωj

for j = 1, ..., J − 1, and pJ = 1−
∑J−1

j=1 ωj =
∏J−1

r=1 (1− zr ).

To specify J, a simple approach involves working with the expectation
for the partial sum of the stick-breaking weights:

E

 J∑
j=1

ωj

 = 1−
J∏

r=1

E(1− zr ) = 1−
J∏

r=1

α

α + 1
= 1−

(
α

α + 1

)J

Hence, J could be chosen such that {α/(α + 1)}J = ε, for small ε.
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More on the constructive definition of the DP
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Illustration for a DP with G0 = N(0, 1) and α = 20. In the left panel, the spiked lines are located
at 1000 N(0, 1) draws with heights given by the (truncated) stick-breaking weights. These spikes
are then summed to generate one c.d.f. sample path. The right panel shows 8 such sample paths
indicated by the lighter jagged lines. The heavy smooth line indicates the N(0, 1) c.d.f.
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Generalizing the DP

Many random probability measures can be defined by means of a stick-breaking
construction → the zr are drawn independently from a distribution on [0, 1].

For example, the Beta two-parameter process (Ishwaran and Zarepour,
2000) is defined by choosing zr ∼ Beta(a, b).

If zr ∼ Beta(1 − a, b + ra), for r = 1, 2, . . . and some a ∈ [0, 1) and
b ∈ (−a,∞) we obtain the two-parameter Poisson-Dirichlet process (e.g.,
Pitman and Yor, 1997).

The general case, zr ∼ Beta(ar , br ) (Ishwaran and James, 2001).

Probit stick-breaking: zr = Φ(xr ), where xr ∼ N(µ, σ2) and Φ is the
standard normal c.d.f. (Rodŕıguez and Dunson, 2011).

Logit stick-breaking: zr = exp(xr )/{1 + exp(xr )}, where xr ∼ N(µ, σ2)
(Rigon and Durante, 2021).
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Prior to posterior updating with DP priors

The DP is a conjugate prior under i.i.d. sampling.

Assume data yi | G
i.i.d.∼ G , for i = 1, ..., n, and G ∼ DP(α,G0).

Then, the posterior distribution of G is the DP(α̃, G̃0), where

α̃ = α + n, G̃0 =
αG0 +

∑n
i=1 δyi

α + n

For X = R, the c.d.f. associated with G̃0 is

G̃0(y) =
α

α + n
G0(y) +

1

α + n

n∑
i=1

1[yi ,∞)(y)

All the results and properties developed for DPs can be used directly
for the posterior distribution of G .
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Prior to posterior updating with DP priors

For X = R, the posterior mean estimate for the random c.d.f. at any point
y , G(y), is given by:

E {G(y) | y1, ..., yn} =
α

α + n
G0(y) +

n

α + n
Gn(y)

where Gn(y) = n−1∑n
i=1 1[yi ,∞)(y) is the empirical distribution function of

the data (the standard classical nonparametric estimator).

For small α relative to n, little weight is placed on the prior guess G0.

For large α relative to n, little weight is placed on the data.

Hence, α can be viewed as a measure of faith in the prior guess G0

measured in units of number of observations (thus, α = 1 indicates
strength of belief in G0 worth one observation).

However, taking α very small does not correspond to a “noninforma-
tive” DP prior specification; recall that α controls both the variance
and the extent of discreteness for the DP prior.
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The DP prediction rule (Pólya urn scheme)

Start with Xi | G
i.i.d.∼ G , for i = 1, ..., n, and G ∼ DP(α,G0).

What is the distribution of Xn+1 given X1, ...,Xn? In the context of
Bayesian inference, this is the posterior predictive distribution (so,
X1, ...,Xn represent the r.v.s for the observables in the sample).

For any measurable set B,

p(Xn+1 ∈ B,G | X1, ...,Xn) = G(B) p(G | X1, ...,Xn)

and therefore marginalizing G ,

Pr(Xn+1 ∈ B | X1, ...,Xn) = E(G(B) | X1, ...,Xn) =
αG0(B) +

∑n
i=1 δXi (B)

α + n

This is the generalized Pólya conditional distribution, for any n ≥ 1.

For the first member of the sequence, note that X | G ∼ G and G ∼
DP(α,G0) implies the marginal Pr(X ∈ B) =

∫
Pr(X ∈ B | G) dP(G) =∫

G(B) dP(G) = E(G(B)) = G0(B).
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Pólya urn characterization of the DP

If, for i = 1, ..., n, Xi | G are i.i.d. from G , and G ∼ DP(α,G0), the
joint distribution for the Xi , induced by marginalizing G , is given by

p(x1, ..., xn) = G0(x1)
n∏

i=2

 α

α + i − 1
G0(xi ) +

1

α + i − 1

i−1∑
j=1

δxj (xi )


That is, the sequence of the Xi follows a generalized Pólya urn scheme
such that:

X1 ∼ G0, and

for any i = 2, ..., n, Xi | X1 = x1, ...,Xi−1 = xi−1 follows a distribution
that places point mass (α+ i − 1)−1 at xj , for j = 1, ..., i − 1, and the
remaining mass α(α + i − 1)−1 on G0.

Athanasios Kottas (thanos@soe.ucsc.edu) Nonparametric Bayesian density regression



Pólya urn characterization of the DP

The forward direction is readily obtained from the DP prediction rule.

Blackwell and MacQueen (1973) proved the other direction, thus, charac-
terizing the DP as the de Finetti measure for Pólya sequences.

