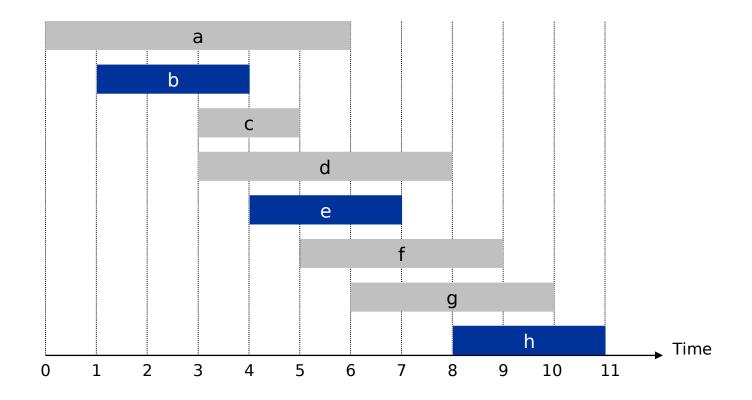
# **1.2 Five Representative Problems**

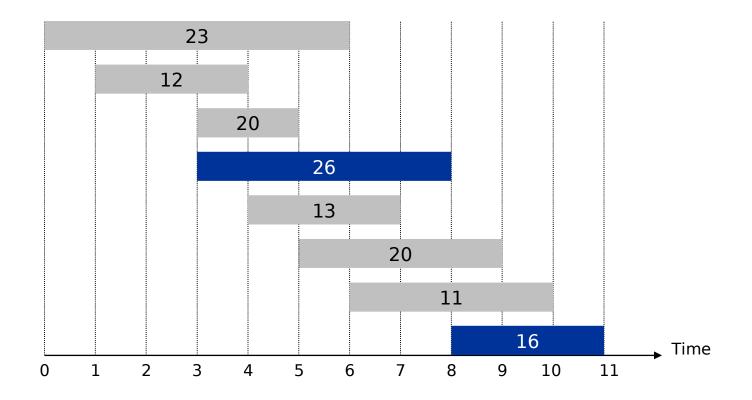
### Interval Scheduling

Input. Set of jobs with start times and finish times. Goal. Find maximum cardinality subset of mutually compatible jobs.



### Weighted Interval Scheduling

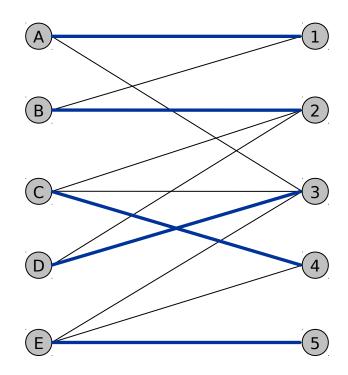
Input. Set of jobs with start times, finish times, and weights. Goal. Find maximum weight subset of mutually compatible jobs.



### **Bipartite Matching**

Input. Bipartite graph.

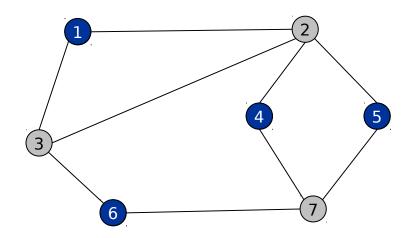
Goal. Find maximum cardinality matching.



### Independent Set

Input. Graph. Goal. Find maximum cardinality independent set.

subset of nodes such that no two joined by an edge

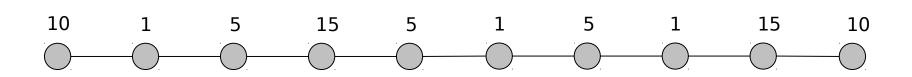


### **Competitive Facility Location**

Input. Graph with weight on each each node.

Game. Two competing players alternate in selecting nodes. Not allowed to select a node if any of its neighbors have been selected.

Goal. Select a maximum weight subset of nodes.



Second player can guarantee 20, but not 25.

### **Five Representative Problems**

Variations on a theme: independent set.

Interval scheduling: n log n greedy algorithm.

Weighted interval scheduling: n log n dynamic programming algorithm.

**Bipartite matching:** n<sup>k</sup> max-flow based algorithm.

Independent set: NP-complete.

Competitive facility location: PSPACE-complete.

# Polynomial-Time

Brute force. For many non-trivial problems, there is a natural brute force search algorithm that checks every possible solution.

