Matrix Multiplication

Matrix Multiplication

Matrix multiplication. Given two n-by-n matrices A and B, compute $C=A B$.

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

$$
\left[\begin{array}{cccc}
c_{11} & c_{12} & \cdots & c_{1 n} \\
c_{21} & c_{22} & \cdots & c_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \cdots & c_{n n}
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right] \times\left[\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n 1} & b_{n 2} & \cdots & b_{n n}
\end{array}\right]
$$

Brute force. $\Theta\left(n^{3}\right)$ arithmetic operations.
Fundamental question. Can we improve upon brute force?

Matrix Multiplication: Warmup

Divide-and-conquer.

- Divide: partition A and B into $\frac{1}{2} n$-by- $\frac{1}{2} n$ blocks.
- Conquer: multiply $8 \frac{1}{2} n$-by- $\frac{1}{2} n$ recursively.
- Combine: add appropriate products using 4 matrix additions.

$$
\left[\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right]=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] \times\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]
$$

$$
\begin{aligned}
& C_{11}=\left(A_{11} \times B_{11}\right)+\left(A_{12} \times B_{21}\right) \\
& C_{12}=\left(A_{11} \times B_{12}\right)+\left(A_{12} \times B_{22}\right) \\
& C_{21}=\left(A_{21} \times B_{11}\right)+\left(A_{22} \times B_{21}\right) \\
& C_{22}=\left(A_{21} \times B_{12}\right)+\left(A_{22} \times B_{22}\right)
\end{aligned}
$$

$$
\mathrm{T}(n)=\underbrace{8 T(n / 2)}_{\text {recursive calls }}+\underbrace{\Theta\left(n^{2}\right)}_{\text {add, form submatrices }} \Rightarrow \mathrm{T}(n)=\Theta\left(n^{3}\right)
$$

Matrix Multiplication: Key Idea

Key idea. multiply 2-by-2 block matrices with only 7 multiplications.

$$
\left.\left.\begin{array}{rl}
{\left[\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right]} & =\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] \times\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]
\end{array} \begin{array}{l}
P_{1}=A_{11} \times\left(B_{12}-B_{22}\right) \\
P_{2}
\end{array}=\left(A_{11}+A_{12}\right) \times B_{22}\right) 子 \begin{array}{l}
P_{3}
\end{array}=\left(A_{21}+A_{22}\right) \times B_{11}\right)
$$

- 7 multiplications.
- 18 = 10 + 8 additions (or subtractions).

Fast Matrix Multiplication

Fast matrix multiplication. (Strassen, 1969)

- Divide: partition A and B into $\frac{1}{2} n$-by- $\frac{1}{2} n$ blocks.
- Compute: $14 \frac{1}{2} n$-by- $\frac{1}{2} n$ matrices via 10 matrix additions.
- Conquer: multiply $7 \frac{1}{2} n$-by- $\frac{1}{2} n$ matrices recursively.
- Combine: 7 products into 4 terms using 8 matrix additions.

Analysis.

- Assume n is a power of 2 .
- $T(n)=\#$ arithmetic operations.

$$
\mathrm{T}(n)=\underbrace{7 T(n / 2)}_{\text {recursive calls }}+\underbrace{\Theta\left(n^{2}\right)}_{\text {add, subtract }} \Rightarrow \mathrm{T}(n)=\Theta\left(n^{\log _{2} 7}\right)=O\left(n^{2.81}\right)
$$

Fast Matrix Multiplication in Practice

Implementation issues.

- Sparsity.
- Caching effects.
- Numerical stability.
- Odd matrix dimensions.
- Crossover to classical algorithm around $n=128$.

Common misperception: "Strassen is only a theoretical curiosity."

- Advanced Computation Group at Apple Computer reports $8 x$ speedup on G4 Velocity Engine when $n \sim 2,500$.
- Range of instances where it's useful is a subject of controversy.

Remark. Can "Strassenize" $A x=b$, determinant, eigenvalues, and other matrix ops.