A sequence of r.v.s, {Xn : n ≥ 1}, (w.l.o.g. on R) is a Pólya sequence with
parameters G0 (a distribution on R) and α (a positive scalar parameter)
if for any measurable B ⊂ R, Pr(X1 ∈ B) = G0(B), and Pr(Xn+1 ∈ B |
X1, ...,Xn) = (α + n)−1{αG0(B) +

∑n
i=1 δXi (B)} (where δXi (B) = 1 if

Xi ∈ B, and δXi (B) = 0 otherwise).

If {Xn : n ≥ 1} is a Pólya sequence with parameters α and G0, then:

(α+ n)−1{αG0 +
∑n

i=1 δXi } converges almost surely (as n→∞) to a
discrete distribution G
G ∼ DP(α,G0)
X1,X2, ... | G are independently distributed according to G .
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The Chinese restaurant process

The Pólya urn characterization of the DP can be visualized using the
Chinese restaurant analogy:

A customer arriving at the restaurant joins a table that already has
some customers, with probability proportional to the number of people
in the table, or takes the first seat at a new table with probability
proportional to α.

All customers sitting in the same table share a dish.
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Exchangeability and Nonparametric Bayes

de Finetti’s representation theorem provides an interesting connection be-

tween exchangeability and nonparametric priors on spaces of distributions.

Below is an overview focusing on distributions on X = R.

Def.: Random variables X1, ...,Xn are (finitely) exchangeable if their joint

distribution is invariant to permutations of the r.v. indexes, i.e., p(x1, ..., xn) =

p(xπ(1), ..., xπ(n)), for any permutation π of {1, ..., n}. A countable collec-

tion of r.v.s is (infinitely) exchangeable if the condition above holds true for

every finite subset of its r.v.s.

Representation theorem for binary r.v.s. Consider an exchangeable se-
quence of binary 0/1 r.v.s {Xi : i = 1, 2, ...}. Then, there exists a distribu-
tion (c.d.f.) G on (0, 1) such that for any n and any (x1, ..., xn):

p(x1, ..., xn) =

∫ 1

0

{
n∏

i=1

θxi (1− θ)1−xi

}
dG(θ)

Hence, for any n, the joint distribution of X1, ...,Xn can be obtained
by generating a probability θ from distribution G , and then taking

X1, ...,Xn | θ
i.i.d.∼ Bernoulli(θ).
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Exchangeability and Nonparametric Bayes

de Finetti’s representation theorem. Consider an exchangeable sequence
of R-valued r.v.s {Xi : i = 1, 2, ...} with joint distribution P. Then, there
exists a random probability measure P on the space of distributions on R
such that for any n and any (measurable) sets (B1, ...,Bn):

P(X1 ∈ B1, ...,Xn ∈ Bn) =

∫ { n∏
i=1

G(Bi )

}
dP(G)

Hence, for any n, the joint distribution of X1, ...,Xn can be obtained

by selecting G ∼ P, and then taking X1, ...,Xn | G
i.i.d.∼ G .

P is the de Finetti measure for the exchangeable sequence. Given the
joint distribution of the Xi , the de Finetti measure is unique.

The generalized Pólya sequence

X1 ∼ G0, Xn+1 | X1, ...,Xn ∼
αG0 +

∑n
i=1 δXi

α + n

can be verified to be exchangeable. Therefore, the DP(α,G0) is the de

Finetti measure for this exchangeable sequence.
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Dirichlet process mixture models
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Motivating Dirichlet process mixtures

Recall that the Dirichlet process (DP) is a conjugate prior for random
distributions under i.i.d. sampling.

However, posterior draws under a DP model correspond (almost surely)
to discrete distributions. This is unsatisfactory if we are modeling con-
tinuous distributions.

In the spirit of kernel density estimation, one solution is to use
convolutions to smooth out posterior estimates.

In a model-based context, this leads to DP mixture models, i.e., a
mixture model where the mixing distribution is unknown and assigned
a DP prior.

Strong connections with finite mixture models.
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Mixture distributions

Mixture models arise naturally as flexible alternatives to standard
parametric families.

Continuous mixture models (e.g., t, Beta-binomial, and Poisson-gamma
models) typically achieve increased heterogeneity but are still limited to
unimodality and usually symmetry.

Finite mixture distributions provide more flexible modeling, and can be
implemented using simulation-based model fitting (e.g., Richardson and
Green, 1997; Stephens, 2000; Jasra, Holmes and Stephens, 2005).

Rather than handling the very large number of parameters of finite mixture

models with a large number of mixture components, it may be easier to

work with an infinite dimensional specification by assuming a random mixing

distribution, which is not restricted to a specified parametric family.
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Finite mixture models

Recall the structure of a finite mixture model with K components, for
example, a mixture of K = 2 Gaussian densities:

yi | w , µ1, µ2, σ
2
1 , σ

2
2

ind.∼ wN(yi | µ1, σ
2
1) + (1− w)N(yi | µ2, σ

2
2),

that is, observation yi arises from a N(µ1, σ
2
1) distribution with prob-

ability w or from a N(µ2, σ
2
2) distribution with probability 1 − w

(independently for each i = 1, . . . , n, given the parameters).

In the Bayesian setting, we also set priors for the unknown parameters

(w , µ1, µ2, σ
2
1 , σ

2
2) ∼ p(w , µ1, µ2, σ

2
1 , σ

2
2).
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Finite mixture models

The model can be rewritten in a few different ways. For example, we
can introduce auxiliary random variables L1, . . . , Ln such that Li = 1
if yi arises from the N(µ1, σ

2
1) component (component 1) and Li = 2

if yi is drawn from the N(µ2, σ
2
2) component (component 2). Then,

the model can be written as

yi | Li , µ1, µ2, σ
2
1 , σ

2
2

ind.∼ N(yi | µLi , σ
2
Li

)

P(Li = 1|w) = w = 1− P(Li = 2|w)

(w , µ1, µ2, σ
2
1 , σ

2
2) ∼ p(w , µ1, µ2, σ

2
1 , σ

2
2)

If we marginalize over Li , for i = 1, ..., n, we recover the original
mixture formulation.