- □ Typically takes 2<sup>N</sup> time or worse for inputs of size N.
- Unacceptable in practice.

n ! for stable matching with n men and n women

Desirable scaling property. When the input size doubles, the algorithm should only slow down by some constant factor C.

There exists constants c > 0 and d > 0 such that on every input of size N, its running time is bounded by c N<sup>d</sup> steps.

Def. An algorithm is poly-time if the above scaling property holds.

choose  $C = 2^d$ 

### Worst-Case Analysis

Worst case running time. Obtain bound on largest possible running time of algorithm on input of a given size N.

- Generally captures efficiency in practice.
- Draconian view, but hard to find effective alternative.

Average case running time. Obtain bound on running time of algorithm on random input as a function of input size N.

- Hard (or impossible) to accurately model real instances by random distributions.
- Algorithm tuned for a certain distribution may perform poorly on other inputs.

### Worst-Case Polynomial-Time

Def. An algorithm is efficient if its running time is polynomial.

#### Justification: It really works in practice!

- <sup>a</sup> Although  $6.02 \times 10^{23} \times N^{20}$  is technically poly-time, it would be useless in practice.
- In practice, the poly-time algorithms that people develop almost always have low constants and low exponents.
- Breaking through the exponential barrier of brute force typically exposes some crucial structure of the problem.

### Exceptions.

- Some poly-time algorithms do have high constants and/or exponents, and are useless in practice.
- Some exponential-time (or worse) algorithms are widely used because the worst-case instances seem to be rare.  $\checkmark$

simplex method Unix grep

### Why It Matters

**Table 2.1** The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10<sup>25</sup> years, we simply record the algorithm as taking a very long time.

|                      | п       | $n \log_2 n$ | $n^2$   | <i>n</i> <sup>3</sup> | 1.5 <sup>n</sup> | 2 <sup>n</sup>  | <i>n</i> !             |
|----------------------|---------|--------------|---------|-----------------------|------------------|-----------------|------------------------|
| n = 10               | < 1 sec | < 1 sec      | < 1 sec | < 1 sec               | < 1 sec          | < 1 sec         | 4 sec                  |
| n = 30               | < 1 sec | < 1 sec      | < 1 sec | < 1 sec               | < 1 sec          | 18 min          | 10 <sup>25</sup> years |
| n = 50               | < 1 sec | < 1 sec      | < 1 sec | < 1 sec               | 11 min           | 36 years        | very long              |
| n = 100              | < 1 sec | < 1 sec      | < 1 sec | 1 sec                 | 12,892 years     | $10^{17}$ years | very long              |
| <i>n</i> = 1,000     | < 1 sec | < 1 sec      | 1 sec   | 18 min                | very long        | very long       | very long              |
| n = 10,000           | < 1 sec | < 1 sec      | 2 min   | 12 days               | very long        | very long       | very long              |
| n = 100,000          | < 1 sec | 2 sec        | 3 hours | 32 years              | very long        | very long       | very long              |
| <i>n</i> = 1,000,000 | 1 sec   | 20 sec       | 12 days | 31,710 years          | very long        | very long       | very long              |

# 2.2 Asymptotic Order of Growth

### Asymptotic Order of Growth

Upper bounds. T(n) is O(f(n)) if there exist constants c > 0 and  $n_0 \ge 0$  such that for all  $n \ge n_0$  we have T(n)  $\le c \cdot f(n)$ .

**Lower bounds.** T(n) is  $\Omega(f(n))$  if there exist constants c > 0 and  $n_0 \ge 0$  such that for all  $n \ge n_0$  we have T(n)  $\ge c \cdot f(n)$ .

Tight bounds. T(n) is  $\Theta(f(n))$  if T(n) is both O(f(n)) and  $\Omega(f(n))$ .

**Ex:**  $T(n) = 32n^2 + 17n + 32$ .

- T(n) is O(n<sup>2</sup>), O(n<sup>3</sup>),  $\Omega(n^2)$ ,  $\Omega(n)$ , and  $\Theta(n^2)$ .
- T(n) is not O(n),  $\Omega(n^3)$ ,  $\Theta(n)$ , or  $\Theta(n^3)$ .

## Notation

### Slight abuse of notation. T(n) = O(f(n)).

Asymmetric:

- $f(n) = 5n^{3}; g(n) = 3n^{2}$
- $f(n) = O(n^3) = g(n)$
- but  $f(n) \neq g(n)$ .
- Better notation:  $T(n) \in O(f(n))$ .

Meaningless statement. Any comparison-based sorting algorithm requires at least O(n log n) comparisons.

