
1.2 Five Representative Problems

2

Interval Scheduling

Input. Set of jobs with start times and finish times.
Goal. Find maximum cardinality subset of mutually compatible
jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

jobs don't overlap

3

Weighted Interval Scheduling

Input. Set of jobs with start times, finish times, and weights.
Goal. Find maximum weight subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

20

11

16

13

23

12

20

26

4

Bipartite Matching

Input. Bipartite graph.
Goal. Find maximum cardinality matching.

C

1

5

2

A

E

3

B

D 4

5

Independent Set

Input. Graph.
Goal. Find maximum cardinality independent set.

6

2

5

1

7

3

4

6

5

1

4

subset of nodes such that no two
joined by an edge

6

Competitive Facility Location

Input. Graph with weight on each each node.
Game. Two competing players alternate in selecting nodes. Not
allowed to select a node if any of its neighbors have been
selected.

Goal. Select a maximum weight subset of nodes.

10 1 5 15 5 1 5 1 15 10

Second player can guarantee 20, but not 25.

7

Five Representative Problems

Variations on a theme: independent set.

Interval scheduling: n log n greedy algorithm.
Weighted interval scheduling: n log n dynamic programming
algorithm.
Bipartite matching: nk max-flow based algorithm.
Independent set: NP-complete.
Competitive facility location: PSPACE-complete.

8

Polynomial-Time

Brute force. For many non-trivial problems, there is a natural
brute force search algorithm that checks every possible solution.

 Typically takes 2N time or worse for inputs of size N.
 Unacceptable in practice.

Desirable scaling property. When the input size doubles, the
algorithm should only slow down by some constant factor C.

Def. An algorithm is poly-time if the above scaling property holds.

There exists constants c > 0 and d > 0 such that on

every input of size N, its running time is bounded by c

Nd steps.

choose C = 2d

n ! for stable matching
with n men and n women

9

Worst-Case Analysis

Worst case running time. Obtain bound on largest possible
running time of algorithm on input of a given size N.

 Generally captures efficiency in practice.
 Draconian view, but hard to find effective alternative.

Average case running time. Obtain bound on running time of
algorithm on random input as a function of input size N.

 Hard (or impossible) to accurately model real instances by
random distributions.

 Algorithm tuned for a certain distribution may perform poorly
on other inputs.

10

Worst-Case Polynomial-Time

Def. An algorithm is efficient if its running time is polynomial.

Justification: It really works in practice!
 Although 6.02 × 1023 × N20 is technically poly-time, it would be

useless in practice.
 In practice, the poly-time algorithms that people develop

almost always have low constants and low exponents.
 Breaking through the exponential barrier of brute force

typically exposes some crucial structure of the problem.

Exceptions.
 Some poly-time algorithms do have high constants and/or

exponents, and are useless in practice.
 Some exponential-time (or worse) algorithms are widely used

because the worst-case instances seem to be rare.
simplex method

Unix grep

11

Why It Matters

2.2 Asymptotic Order of Growth

13

Asymptotic Order of Growth

Upper bounds. T(n) is O(f(n)) if there exist constants c > 0 and n0
≥ 0 such that for all n ≥ n0 we have T(n) ≤ c · f(n).

Lower bounds. T(n) is Ω(f(n)) if there exist constants c > 0 and n0
≥ 0 such that for all n ≥ n0 we have T(n) ≥ c · f(n).

Tight bounds. T(n) is Θ(f(n)) if T(n) is both O(f(n)) and Ω(f(n)).

Ex: T(n) = 32n2 + 17n + 32.
 T(n) is O(n2), O(n3), Ω(n2), Ω(n), and Θ(n2) .
 T(n) is not O(n), Ω(n3), Θ(n), or Θ(n3).

14

Notation

Slight abuse of notation. T(n) = O(f(n)).
 Asymmetric:

– f(n) = 5n3; g(n) = 3n2

– f(n) = O(n3) = g(n)
– but f(n) ≠ g(n).

 Better notation: T(n) ∈ O(f(n)).

Meaningless statement. Any comparison-based sorting algorithm
requires at least O(n log n) comparisons.

 Statement doesn't "type-check."
 Use Ω for lower bounds.

15

Properties

Transitivity.
 If f = O(g) and g = O(h) then f = O(h).
 If f = Ω(g) and g = Ω(h) then f = Ω(h).
 If f = Θ(g) and g = Θ(h) then f = Θ(h).

Additivity.
 If f = O(h) and g = O(h) then f + g = O(h).
 If f = Ω(h) and g = Ω(h) then f + g = Ω(h).
 If f = Θ(h) and g = O(h) then f + g = Θ(h).

16

Asymptotic Bounds for Some Common Functions

Polynomials. a0 + a1n + … + adnd is Θ(nd) if ad > 0.

Polynomial time. Running time is O(nd) for some constant d
independent of the input size n.

Logarithms. O(log a n) = O(log b n) for any constants a, b > 0.

Logarithms. For every x > 0, log n = O(nx).

Exponentials. For every r > 1 and every d > 0, nd = O(rn).

every exponential grows faster than every
polynomial

can avoid specifying the
base

log grows slower than every
polynomial

2.4 A Survey of Common Running Times

18

Linear Time: O(n)

Linear time. Running time is at most a constant factor times the
size of the input.

Computing the maximum. Compute maximum of n numbers a1,
…, an.

max ← a1

for i = 2 to n {
 if (ai > max)
 max ← ai

}

19

Linear Time: O(n)

Merge. Combine two sorted lists A = a1,a2,…,an with B = b1,b2,…,bn

into sorted whole.