The inclusion of indicator variables is very common in finite mixture
models, and it is also used extensively for DP mixtures.
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Finite mixture models

We can also write

w N(yi | µ1, σ
2
1) + (1− w) N(yi | µ2, σ

2
2) =

∫
N(yi | µ, σ2)dG(µ, σ2),

where

G = w δ(µ1,σ
2
1 ) + (1− w) δ(µ2,σ

2
2 )

A similar expression can be used for a general K mixture model.

Note that G is discrete (and random) → a natural alternative is to use a
DP prior for G , resulting in a Dirichlet process mixture (DPM) model, or
more general nonparametric priors for discrete distributions.

Working with a countable mixture (rather than a finite one) provides the-

oretical advantages (full support) as well as practical benefits: the number

of mixture components is estimated from the data based on a model that

supports a countable number of components in the prior.
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Definition of the Dirichlet process mixture model

The Dirichlet process mixture model

F (y | G ) =

∫
K (y | θ) dG (θ), G ∼ DP(α,G0),

where K (y | θ) is a parametric c.d.f. (with parameters θ).

The Dirichlet process has been the most widely used prior for the
random mixing distribution G , following the early work by Antoniak
(1974), Lo (1984) and Ferguson (1983).

Corresponding mixture density (or probability mass) function,

f (y | G ) =

∫
k(y | θ) dG (θ),

where k(y | θ) is the density (or probability mass) function of K (y | θ).
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Two realizations from a DP(α = 2,G0 = N(0, 1)) (left column) and the associated

cumulative distribution function (center column) and density function (right column)

for a location DP mixture of Gaussian kernels with standard deviation 0.6.
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An equivalent formulation

In the context of DP mixtures, the (almost sure) discreteness of realizations

G from the DP(α,G0) prior is an asset→ it allows ties in the mixing param-

eters, and thus makes DP mixture models appealing for many applications,

including density estimation and regression.

Using the constructive definition of the DP, G =
∑∞
`=1 ω`δϑ`

, the
prior probability model f (y | G ) admits an (almost sure) representa-
tion as a countable mixture of parametric densities,

f (y | G ) =
∞∑
`=1

ω` k(y | ϑ`)

Mixture weights: ω1 = z1, ω` = z`
∏`−1

r=1 (1− zr ), ` ≥ 2, with zr i.i.d.
Beta(1, α).

Locations (atoms): ϑ` i.i.d. G0
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Modeling options

Contrary to the DP prior, DP mixtures can generate:

discrete distributions (e.g., K(y | θ) might be Poisson or binomial)

and continuous distributions, either univariate (K(y | θ) can be, e.g.,
normal, gamma, or uniform) or multivariate (with K(y | θ), say, mul-
tivariate normal).

Much more than density estimation:

Non-Gaussian and non-linear regression through DP mixture modeling
for the joint response-covariate distribution (density regression).

Flexible models for ordinal categorical responses.

Modeling of point process intensities through density estimation.

Time-series and/or spatial modeling, using dependent DP priors for
temporally and/or spatially dependent mixing distributions.
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Approximation or representation results for mixtures

(Discrete) normal location-scale mixtures,∑M

j=1
wj N(y | µj , σ

2
j ), y ∈ R

can approximate arbitrarily well (as M → ∞) densities on the real line
(Ferguson, 1983; Lo, 1984).

For any non-increasing density f (t) on the positive real line there exists a
distribution function G on R+ such that f can be represented as a scale
mixture of uniform densities:

f (t) =

∫
θ−11[0,θ)(t) dG(θ), t ∈ R+

The result yields flexible DP mixture models for symmetric unimodal
densities (Brunner and Lo, 1989; Brunner, 1995) as well as general
unimodal densities (Brunner, 1992; Lavine and Mockus, 1995; Kottas
and Gelfand, 2001; Kottas and Krnjajić, 2009).
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Approximation or representation results for mixtures

Consider a continuous density h on [0, 1], and let H be its c.d.f. Then, the
Bernstein density,

K∑
j=1

{H(j/K)− H((j − 1)/K)}Beta(u | j ,K − j + 1), u ∈ [0, 1]

converges uniformly to h, as K →∞.

The Bernstein-Dirichlet prior model is based on a DP prior for H
(Petrone, 1999a,b).

Consider a continuous c.d.f. H on R+. Then, the c.d.f. of the Erlang
mixture density

J∑
j=1

{H(jθ)− H((j − 1)θ)} gamma(t | j , θ), t ∈ R+

converges pointwise to H, as J →∞ and the scale parameter θ → 0.
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Semiparametric Dirichlet process mixture models

In many applications, semiparametric DP mixtures are employed

yi | G , φ
i.i.d.∼ f (yi | G , φ) =

∫
k(yi | θ, φ) dG (θ), i = 1, . . . , n

G ∼ DP(α,G0)

with a parametric prior p(φ) placed on φ, and, typically, hyperpriors
for α and/or the parameters ψ of G0 ≡ G0(· | ψ).