- Statement doesn't "type-check."
- Use  $\Omega$  for lower bounds.

### Properties

#### Transitivity.

- If f = O(g) and g = O(h) then f = O(h).
- If  $f = \Omega(g)$  and  $g = \Omega(h)$  then  $f = \Omega(h)$ .
- If  $f = \Theta(g)$  and  $g = \Theta(h)$  then  $f = \Theta(h)$ .

#### Additivity.

- If f = O(h) and g = O(h) then f + g = O(h).
- If  $f = \Omega(h)$  and  $g = \Omega(h)$  then  $f + g = \Omega(h)$ .
- If  $f = \Theta(h)$  and g = O(h) then  $f + g = \Theta(h)$ .

### Asymptotic Bounds for Some Common Functions

Polynomials.  $a_0 + a_1n + ... + a_dn^d$  is  $\Theta(n^d)$  if  $a_d > 0$ .

Polynomial time. Running time is  $O(n^d)$  for some constant d independent of the input size n.

Logarithms.  $O(\log_a n) = O(\log_b n)$  for any constants a, b > 0. can avoid specifying the base Logarithms. For every x > 0,  $\log n = O(n^x)$ .  $\int_{1}^{1} \log grows slower than every$ polynomial

Exponentials. For every r > 1 and every d > 0,  $n^{d} = O(r^{n})$ .

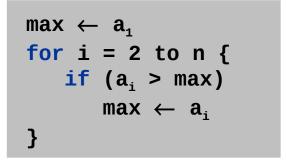
every exponential grows faster than every polynomial

# 2.4 A Survey of Common Running Times

# Linear Time: O(n)

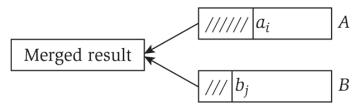
Linear time. Running time is at most a constant factor times the size of the input.

Computing the maximum. Compute maximum of n numbers  $a_1$ , ...,  $a_n$ .



### Linear Time: O(n)

Merge. Combine two sorted lists  $A = a_1, a_2, ..., a_n$  with  $B = b_1, b_2, ..., b_n$  into sorted whole.



```
i = 1, j = 1
while (both lists are nonempty) {
    if (a<sub>i</sub> ≤ b<sub>j</sub>) append a<sub>i</sub> to output list and increment i
    else append b<sub>j</sub> to output list and increment j
}
append remainder of nonempty list to output list
```

Claim. Merging two lists of size n takes O(n) time. Pf. After each comparison, the length of output list increases by 1.

# O(n log n) Time

O(n log n) time. Arises in divide-and-conquer algorithms.

Sorting. Mergesort and heapsort are sorting algorithms that perform O(n log n) comparisons.

Largest empty interval. Given n time-stamps  $x_1, ..., x_n$  on which copies of a file arrive at a server, what is largest interval of time when no copies of the file arrive?

O(n log n) solution. Sort the time-stamps. Scan the sorted list in order, identifying the maximum gap between successive time-stamps.

### Quadratic Time: O(n<sup>2</sup>)

Quadratic time. Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane  $(x_1, y_1)$ , ...,  $(x_n, y_n)$ , find the pair that is closest.

O(n<sup>2</sup>) solution. Try all pairs of points.

$$\begin{array}{l} \min \ \leftarrow \ (x_{1} \ - \ x_{2})^{2} \ + \ (y_{1} \ - \ y_{2})^{2} \\ \text{for } i = 1 \ \text{to } n \ \{ \\ for \ j = i+1 \ \text{to } n \ \{ \\ d \ \leftarrow \ (x_{i} \ - \ x_{j})^{2} \ + \ (y_{i} \ - \ y_{j})^{2} \\ if \ (d < \min) \\ \min \ \leftarrow \ d \\ \end{array} \right) \\ \begin{array}{l} \leftarrow \ \text{don't need to} \\ \text{take square roots} \\ \end{array}$$

Remark.  $\Omega(n^2)$  seems inevitable, but this is just an illusion. see chapter 5

### Cubic Time: O(n<sup>3</sup>)

Cubic time. Enumerate all triples of elements.

```
Set disjointness. Given n sets S_1, ..., S_n each of which is a subset of
```

1, 2, ..., n, is there some pair of these which are disjoint?