Fast Matrix Multiplication in Theory

$$
\Theta\left(n^{\log _{2} 7}\right)=O\left(n^{2.81}\right)
$$

$$
\Theta\left(n^{\log _{2} 6}\right)=O\left(n^{2.59}\right)
$$

$$
\Theta\left(n^{\log _{3} 21}\right)=O\left(n^{2.77}\right)
$$

$$
\Theta\left(n^{\log _{70} 143640}\right)=O\left(n^{2.80}\right)
$$

Fast Matrix Multiplication in Theory

Q. Multiply two 2-by-2 matrices with only 7 scalar multiplications?

$$
\Theta\left(n^{\log _{2} 7}\right)=O\left(n^{2.81}\right)
$$

$$
\Theta\left(n^{\log _{2} 6}\right)=O\left(n^{2.59}\right)
$$

$$
\Theta\left(n^{\log _{3} 21}\right)=O\left(n^{2.77}\right)
$$

$$
\Theta\left(n^{\log _{70} 143640}\right)=O\left(n^{2.80}\right)
$$

Fast Matrix Multiplication in Theory

Q. Multiply two 2-by-2 matrices with only 7 scalar multiplications?
A. Yes! [Strassen, 1969]

$$
\Theta\left(n^{\log _{2} 7}\right)=O\left(n^{2.81}\right)
$$

$$
\Theta\left(n^{\log _{2} 6}\right)=O\left(n^{2.59}\right)
$$

$$
\Theta\left(n^{\log _{3} 21}\right)=O\left(n^{2.77}\right)
$$

$$
\Theta\left(n^{\log _{70} 143640}\right)=O\left(n^{2.80}\right)
$$

Fast Matrix Multiplication in Theory

Q. Multiply two 2-by-2 matrices with only 7 scalar multiplications?
A. Yes! [Strassen, 1969]

$$
\Theta\left(n^{\log _{2} 7}\right)=O\left(n^{2.81}\right)
$$

$$
\Theta\left(n^{\log _{2} 6}\right)=O\left(n^{2.59}\right)
$$

$$
\Theta\left(n^{\log _{3} 21}\right)=O\left(n^{2.77}\right)
$$

$$
\Theta\left(n^{\log _{70} 143640}\right)=O\left(n^{2.80}\right)
$$

Fast Matrix Multiplication in Theory

Q. Multiply two 2-by-2 matrices with only 7 scalar multiplications?
A. Yes! [Strassen, 1969]

$$
\Theta\left(n^{\log _{2} 7}\right)=O\left(n^{2.81}\right)
$$

Q. Multiply two 2-by-2 matrices with only 6 scalar multiplications?

$$
\begin{aligned}
& \Theta\left(n^{\log _{2} 6}\right)=O\left(n^{2.59}\right) \\
& \Theta\left(n^{\log _{3} 21}\right)=O\left(n^{2.77}\right)
\end{aligned}
$$

$$
\Theta\left(n^{\log _{70} 143640}\right)=O\left(n^{2.80}\right)
$$

Fast Matrix Multiplication in Theory

Q. Multiply two 2-by-2 matrices with only 7 scalar multiplications?
A. Yes! [Strassen, 1969]

$$
\Theta\left(n^{\log _{2} 7}\right)=O\left(n^{2.81}\right)
$$

Q. Multiply two 2-by-2 matrices with only 6 scalar multiplications?
A. Impossible. [Hopcroft and Kerr, 1971]

$$
\Theta\left(n^{\log _{2} 6}\right)=O\left(n^{2.59}\right)
$$

$$
\Theta\left(n^{\log _{3} 21}\right)=O\left(n^{2.77}\right)
$$

$$
\Theta\left(n^{\log _{70} 143640}\right)=O\left(n^{2.80}\right)
$$

Fast Matrix Multiplication in Theory

Q. Multiply two 2-by-2 matrices with only 7 scalar multiplications?
A. Yes! [Strassen, 1969]

$$
\Theta\left(n^{\log _{2} 7}\right)=O\left(n^{2.81}\right)
$$

Q. Multiply two 2-by-2 matrices with only 6 scalar multiplications?
A. Impossible. [Hopcroft and Kerr, 1971]

$$
\Theta\left(n^{\log _{2} 6}\right)=O\left(n^{2.59}\right)
$$

$$
\Theta\left(n^{\log _{3} 21}\right)=O\left(n^{2.77}\right)
$$

$$
\Theta\left(n^{\log _{70} 143640}\right)=O\left(n^{2.80}\right)
$$

Fast Matrix Multiplication in Theory

Q. Multiply two 2-by-2 matrices with only 7 scalar multiplications?
A. Yes! [Strassen, 1969]

$$
\Theta\left(n^{\log _{2} 7}\right)=O\left(n^{2.81}\right)
$$

Q. Multiply two 2-by-2 matrices with only 6 scalar multiplications?
A. Impossible. [Hopcroft and Kerr, 1971]
Q. Two 3-by-3 matrices with only 21 scalar multiplications? ${ }_{\Theta}\left(n^{\log _{2} 6}\right)=O\left(n^{2.59}\right)$