For example, semiparametric linear regression model:

continuous (real-valued) responses yi with covariate vector x i

yi = xT
i β + εi ; εi | G

i.i.d.∼
∫

N(εi | 0, σ2) dG(σ2), G ∼ DP(α,G0)

scale normal DP mixture prior for the error distribution; parametric
prior for the vector of regression coefficients.
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Hierarchical formulation for DP mixture models

Consider w.l.o.g. the fully nonparametric DP mixture

f (y | G) =

∫
k(y | θ) dG(θ), G | α,ψ ∼ DP(α,G0(· | ψ))

With θi a (continuous) latent mixing parameter associated with yi :

yi | θi
ind.∼ k(yi | θi ) i = 1, . . . , n

θi | G
i.i.d.∼ G i = 1, . . . , n

Alternatively, with discrete latent variables Li :

yi | Li , {Z`}
ind.∼ k(yi | ZLi ) i = 1, . . . , n

Li | {ω`}
i.i.d.∼

∞∑
`=1

ω` δ` i = 1, . . . , n

where ω1 = z1, ω` = z`
∏`−1

r=1 (1− zr ), ` ≥ 2, with zr i.i.d. Beta(1, α), and

Z` | ψ
i.i.d.∼ G0(· | ψ).
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Parametric models in the two limits for α

Two limiting special cases of the DP mixture model.

One distinct component, when α→ 0+

yi | θ, φ
ind.∼ k(yi | θ, φ), i = 1, . . . , n

θ | ψ ∼ G0(· | ψ)

φ, ψ ∼ p(φ)p(ψ)

n components (one associated with each observation), when α→∞

yi | θi , φ
ind.∼ k(yi | θi , φ), i = 1, . . . , n

θi | ψ
i.i.d.∼ G0(· | ψ), i = 1, . . . , n

φ, ψ ∼ p(φ)p(ψ)

The DP mixture model gives rise to hierarchical structures in between
the two parametric extremes above.
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Prior specification

Taking expectation over G with respect to its DP prior DP(α,G0),

E{F (y | G , φ)} = F (y | G0, φ), E{f (y | G , φ)} = f (y | G0, φ).

These expressions facilitate prior specification for parameters ψ of G0(· | ψ).

On the other hand, recall that for the DP(α,G0), α controls how close a
realization G is to G0, but also the extent of discreteness of G .

In the DP mixture model, α controls the prior distribution of the number of

distinct elements n∗ of vector θ = (θ1, . . . , θn), and hence the number of

distinct mixture components associated with a sample of size n (Antoniak,

1974; Escobar and West, 1995; Liu, 1996).
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Number of distinct components

Prior expectation and variance for the number of distinct elements (partition
cells), n∗ ≡ n∗(n), of vector (θ1, . . . , θn).

Let Ui , for i = 1, ..., n, be binary random variables with Ui indicating
whether θi is a new value drawn from G0 (Ui = 1) or not (Ui = 0).

Conditional on α, the Ui are independent Bernoulli random variables with
Pr(Ui = 1 | α) = α/(α + i − 1), for i = 1, ..., n.

Since n∗ =
∑n

i=1 Ui , we obtain

E(n∗ | α) =
n∑

i=1

α

α + i − 1
and Var(n∗ | α) =

n∑
i=1

α(i − 1)

(α + i − 1)2

The prior moments for n∗ can be used to guide the choice of the value for

α, or the prior parameters for α.
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Number of distinct components

A fairly accurate approximation:

E(n∗ | α) ≈ α log{1 + (n/α)}.

Hence, E(n∗ | α) increases at a logarithmic rate with n (for fixed α).

Therefore, E(n∗(n) | α)→∞, as n→∞. In fact, n∗(n) converges almost
surely to ∞, as n→∞ (Korwar and Hollander, 1973).

Even though new distinct values are increasingly rare, the DP prior
implies n∗ which is steadily increasing with n.

The full prior for the number of distinct elements can also be derived:

Pr(n∗ = m | α) = cn(m) n!αm Γ(α)

Γ(α + n)
, m = 1, . . . , n,

where the factors cn(m) = Pr(n∗ = m | α = 1) can be computed using

certain recurrence formulas (Antoniak, 1974; Escobar and West, 1995).

Athanasios Kottas (thanos@soe.ucsc.edu) Nonparametric Bayesian density regression



Dependent Dirichlet processes
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Nonparametric priors for dependent distributions

In many applications, the objective is to model a collection of distri-
butions G = {Gs : s ∈ S}, indexed by s ∈ S

S might be: a discrete, finite set indicating different “groups”; a time
interval; a spatial region; or a covariate space.

Obvious options:

Assume that the distribution is the same everywhere, e.g.,
Gs ≡ G ∼ DP(α,G0) for all s. This is too restrictive.

Assume that the distributions are independent and identically
distributed, e.g., Gs ∼ DP(α,G0) independently for each s. This is
wasteful.

We would like something in between.
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Modeling dependence in collections of random distributions

A number of modeling approaches have been presented in the
literature, including:

Introducing dependence through the baseline distributions of condi-
tionally independent nonparametric priors, e.g., product of mixtures
of DPs (Cifarelli and Regazzini, 1978). Simple but restrictive.

Priors for a finite number of distributions through linear combinations
of realizations from independent DPs (Müller et al., 2004).

Hierarchical nonparametric priors for finite collections of distributions:
analysis of densities model (Tomlinson and Escobar, 1999); hierarchi-
cal DP (Teh. et al., 2006); nested DP (Rodriguez et al., 2008).

Dependent Dirichlet process (DDP): Starting with the stick-breaking
construction of the DP, and replacing the weights and/or atoms with
appropriate stochastic processes on S (MacEachern, 1999; 2000).
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Definition of the dependent Dirichlet process

Recall the DP constructive definition: if G ∼ DP(α,G0), then

G =
∞∑
`=1

ω` δθ`

where the θ` are i.i.d. from G0, and ω1 = z1, ω` = z`
∏`−1

r=1 (1 − zr ),
` = 2, 3, . . ., with zr i.i.d. Beta(1, α).