O(n<sup>3</sup>) solution. For each pairs of sets, determine if they are disjc

```
foreach set S<sub>i</sub> {
    foreach other set S<sub>j</sub> {
        foreach element p of S<sub>i</sub> {
            determine whether p also belongs to S<sub>j</sub>
        }
        if (no element of S<sub>i</sub> belongs to S<sub>j</sub>)
            report that S<sub>i</sub> and S<sub>j</sub> are disjoint
        }
    }
}
```

Polynomial Time: O(n<sup>k</sup>) Time

Independent set of size k. Given a graph, are there k nodes such that no two are joined by an edge? k is a constant

 $O(n^k)$  solution. Enumerate all subsets of k nodes.

foreach subset S of k nodes { check whether S in an independent set if (S is an independent set) report S is an independent set }

- Check whether S is an independent set =  $O(k^2)$ . 0
- Number of k element subsets  ${\atop k} = \frac{n(n-1)(n-2)L(n-k+1)}{k(k-1)(k-2)L(2)(1)} \le \frac{n^k}{k!}$ 0
- 0

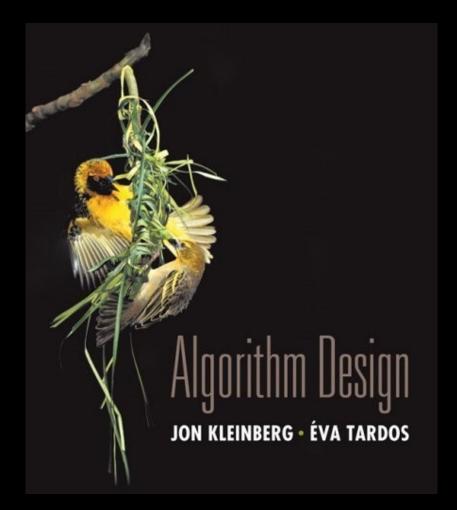
poly-time for k=17, but not practical

### **Exponential Time**

Independent set. Given a graph, what is maximum size of an independent set?

O(n<sup>2</sup>2<sup>n</sup>) solution. Enumerate all subsets.

```
S* ← $
foreach subset S of nodes {
    check whether S in an independent set
    if (S is largest independent set seen so far)
        update S* ← S
    }
}
```



# Chapter 5

# Divide and Conquer



Slides by Kevin Wayne. Copyright  $\ensuremath{\mathbb{C}}$  2005 Pearson-Addison Wesley. All rights reserved.

## **Divide-and-Conquer**

### Divide-and-conquer.

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

#### Most common usage.

- Break up problem of size n into two equal parts of size  $\frac{1}{2}n$ .
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

### Consequence.

- <sup>a</sup> Brute force: n<sup>2</sup>.
- Divide-and-conquer: n log n.

Divide et impera. Veni, vidi, vici. *- Julius Caesar* 

# 5.1 Mergesort

# Sorting

Sorting. Given n elements, rearrange in ascending order.

Obvious sorting applications. List files in a directory. Organize an MP3 library. List names in phone book. Display Google PageRank results.

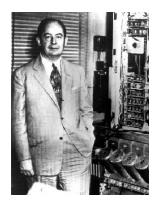
Easier once sorted. Find the median. Find the closest pair. Binary search in a database. Identify statistical outliers. Non-obvious sorting applications. Data compression. Computer graphics. Interval scheduling. Computational biology. Minimum spanning tree. Supply chain management. Simulate a system of particles. Book recommendations on Amazon. Load balancing on a parallel computer.

. . .

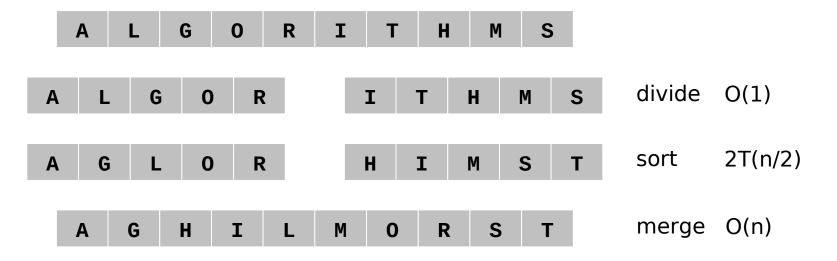
# Mergesort

### Mergesort.

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make sorted whole.



Jon von Neumann (1945)



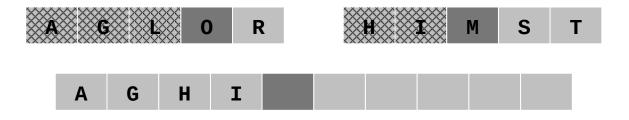
# Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?



- Linear number of comparisons.
- Use temporary array.



# Challenge for the bored. In-place merge. [Kronrud, 1969]