$$
\Theta\left(n^{\log _{3} 21}\right)=O\left(n^{2.77}\right)
$$

$$
\Theta\left(n^{\log _{70} 143640}\right)=O\left(n^{2.80}\right)
$$

Fast Matrix Multiplication in Theory

Q. Multiply two 2-by-2 matrices with only 7 scalar multiplications?
A. Yes! [Strassen, 1969]

$$
\Theta\left(n^{\log _{2} 7}\right)=O\left(n^{2.81}\right)
$$

Q. Multiply two 2-by-2 matrices with only 6 scalar multiplications?
A. Impossible. [Hopcroft and Kerr, 1971]
Q. Two 3-by-3 matrices with only 21 scalar multiplications? ${ }_{\Theta}\left(n^{\log _{2} 6}\right)=O\left(n^{2.59}\right)$
A. Also impossible.

$$
\Theta\left(n^{\log _{3} 21}\right)=O\left(n^{2.77}\right)
$$

$$
\Theta\left(n^{\log _{70} 143640}\right)=O\left(n^{2.80}\right)
$$

Fast Matrix Multiplication in Theory

Q. Multiply two 2-by-2 matrices with only 7 scalar multiplications?
A. Yes! [Strassen, 1969]

$$
\Theta\left(n^{\log _{2} 7}\right)=O\left(n^{2.81}\right)
$$

Q. Multiply two 2-by-2 matrices with only 6 scalar multiplications?
A. Impossible. [Hopcroft and Kerr, 1971]
Q. Two 3-by-3 matrices with only 21 scalar multiplications? ${ }_{\Theta}\left(n^{\log _{2} 6}\right)=O\left(n^{2.59}\right)$
A. Also impossible.

$$
\Theta\left(n^{\log _{3} 21}\right)=O\left(n^{2.77}\right)
$$

$$
\Theta\left(n^{\log _{70} 143640}\right)=O\left(n^{2.80}\right)
$$

Fast Matrix Multiplication in Theory

Q. Multiply two 2-by-2 matrices with only 7 scalar multiplications?
A. Yes! [Strassen, 1969]

$$
\Theta\left(n^{\log _{2} 7}\right)=O\left(n^{2.81}\right)
$$

Q. Multiply two 2-by-2 matrices with only 6 scalar multiplications?
A. Impossible. [Hopcroft and Kerr, 1971]
Q. Two 3-by-3 matrices with only 21 scalar multiplications? ${ }_{\Theta}\left(n^{\log _{2} 6}\right)=O\left(n^{2.59}\right)$
A. Also impossible.
A. Also impossible.
Q. Two $70-$ by- 70 matrices with only 143,640 scalar multiplications?

$$
\Theta\left(n^{\log _{3} 21}\right)=O\left(n^{2.77}\right)
$$

$$
\Theta\left(n^{\log _{70} 143640}\right)=O\left(n^{2.80}\right)
$$

Fast Matrix Multiplication in Theory

Q. Multiply two 2-by-2 matrices with only 7 scalar multiplications?
A. Yes! [Strassen, 1969]

$$
\Theta\left(n^{\log _{2} 7}\right)=O\left(n^{2.81}\right)
$$

Q. Multiply two 2-by-2 matrices with only 6 scalar multiplications?
A. Impossible. [Hopcroft and Kerr, 1971]
Q. Two 3-by-3 matrices with only 21 scalar multiplications? ${ }_{\Theta}\left(n^{\log _{2} 6}\right)=O\left(n^{2.59}\right)$
A. Also impossible.
Q. Two 70 -by- 70 matrices with only 143,640 scalar multiplications?
A. Yes! [Pan, 1980]