To construct a DDP prior for the collection of random distributions, G =
{Gs : s ∈ S}, define Gs as

Gs =
∞∑
`=1

ω`(s) δθ`(s)

with {θ`(s) : s ∈ S}, for ` = 1, 2, ..., independent realizations from a
(centering) stochastic process G0,S defined on S

and stick-breaking weights defined through independent realizations
{zr (s) : s ∈ S}, r = 1, 2, ..., from a stochastic process on S with
marginals zr (s) ∼ Beta(1, α(s)) (or with common α(s) ≡ α).

Athanasios Kottas (thanos@soe.ucsc.edu) Nonparametric Bayesian density regression



Dependent Dirichlet processes

For any fixed s, this construction yields a DP prior for distribution Gs.

For uncountable index sets S , smoothness (e.g., continuity) properties of the
centering process G0,S and the stochastic process that defines the weights
drive smoothness of DDP realizations.

For instance, for spatial regions S , we typically seek smooth evolution
for the distributions Gs, with the level of dependence between Gs and
Gs′ driven by the distance between spatial sites s and s′.

For specified set A, {Gs(A) : s ∈ S} is a stochastic process with beta

marginals. The covariance between Gs(A) and Gs′(A) can be used to study

the dependence structure under a particular DDP prior.

Effective inference under DDP prior models requires some form of replicate

responses across the observed index points.

As with DP priors, the DDP prior is typically used to model the distribution

of parameters in a hierarchical model, resulting in DDP mixture models.
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“Common-weights” dependent Dirichlet processes

“Common-weights” DDP models: the weights do not depend on s;
dependence is induced across atoms in the stick-breaking construction:

Gs =
∞∑
`=1

ω` δθ`(s)

where ω1 = z1, ω` = z`
∏`−1

r=1(1−zr ), ` ≥ 2, with zr i.i.d. Beta(1, α).

Advantage⇒ Computation is relatively simple, since common-weights
DDP mixture models can be written as DP mixtures for an appropriate
baseline distribution.

Disadvantage ⇒ Dependent weights can generate local dependence
structure which is desirable in temporal or spatial applications.
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“Common-atoms” dependent Dirichlet processes

“Common-atoms” DDP models: the alternative simplification where
the atoms are common to all distributions:

Gs =
∞∑
`=1

ω`(s) δθ`

where the θ` are i.i.d. from G0.

Advantage ⇒ The structure with common atoms across distributions
that have weights that change with s may be attractive in certain
applications. When the dimension of θ is moderate to large, it also re-
duces significantly the number of stochastic processes over S required
for a full DDP specification.

Disadvantage ⇒ Prediction at new s (say, forecasting when s corre-
sponds to discrete time) can be problematic.
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Nonparametric Bayesian density regression
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Density regression using Dirichlet process mixtures

Dominant trend in the Bayesian regression literature: seek flexible regression
function models, and accompany them with general error distributions.

Typically, Bayesian nonparametric modeling focuses on either the re-
gression function or the error distribution.

Bayesian nonparametric models for density regression (aka conditional
regression) (West et al., 1994; Müller et al., 1996).

Flexible nonparametric mixture modeling for the joint distribution of
response(s) and covariates.
Inference for the conditional response distribution given covariates.

Both the response distribution and, implicitly, the regression relationship

are modeled nonparametrically, thus providing a flexible framework for the

general regression problem.

Focus on applications, including problems in ecology and the environmen-

tal sciences, where it is natural/necessary to model the joint stochastic

mechanism for the response(s) and covariates.
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Density regression using Dirichlet process mixtures

Consider a univariate continuous response y .

DP mixture model for the joint density f (y , x) of the response y and
the vector of covariates x :

f (y , x) ≡ f (y , x | G ) =

∫
k(y , x | θ) dG (θ), G ∼ DP(α,G0(ψ)).

For the mixture kernel k(y , x | θ) use:

Multivariate normal for (R-valued) continuous response and
covariates.
Mixed continuous/discrete distribution to incorporate both categorical
and continuous covariates.
Kernel component for y supported by R+ for problems in survival/reliability
analysis.
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Density regression using Dirichlet process mixtures

For any grid of values (y0, x0), obtain posterior samples for:

Joint density f (y0, x0 | G), marginal density f (x0 | G), and therefore,
conditional density f (y0 | x0,G).

Conditional expectation E(y | x0,G), which, estimated over grid in x ,
provides inference for the mean regression relationship.

Conditioning in f (y0 | x0,G) and/or E(y | x0,G) may involve only a
portion of vector x .

Inverse inferences: inference for the conditional distribution of
covariates given specified response values, f (x0 | y0,G).

Key features of the modeling approach:

Model for both non-linear regression curves and non-standard shapes
for the conditional response density.

Model does not rely on additive regression formulations; it can uncover
interactions between covariates that might influence the regression
relationship.
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Mean regression functional under normal DP mixtures

Consider a continuous (univariate) response y , continuous covariate vector
x = (x1, ..., xp), and a normal DP mixture for the response-covariate density:

f (y , x | G) =
∞∑
`=1

ω` Np+1(y , x | µ`,Σ`)

The implied conditional response density is a normal mixture with covariate-
dependent mixture weights:

f (y | x ,G) =
∞∑
`=1

q`(x) N(y | λ`(x), τ 2
` )

where

q`(x) = ω`Np(x | µx
` ,Σ

x
`)/{

∑∞
s=1 ωsNp(x | µx

s ,Σ
x
s )}

λ`(x) = µy
` + Σyx

` (Σx
`)−1(x − µx

`) and τ 2
` = Σy

` − Σyx
` (Σx

`)−1(Σyx
` )T

using the decomposition of µ` = (µy
` ,µ

x
`) and Σ` = (Σy

` ,Σ
yx
` ,Σ

x
`)

into components that correspond to the response and covariates.
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Mean regression functional under normal DP mixtures

