5.4 Closest Pair of Points

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest Euclidean
distance between them.

Fundamental geometric primitive.
* Graphics, computer vision, geographic information systems, molecular

modeling, air traffic control.
= Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force. Check all pairs of points p and q with ©(n®) comparisons.
\ .. |
1-D version. O(n |09 n) eaég;‘rlflciiﬁsm:fxg af‘péreéirfaé’rﬁhaﬂ‘rhms for these problems

Assumption. No two points have same x coordinate.

to make presentation cleaner

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Obstacle. Impossible to ensure n/4 points in each piece.

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Obstacle. Impossible to ensure n/4 points in each piece.

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Obstacle. Impossible to ensure n/4 points in each piece.

Closest Pair of Points

Algorithm.
* Divide: draw vertical line L so that roughly 3n points on each side.

Closest Pair of Points

Algorithm.
* Divide: draw vertical line L so that roughly 3n points on each side.

Closest Pair of Points

AI gorithm.
Dwude draw vertical line L so that roughly h points on each side.
= Conquer: find closest pair in each side recursively.

Closest Pair of Points

AI gorithm.
Dwude draw vertical line L so that roughly h points on each side.
= Conquer: find closest pair in each side recursively.

Closest Pair of Points

AI gorithm.
Dwude draw vertical line L so that roughly h points on each side.
= Conquer: find closest pair in each side recursively.

Algor'l’rhm

Closest Pair of Points

* Divide: draw vertical line L so that roughly 3n points on each side.

" Conquer: find closest pair in each side recursively.
= Combine: find closest pair with one point in each side.

= Return best of 3 solutions.

— seems like B(n?)

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 6.

d = min(12, 21)

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < é.
* Observation: only need to consider points within d of line L.

d = min(12, 21)

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < é.
* Observation: only need to consider points within d of line L.

= Sort points in 256-strip by their y coordinate.

d = min(12, 21)

10

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < é.
* Observation: only need to consider points within d of line L.

= Sort points in 256-strip by their y coordinate.

* Only check distances of those within 11 positions in sorted list!

y 5 = min(12, 21)

1

Closest Pair of Points

Def. Let s; be the point in the 28-strip, with
the i™ smallest y-coordinate.

Claim. If |i- j| =12, then the distance between

s; and s; is at least o.

Pf.
* No two points lie in same 35-by-38 box.
* Two points at least 2 rows apart

have distance = 2(39). =

Fact. Still true if we replace 12 with 7.

2 rows

©
(31
o ©
(26
@
(25
0 0

12

)=)=
o o

(VS
%

Closest Pair Algorithm

Closest-Pair(p;, .., P,) {

Compute separation line L such that half the points O(n log n)
are on one side and half on the other side. nilogn
0, = Closest-Pair(left half) 2T(n/ 2)
0, = Closest-Pair(right half)
0 = min(9,, 0,)
Delete all points further than 0 from separation line L O(n)

O(n log n)
Sort remaining points by y-coordinate.

O(n)

Scan points in y-order and compare distance between
each point and next 11 neighbors. If any of these
distances is less than 0, update oJ.

return 0.

13

Closest Pair of Points: Analysis

Running time.

T(n) < 2T(n/2) + O(nlogn) = T(n) = O(nlog”n)
Q. Can we achieve O(n log n)?
A. Yes. Don't sort points in strip from scratch each time.
= Each recursive returns two lists: all points sorted by y coordinate, and all

points sorted by x coordinate.
= Sort by merging two pre-sorted lists.

T(n) = 2T(n/2) + O(n) = T(n) = O(nlogn)

14

