5.4 Closest Pair of Points

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.

- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force. Check all pairs of points p and q with $\Theta\left(n^{2}\right)$ comparisons.
1-D version. $O(n \log n$) eaśstiflosestrnfis inspiredfagt liqlage. ithms for these problems
Assumption. No two points have same \times coordinate .

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants. Obstacle. Impossible to ensure $\mathrm{n} / 4$ points in each piece.

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants. Obstacle. Impossible to ensure $\mathrm{n} / 4$ points in each piece.

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants. Obstacle. Impossible to ensure $\mathrm{n} / 4$ points in each piece.

Closest Pair of Points

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2} n$ points on each side.

Closest Pair of Points

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2} n$ points on each side.

Closest Pair of Points

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2} n$ points on each side.
- Conquer: find closest pair in each side recursively.

Closest Pair of Points

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2} n$ points on each side.
- Conquer: find closest pair in each side recursively.

Closest Pair of Points

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2} n$ points on each side.
- Conquer: find closest pair in each side recursively.

Closest Pair of Points

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2} n$ points on each side.
- Conquer: find closest pair in each side recursively.
- Combine: find closest pair with one point in each side.
- Return best of 3 solutions.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $<\delta$.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $<\delta$.

- Observation: only need to consider points within δ of line L.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $<\delta$.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $<\delta$.

- Observation: only need to consider points within δ of line L.
- Sort points in 28-strip by their y coordinate.
- Only check distances of those within 11 positions in sorted list!

Closest Pair of Points

Def. Let s_{i} be the point in the 2δ-strip, with the $\mathrm{i}^{\text {th }}$ smallest y-coordinate.

Claim. If $|i-j| \geq 12$, then the distance between s_{i} and s_{j} is at least δ.
Pf.

- No two points lie in same $\frac{1}{2} \delta-b y-\frac{1}{2} \delta$ box.
- Two points at least 2 rows apart have distance $\geq 2\left(\frac{1}{2} \delta\right)$.

Fact. Still true if we replace 12 with 7.

Closest Pair Algorithm

Closest-Pair (p_{1}, \ldots, p_{n}) \{

Compute separation line L such that half the points are on one side and half on the other side.
$\delta_{1}=$ Closest-Pair(left half)
$\delta_{2}=$ Closest-Pair (right half)
$\delta=\min \left(\delta_{1}, \delta_{2}\right)$
Delete all points further than δ from separation line L

Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between each point and next 11 neighbors. If any of these distances is less than δ, update δ.
return δ.
\}

Closest Pair of Points: Analysis

Running time.

$$
\mathrm{T}(n) \leq 2 T(n / 2)+O(n \log n) \Rightarrow \mathrm{T}(n)=O\left(n \log ^{2} n\right)
$$

Q. Can we achieve $O(n \log n)$?
A. Yes. Don't sort points in strip from scratch each time.

- Each recursive returns two lists: all points sorted by y coordinate, and all points sorted by x coordinate.
- Sort by merging two pre-sorted lists.

$$
T(n) \leq 2 T(n / 2)+O(n) \Rightarrow \mathrm{T}(n)=O(n \log n)
$$