Mean regression function:

E(y | x ,G) =
∞∑
`=1

q`(x) {β0` + β1`x1 + . . .+ βp`xp}

where

β0` = µy
` − Σyx

` (Σx
`)−1µx

` , and

βr`, for r = 1, ..., p, are the elements of vector Σyx
` (Σx

`)−1

The density regression approach (under a normal mixture for the joint

response-covariate distribution) implies a mixture of linear regressions for

the mean regression function, with covariate-dependent mixture weights.
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Synthetic data example

Simulated data set with a continuous response y , one continuous covariate
xc , and one binary categorical covariate xd .

xci independent N(0, 1).
xdi | xci independent Ber(probit(xci )).
yi | xci , xdi ind. N(h(xci ), σxdi ), with σ0 = 0.25, σ1 = 0.5, and

h(xc) = 0.4xc + 0.5 sin(2.7xc) + 1.1(1 + x2
c )−1.

Two sample sizes: n = 200 and n = 2000.

DP mixture model with a mixed normal/Bernoulli kernel:

f (y , xc , xd | G) =

∫
N2(y , xc | µ,Σ)πxd (1− π)1−xd dG(µ,Σ, π),

with

G ∼ DP(α,G0(µ,Σ, π) = N2(µ; m,V ) IW(Σ; ν, S) Beta(π; a, b)).
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Synthetic data example

−
1

0
1

2
3

4
−

1
0

1
2

3
4

−2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2

h
(x

)

x

Posterior point and 90% interval estimates (dashed and dotted lines) for conditional response
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E(y | xc ,G) (right panels). The corresponding data is plotted in grey for the sample of size
n = 200 (top panels) and n = 2000 (bottom panels). The solid line denotes the true curve.
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DP mixture density regression: applications

Regression modeling with categorical responses (Shahbaba and Neal, 2009;
Dunson and Bhattacharya, 2011; Hannah et al., 2011; DeYoreo and Kottas,
2015, 2018a,b).

Functional data analysis through density estimation (Rodriguez et al., 2009).

Fully nonparametric quantile regression (Taddy and Kottas, 2010).

Product partition models with regression on covariates (Müller and Quin-
tana, 2010; Park and Dunson, 2010), and regression modeling with enriched
DP priors (Wade et al., 2014).

Inference for marked Poisson processes (Taddy and Kottas, 2012; Xiao et
al., 2015).

Nonparametric survival regression (Poynor and Kottas, 2017).

Density autoregression, including lag selection (Heiner and Kottas, 2022).
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Fully nonparametric quantile regression
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Quantile regression

In regression settings, the covariates may have effect not only on the loca-
tion of the response distribution but also on its shape.

Model-based nonparametric approach to quantile regression.

Model joint density f (y , x) of the response y and the p-variate vector
of (continuous) covariates x with a DP mixture of normals:

f (y , x | G) =

∫
Np+1(y , x | µ,Σ) dG(µ,Σ), G ∼ DP(α,G0),

with G0(µ,Σ) = Np+1(µ | m,V ) IW(Σ | ν, S).

For any grid of values (y0, x0), obtain posterior samples for:

Conditional density f (y0 | x0,G) and conditional c.d.f. F (y0 | x0,G).
Conditional quantile regression qp(x0 | G), for any 0 < p < 1.

Key features of the DP mixture modeling framework:

Enables simultaneous inference for more than one quantile regression.
Allows flexible response distributions and non-linear quantile
regression relationships.
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Quantile regression: data example

Moral hazard data on the relationship between shareholder concen-
tration and several indices for managerial moral hazard in the form of
expenditure with scope for private benefit (Yafeh & Yoshua, 2003).

Data set includes a variety of variables describing 185 Japanese indus-
trial chemical firms listed on the Tokyo stock exchange.

Response y : index MH5, consisting of general sales and administrative
expenses deflated by sales.

Four-dimensional covariate vector x: Leverage (ratio of debt to total
assets); log(Assets); Age of the firm; and TOPTEN (the percent of
ownership held by the ten largest shareholders).
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Quantile regression: data example
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Posterior mean and 90% interval estimates for median regression for MH5 conditional on each
individual covariate. Data scatterplots are shown in grey.
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Quantile regression: data example
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Quantile regression: data example
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Density regression with ordinal responses
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Density regression for ordinal responses

Assume each ordinal response represents a discretized version of a
latent continuous response.

k ordinal variables Y = (Y1, . . . ,Yk), with yj ∈ {1, . . . ,Cj}, and p
(continuous) covariates X = (X1, . . . ,Xp).

Assume

Yj = ` if-f γj,`−1 < Zj ≤ γj,`, j = 1, ..., k; ` = 1, ...,Cj

(with γj,0 = −∞ and γj,Cj =∞).

Multivariate normal distribution for Z = (Z1, . . . ,Zk) → multivariate
ordinal probit model.

Symmetric, unimodal latent response distribution with mean xTβ →
implies restrictive covariate effects on probability response curves.