$$
\Theta\left(n^{\log _{3} 21}\right)=O\left(n^{2.77}\right)
$$

$$
\Theta\left(n^{\log _{70} 143640}\right)=O\left(n^{2.80}\right)
$$

Fast Matrix Multiplication in Theory

Q. Multiply two 2-by-2 matrices with only 7 scalar multiplications?
A. Yes! [Strassen, 1969]

$$
\Theta\left(n^{\log _{2} 7}\right)=O\left(n^{2.81}\right)
$$

Q. Multiply two 2-by-2 matrices with only 6 scalar multiplications?
A. Impossible. [Hopcroft and Kerr, 1971]
Q. Two 3-by-3 matrices with only 21 scalar multiplications? ${ }_{\Theta}\left(n^{\log _{2} 6}\right)=O\left(n^{2.59}\right)$
A. Also impossible.
Q. Two 70 -by- 70 matrices with only 143,640 scalar multiplications?
A. Yes! [Pan, 1980]

$$
\Theta\left(n^{\log _{3} 21}\right)=O\left(n^{2.77}\right)
$$

$$
\Theta\left(n^{\log _{70} 143640}\right)=O\left(n^{2.80}\right)
$$

Fast Matrix Multiplication in Theory

Q. Multiply two 2-by-2 matrices with only 7 scalar multiplications?
A. Yes! [Strassen, 1969]

$$
\Theta\left(n^{\log _{2} 7}\right)=O\left(n^{2.81}\right)
$$

Q. Multiply two 2-by-2 matrices with only 6 scalar multiplications?
A. Impossible. [Hopcroft and Kerr, 1971]
Q. Two 3-by-3 matrices with only 21 scalar multiplications? ${ }_{\Theta}\left(n^{\log _{2} 6}\right)=O\left(n^{2.59}\right)$
A. Also impossible.
Q. Two $70-$ by- 70 matrices with only 143,640 scalar multiplications?
A. Yes! [Pan, 1980]

$$
\Theta\left(n^{\log _{3} 21}\right)=O\left(n^{2.77}\right)
$$

Decimal wars.

$$
\Theta\left(n^{\log _{70} 143640}\right)=O\left(n^{2.80}\right)
$$

Fast Matrix Multiplication in Theory

Q. Multiply two 2-by-2 matrices with only 7 scalar multiplications?
A. Yes! [Strassen, 1969]

$$
\Theta\left(n^{\log _{2} 7}\right)=O\left(n^{2.81}\right)
$$

Q. Multiply two 2-by-2 matrices with only 6 scalar multiplications?
A. Impossible. [Hopcroft and Kerr, 1971]
Q. Two 3-by-3 matrices with only 21 scalar multiplications? ${ }_{\Theta}\left(n^{\log _{2} 6}\right)=O\left(n^{2.59}\right)$
A. Also impossible.
Q. Two $70-$ by- 70 matrices with only 143,640 scalar multiplications?
A. Yes! [Pan, 1980]

$$
\Theta\left(n^{\log _{3} 21}\right)=O\left(n^{2.77}\right)
$$

Decimal wars.

- December, 1979: $O\left(n^{2.521813}\right)$.

$$
\Theta\left(n^{\log _{70} 143640}\right)=O\left(n^{2.80}\right)
$$

Fast Matrix Multiplication in Theory

Q. Multiply two 2-by-2 matrices with only 7 scalar multiplications?
A. Yes! [Strassen, 1969]

$$
\Theta\left(n^{\log _{2} 7}\right)=O\left(n^{2.81}\right)
$$

Q. Multiply two 2-by-2 matrices with only 6 scalar multiplications?
A. Impossible. [Hopcroft and Kerr, 1971]
Q. Two 3-by-3 matrices with only 21 scalar multiplications? ${ }_{\Theta}\left(n^{\log _{2} 6}\right)=O\left(n^{2.59}\right)$ A. Also impossible.
Q. Two $70-$ by- 70 matrices with only 143,640 scalar multiplications?
A. Yes! [Pan, 1980]

$$
\Theta\left(n^{\log _{3} 21}\right)=O\left(n^{2.77}\right)
$$

Decimal wars.

- December, 1979: $O\left(n^{2.521813}\right)$.

$$
\Theta\left(n^{\log _{70} 143640}\right)=O\left(n^{2.80}\right)
$$

Fast Matrix Multiplication in Theory

Best known. $O\left(n^{2.376}\right)$ [Coppersmith-Winograd, 1987.]
Conjecture. $O\left(n^{2+\varepsilon}\right)$ for any $\varepsilon>0$.
Caveat. Theoretical improvements to Strassen are progressively less practical.

