
4.1 Interval Scheduling

2

Interval Scheduling

Interval scheduling.
 Job j starts at sj and finishes at fj.
 Two jobs compatible if they don't overlap.
 Goal: find maximum subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

3

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided
it's compatible with the ones already taken.

 [Earliest start time] Consider jobs in ascending order of start time
sj.

 [Earliest finish time] Consider jobs in ascending order of finish
time fj.

 [Shortest interval] Consider jobs in ascending order of interval
length fj - sj.

 [Fewest conflicts] For each job, count the number of conflicting
jobs cj. Schedule in ascending order of conflicts cj.

4

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided
it's compatible with the ones already taken.

breaks earliest start time

breaks shortest interval

breaks fewest conflicts

5

Greedy algorithm. Consider jobs in increasing order of finish time.
Take each job provided it's compatible with the ones already taken.

Implementation. O(n log n).
 Remember job j* that was added last to A.
 Job j is compatible with A if sj ≥ fj*.

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.

A ← φ
for j = 1 to n {
 if (job j compatible with A)
 A ← A ∪ {j}
}
return A

jobs selected

Interval Scheduling: Greedy Algorithm

6

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)
 Assume greedy is not optimal, and let's see what happens.
 Let i1, i2, ... ik denote set of jobs selected by greedy.
 Let j1, j2, ... jm denote set of jobs in the optimal solution with

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.

j1 j2 jr

i1 i1 ir ir+1

. . .

Greedy:

OPT: jr+1

why not replace job jr+1

with job ir+1?

job ir+1 finishes before jr+1

7

j1 j2 jr

i1 i1 ir ir+1

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)
 Assume greedy is not optimal, and let's see what happens.
 Let i1, i2, ... ik denote set of jobs selected by greedy.
 Let j1, j2, ... jm denote set of jobs in the optimal solution with

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.

. . .

Greedy:

OPT:

solution still feasible and optimal,
but contradicts maximality of r.

ir+1

job ir+1 finishes before jr+1

4.1 Interval Partitioning

9

Interval Partitioning

Interval partitioning.
 Lecture j starts at sj and finishes at fj.
 Goal: find minimum number of classrooms to schedule all lectures so

that no two occur at the same time in the same room.

Ex: This schedule uses 4 classrooms to schedule 10 lectures.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

10

Interval Partitioning

Interval partitioning.
 Lecture j starts at sj and finishes at fj.
 Goal: find minimum number of classrooms to schedule all lectures so

that no two occur at the same time in the same room.

Ex: This schedule uses only 3.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

11

Interval Partitioning: Lower Bound on Optimal Solution

Def. The depth of a set of open intervals is the maximum number that
contain any given time.

Key observation. Number of classrooms needed ≥ depth.

Ex: Depth of schedule below = 3 ⇒ schedule below is optimal.

Q. Does there always exist a schedule equal to depth of intervals?

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

a, b, c all contain 9:30

12

Interval Partitioning: Greedy Algorithm

Greedy algorithm. Consider lectures in increasing order of start time:
assign lecture to any compatible classroom.

Implementation. O(n log n).
 For each classroom k, maintain the finish time of the last job added.
 Keep the classrooms in a priority queue.

Sort intervals by starting time so that s1 ≤ s2 ≤ ... ≤ sn.
d ← 0

for j = 1 to n {
 if (lecture j is compatible with some classroom k)
 schedule lecture j in classroom k
 else
 allocate a new classroom d + 1
 schedule lecture j in classroom d + 1
 d ← d + 1
}

number of allocated classrooms

13

Interval Partitioning: Greedy Analysis

Observation. Greedy algorithm never schedules two incompatible
lectures in the same classroom.

Theorem. Greedy algorithm is optimal.
Pf.
 Let d = number of classrooms that the greedy algorithm allocates.
 Classroom d is opened because we needed to schedule a job, say j,

that is incompatible with all d-1 other classrooms.
 Since we sorted by start time, all these incompatibilities are caused

by lectures that start no later than sj.
 Thus, we have d lectures overlapping at time sj + ε.
 Key observation ⇒ all schedules use ≥ d classrooms. ▪