Computational challenges in estimating cut-off points.
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Density regression for ordinal responses

Model the joint distribution of the latent continuous responses, Z , and the
covariates, X , with a multivariate normal DP mixture:

f (z , x | G) =

∫
N(z , x | µ,Σ) dG(µ,Σ), G | α,ψ ∼ DP(α,G0(· | ψ))

Implied regression functions provide a nonparametric extension of probit
regression (with random covariates):

Pr(Y = (l1, . . . , lk) | x ,G) =
∞∑
r=1

wr (x)

∫ γk,lk

γk,lk−1

···
∫ γ1,l1

γ1,l1−1

N(z | mr (x),Sr )dz

with covariate-dependent weights wr (x) ∝ pr N(x | µx
r ,Σ

xx
r )

and covariate-dependent probabilities, where
mr (x) = µz

r + Σzx
r (Σxx

r )−1(x − µx
r ) and Sr = Σzz

r − Σzx
r (Σxx

r )−1Σxz
r

Mixture of probit regressions with covariate-dependent weights.
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Density regression for ordinal responses

The normal mixture kernel can accommodate continuous covariates,
as well as ordinal categorical covariates.

The prior model has large support under fixed cutoffs:

For any mixed ordinal-continuous distribution, p0(x , y), that satisfies
certain regularity conditions, the prior assigns positive probability to
all Kullback-Leibler (KL) neighborhoods of p0(x , y), as well as to all
KL neighborhoods of the implied conditional distribution, p0(y | x).

More flexible ordinal regression relationships and simpler posterior
simulation (due to fixed cutoffs) than parametric models.

Posterior simulation: given the continuous latent responses, we can
use MCMC methods for normal DP mixture models (the only extra
step involves imputing the latent variables).
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Ozone concentration data example

Data set comprising 111 measure-
ments of ozone concentration (ppb),
wind speed (mph), radiation (lan-
gleys), and temperature (degrees
Fahrenheit).

Ozone concentration recorded on continuous scale.

To construct an ordinal response: define “high” as above 100 ppb,
“medium” as (50, 100] ppb, and “low” as less than 50 ppb.

Comparison of inferences from the model for (Y ,X ) with those from
a DP mixture of normals model for (Z ,X ).
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Ozone concentration data example
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Posterior mean (solid) and 95% interval estimates (dashed) for Pr(Y = ` | xm,G)
(black) compared to Pr(γ`−1 < Z ≤ γ` | xm,G) (red).
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Ozone concentration data example
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Credit ratings of U.S. companies

Data on Standard and Poor’s (S&P) credit ratings for 921 U.S. firms
in year 2005 (Verbeek, 2008; Chib & Greenberg, 2010).

Credit rating recorded on a five-point ordinal scale, where higher rat-
ings indicate more creditworthiness

Five covariates (firm characteristics)

X1: book leverage (ratio of debt to assets)
X2: earnings before interest and taxes / total assets
X3: standardized log-sales (proxy for firm size)
X4: retained earnings / total assets (proxy for historical profitability)
X5: working capital / total assets (proxy for short-term liquidity)
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Credit ratings of U.S. companies
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Credit ratings of U.S. companies
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Extension to dynamic ordinal regression modeling

Focusing on a univariate ordinal response, we seek to extend to a
model for Prt(Y | x), for t ∈ T = {1, 2, . . . }

Build on the earlier framework by extending to a prior model for
{f (z , x | Gt) : t ∈ T }, and thus for {Pr(Y | x ,Gt) : t ∈ T }

Motivating application: data from NMFS on female Chilipepper rock-
fish collected between 1993 and 2007 along the coast of California

sample sizes per year range from 37 to 396, with no data available for
three years (2003, 2005 and 2006)

three ordinal levels for maturity: immature (1), pre-spawning mature
(2), and post-spawning mature (3)

length measured in millimeters

age recorded on an ordinal scale: age j implies the fish was between j
and j + 1 years of age (data range: 1 to 25) → incorporate age into
the model in the same fashion with the maturity variable.
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Rockfish data
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Bivariate plots of length versus age at each year of data, with data points colored
according to maturity level: red level 1; green level 2; blue level 3.
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DDP model extension

To retain model properties at each t, use DDP prior for {Gt : t ∈ T }

Time-dependent weights and atoms:

f (z , x | Gt) =
∞∑
r=1

{
(1− βr ,t)

∏r−1

m=1
βm,t

}
N(z , x | µr ,t ,Σr )

Vector autoregressive model for the {µr ,t : t ∈ T }
µr,t | µr,t−1,Θ,m,V ∼ N(m + Θµr,t−1,V )

Σr | ν,D
i.i.d.∼ IW(ν,D)

hyperpriors for (Θ,m,V ) and for D

Athanasios Kottas (thanos@soe.ucsc.edu) Nonparametric Bayesian density regression



DDP model extension

Stochastic process with beta(α, 1) marginals:

B =

{
βt = exp

(
−ζ

2 + η2
t

2α

)
: t ∈ T

}
where ζ ∼ N(0, 1) and, independently, {ηt : t ∈ T } arises from a time
series model with N(0, 1) marginals

Build model for the {βr,t : t ∈ T } from βr,t = exp{−(ζ2
r + η2

r,t)/(2α)}

ζr
ind.∼ N(0, 1)

AR(1) process for {ηr,t : t ∈ T }: ηr,t | ηr,t−1, φ ∼ N(φηr,t−1, 1− φ2)

with |φ| < 1 (and ηr,1
ind.∼ N(0, 1))

Different types of correlations can be studied, e.g., corr(Gt(A),Gt+1(A)),

for any subset A in the support of the Gt .
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Rockfish data
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Posterior mean estimates for f (age, length).
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Rockfish data
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Posterior mean and 95% interval bands for the expected value of length over
(continuous) age, across three years. Overlaid are the data (in blue) and the estimated
von Bertalanffy growth curves (in red).
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Rockfish data
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Rockfish data
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Athanasios Kottas (thanos@soe.ucsc.edu) Nonparametric Bayesian density regression



Rockfish data
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Posterior mean and 90% intervals for the smallest value of age above 2 years at which
probability of maturity first exceeds 0.9 (left), and similar inference for length (right).
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Rockfish data
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Posterior mean estimates for f (age, length | Y = 1), with corresponding data overlaid.
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Density regression in survival analysis
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Density regression for survival responses

Density regression approach in the context of survival analysis:

Non-standard shapes for the density (survival, hazard, mean residual
life) function and non-linear regression relationships.

