
1 A Deterministic Linear-time Algorithm

We now present a selection algorithm whose worst-case running time is O(n).
The strategy is the same as for the randomized algorithm: select a pivot element
that splits the array in an approximately balanced way, throw away the part
that is guaranteed to not contain the sought-out element, and recursively solve
a selection problem (perhaps with a different index) in the kept part.

The difference is that rather than randomly choosing an element to serve as
the pivot, we do a bit more work to isolate an element which is guaranteed to
be an approximately balanced separator, i.e., an element which is guaranteed to
be bigger than a constant fraction of all elements and smaller than a constant
fraction of all elements. Below we describe how to find such a good pivot element
for an arbitrary set S of size n. Note that in our divide-and-conquer algorithm
we will be executing this “search for a good pivot” in each level of the recursion.

1.1 Finding a Good Pivot

We begin by dividing S into sets of size 2k + 1 arbitrarily (except perhaps for
one set which might contain fewer elements). It is important to note that k is
independent of the size, |S|, of the set S, i.e., it is a hard-wired constant in our
code (and, therefore, same in all levels of the recursion).

Next, we compute the median of each set. Since k is fixed, we do this by
“brute force”, e.g., by sorting each set. Let ck be the number of steps needed
to find the median of a set by brute force (this is no more than O(k log k)).

Finally, we form a set S′ containing the⌈
|S|

2k + 1

⌉
medians. We then fire-off another instance of our selection algorithm, i.e., we
employ recursion, asking for the median of this set S′. The answer, call it p, is
our pivot for splitting S. Is p an approximately balanced separator? Let’s see.

As a thought experiment, think of each set as a brick labeled by its median,
and sort the bricks by decreasing label. Also, think of each brick as internally
sorted. Clearly, the brick labeled by p is “the middle brick”. Moreover, if you
pick a brick B that is to the left of p’s brick, and you pick any element from
the left half of B (including B’s median), that element will be strictly greater
than p. Call all such elements “big”. Similarly, if you pick a brick C that is
to the right of p’s brick, and you pick any element from the right half of C
(including C’s median), that element will be strictly smaller than p. Call all
such elements “small”. Now, when we use p as a pivot, we are guaranteed that
we will eliminate from consideration either all the small elements or all the big
elements. So, overall, the number of elements we will be eliminating is at least⌈

|S|
2k + 1

⌉
· 1

2
· (k + 1)−O(k) ,

1

where the O(k) term reflects the fact that one brick might have fewer than 2k+1
elements and that the total number of bricks might be even. So, after pivoting,
our recursive call will need to solve a selection problem on no more than

|S| −
(⌈

|S|
2k + 1

⌉
· 1

2
· (k + 1)−O(k)

)
≈ |S| · 3k + 1

4k + 2

elements, where the approximation ≈ is valid as long as |S| � k. Therefore,
counting all the work we did, we get that to solve a selection problem on a set
of size n, we will need time (ignoring floors/ceilings)

T (n) ≤ ck ·
n

2k + 1
+ T

(
n

2k + 1

)
+ n + T

(
3k + 1
4k + 2

· n
)

(1)

= T

(
n

2k + 1

)
+ T

(
3k + 1
4k + 2

· n
)

+ Ok(n) , (2)

where the notation Ok() serves as a reminder that the constant implicit in our
big-O notation depends on a parameter k.

For k = 1, we have,

T (n) = T (2n/3) + T (n/3) + O(n)

and the Master Theorem yields, T (n) = O(n log n). Thus, we don’t seem to
have gained much over sorting the entire array at the start.

Can k = 2 do the trick? Plugging k = 2 we get

T (n) = T (7n/10) + T (n/5) + O(n)

and now the MT gives T (n) = O(n). Success!
Naturally, the question arises: what is special about k = 2? While for k = 1

the amount of work in each level of the recursion tree is the same, for k = 2, the
amount of work is shrinking geometrically. We might be tempted to increase
the value of k further so as to reduce the constant factors in the running time.
While this works for small k (2, 3, 4), for higher values of k, the benefit of
rapidly shrinking subproblems is offset by the increase in the time (ck) taken to
compute the median of each bucket.

2