Survival analysis applications typically involve a small to moderate
number of random covariates.

But, also covariates (e.g., binary control/treatment indicators) that
need to be handled differently.

DP mixture model for the joint response-covariate density:

f (t, x | G ) =

∫
k(t, x | θ) dG (θ) ≈

N∑
`=1

p` k(t, x | θ`)

where x is the vector of (random) covariates, and the weighted mixture

representation uses a truncation approximation, GN =
∑N
`=1 p` δθ` , to the

DP stick-breaking construction for G .
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Survival analysis functionals

Let T be an R+-valued random variable representing survival time.

Survival function: S(t) = Pr(T > t).

Hazard function: probability of failure in the next instant given survival up
to time t, h(t) = lim∆t→0 Pr[t < T ≤ t + ∆t | T > t]/(∆t)

For continuous T , h(t) = f (t)/S(t), where f (t) is the density.

Mean residual life (MRL) function: expected remaining survival time given
survival up to time t. For continuous T ,

m(t) = E(T − t | T > t) =

∫∞
t

(u − t)f (u) du

S(t)
=

∫∞
t

S(u) du

S(t)

provided µ ≡ E(T ) =
∫∞

0
S(t) dt <∞

The MRL function characterizes the survival distribution:

S(t) =
m(0)

m(t)
exp

[
−
∫ t

0

1

m(u)
du

]
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Functionals under the density regression model

Mean regression:

E(T | x ,GN) =
∑N
`=1 q`(x) E(T | x ,θ`)

where

q`(x) = p` k(x | θ`)/{
∑N

r=1
pr k(x | θr )}

are covariate-dependent weights, and E(T | x ,θ) is the conditional
expectation under the mixture kernel distribution.

Mean residual life regression:

m(t | x ,GN) =
∑N
`=1 q`(t, x)m(t | x ,θ`)

where

q`(t, x) = p` k(x | θ`)S(t | x ,θ`)/{
∑N

r=1
pr k(x | θr )S(t | x ,θr )}

are covariate-dependent and time-dependent weights, and m(t | x ,θ) is the
MRL function of the mixture kernel conditional response distribution.
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Mixture kernel specification

Condition for finite mean for the conditional survival distribution:

If EG0 [E(T | x ,θ)] <∞, then E(T | x ,G) <∞

Gamma kernel component for the survival response variable:

Product kernel, k(t, x) = k(t) k(x) (with a gamma density for k(t)).

More general kernel: use appropriate marginal k(x), and take

k(t | x) = Γ(t | exp(θ), exp(xTβ))

such that E(T | x , θ,β) = exp(θ − xTβ)
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DDP mixture model for treatment/control settings

Interest often lies in modeling survival times for treatment and control groups.

Benefits in modeling dependence across groups.

Let s ∈ S represent the index of dependence, and consider S = {T ,C}
where T and C are the treatment and control groups, respectively.

DP mixture regression model:

f (t, x | Gs) =

∫
k(t, x | θ) dGs(θ), s ∈ S

where we seek to model the pair of dependent random mixing distributions
(GC ,GT ).

General DDP prior structure, Gs =
∑∞

l=1 ωls δθls , where marginally,
Gs ∼ DP(αs ,G0s), for each s ∈ S .
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DDP mixture model for treatment/control settings

We might expect the two groups to be comprised of similar components,
but possibly having varying prevalence, motivating modeling dependence
only through the weights.

We use mixing distribution, Gs =
∑∞

l=1 ωls δθl , with a bivariate beta dis-
tribution defining the dependent stick-breaking weights (thus retaining the
DP marginally).

With the truncated version of Gs ≈
∑N
`=1 p`s δθ` , the model:

f (t, x | Gs) =

∫
k(t, x | θ) dGs(θ) ≈

N∑
`=1

p`s k(t, x | θ`), s ∈ {T ,C}

Practical benefit: modeling dependence only through the weights is not
affected by the dimensionality of the mixture kernel.
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Small cell lung cancer data example

Study involving two treatments for small cell lung cancer (Ying et al., 1988): survival

times (in days) for 121 patients (23 right censored) randomly assigned to one of two

treatments → Arm A, under which 62 patients received cisplatin (P) followed by

etoposide (E), and Arm B, where 59 patients received (E) followed by (P).

Left: posterior mean estimates for the Arm A (dashed line) and Arm B (solid line) MRL function.
Right: Pr(mA(t) > mB (t)) (dashed line) and Pr(mA(t) > mB (t) | data) (solid line), as a function
of time. (Results from a gamma DP mixture model applied separately to each group)

Athanasios Kottas (thanos@soe.ucsc.edu) Nonparametric Bayesian density regression



Small cell lung cancer data example
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Point and 95% interval estimates of the density function for Arm A and Arm B. Point estimate of
the survival function and the mean residual life function for Arm A (blue dashed) and Arm B
(green solid). (Results from the gamma DDP mixture model)
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Small cell lung cancer data example
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and Arm B (green solid) across a grid of age values (in years). (Results from the gamma DDP
density regression model, with the patient’s age as the covariate)

Athanasios Kottas (thanos@soe.ucsc.edu) Nonparametric Bayesian density regression



Small cell lung cancer data example
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