Claim. Merging two lists of size n takes O(n) time.
Pf. After each comparison, the length of output list increases by
1.

i = 1, j = 1
while (both lists are nonempty) {
 if (ai ≤ bj) append ai to output list and increment i
 else(ai ≤ bj)append bj to output list and increment j
}
append remainder of nonempty list to output list

20

O(n log n) Time

O(n log n) time. Arises in divide-and-conquer algorithms.

Sorting. Mergesort and heapsort are sorting algorithms that
perform O(n log n) comparisons.

Largest empty interval. Given n time-stamps x1, …, xn on which

copies of a file arrive at a server, what is largest interval of time
when no copies of the file arrive?

O(n log n) solution. Sort the time-stamps. Scan the sorted list in
order, identifying the maximum gap between successive time-
stamps.

also referred to as linearithmic time

21

Quadratic Time: O(n2)

Quadratic time. Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane (x1, y1),
…, (xn, yn), find the pair that is closest.

O(n2) solution. Try all pairs of points.

Remark. Ω(n2) seems inevitable, but this is just an illusion.

min ← (x1 - x2)2 + (y1 - y2)2

for i = 1 to n {
 for j = i+1 to n {
 d ← (xi - xj)2 + (yi - yj)2

 if (d < min)
 min ← d
 }
}

don't need to
take square roots

see chapter 5

22

Cubic Time: O(n3)

Cubic time. Enumerate all triples of elements.

Set disjointness. Given n sets S1, …, Sn each of which is a subset

of
1, 2, …, n, is there some pair of these which are disjoint?

O(n3) solution. For each pairs of sets, determine if they are
disjoint.

foreach set Si {

 foreach other set Sj {

 foreach element p of Si {

 determine whether p also belongs to Sj

 }
 if (no element of Si belongs to Sj)

 report that Si and Sj are disjoint

 }
}

23

Polynomial Time: O(nk) Time

Independent set of size k. Given a graph, are there k nodes such
that no two are joined by an edge?

O(nk) solution. Enumerate all subsets of k nodes.

 Check whether S is an independent set = O(k2).
 Number of k element subsets =
 O(k2 nk / k!) = O(nk).

foreach subset S of k nodes {
 check whether S in an independent set
 if (S is an independent set)
 report S is an independent set
 }
}

€

n

k

 ⎛

 ⎝
 ⎜

 ⎞

 ⎠
 ⎟=

n (n −1) (n − 2) L (n − k +1)
k (k −1) (k − 2) L (2) (1)

 ≤
nk

k!

poly-time for k=17,
but not practical

k is a constant

24

Exponential Time

Independent set. Given a graph, what is maximum size of an
independent set?

O(n2 2n) solution. Enumerate all subsets.

S* ← φ
foreach subset S of nodes {
 check whether S in an independent set
 if (S is largest independent set seen so far)
 update S* ← S
 }
}

25

Chapter 5

Divide and
Conquer

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

26

Divide-and-Conquer

Divide-and-conquer.
 Break up problem into several parts.
 Solve each part recursively.
 Combine solutions to sub-problems into overall solution.

Most common usage.
 Break up problem of size n into two equal parts of size ½n.
 Solve two parts recursively.
 Combine two solutions into overall solution in linear time.

Consequence.
 Brute force: n2.
 Divide-and-conquer: n log n. Divide et impera.

Veni, vidi, vici.
 - Julius Caesar

5.1 Mergesort

28

Obvious sorting
applications.

List files in a directory.
Organize an MP3
library.
List names in phone
book.
Display Google
PageRank results.

Easier once sorted.
Find the median.
Find the closest pair.
Binary search in a
database.
Identify statistical
outliers.
Find duplicates in a
mailing list.

Non-obvious sorting applications.
Data compression.
Computer graphics.
Interval scheduling.
Computational biology.
Minimum spanning tree.
Supply chain management.
Simulate a system of particles.
Book recommendations on
Amazon.
Load balancing on a parallel
computer.
. . .

Sorting

Sorting. Given n elements, rearrange in ascending order.

29

Mergesort

Mergesort.
 Divide array into two halves.
 Recursively sort each half.
 Merge two halves to make sorted whole.

merge

sort

divide

A L G O R I T H M S

A L G O R I T H M S

A G L O R H I M S T

A G H I L M O R S T

Jon von Neumann
(1945)

O(n)

2T(n/2)

O(1)

30

Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?
 Linear number of comparisons.
 Use temporary array.

Challenge for the bored. In-place merge. [Kronrud, 1969]

A G L O R H I M S T

A G H I

using only a constant amount of extra storage

file:///Users/dimitris/Desktop/05demo-merge.ppt

	1.2 Five Representative Problems
	Interval Scheduling
	Weighted Interval Scheduling
	Bipartite Matching
	Independent Set
	Competitive Facility Location
	Five Representative Problems
	Polynomial-Time
	Worst-Case Analysis
	Worst-Case Polynomial-Time
	Why It Matters
	2.2 Asymptotic Order of Growth
	Asymptotic Order of Growth
	Notation
	Properties
	Asymptotic Bounds for Some Common Functions
	2.4 A Survey of Common Running Times
	Linear Time: O(n)
	Slide 19
	O(n log n) Time
	Quadratic Time: O(n2)
	Cubic Time: O(n3)
	Polynomial Time: O(nk) Time
	Exponential Time
	Chapter 5 Divide and Conquer
	Divide-and-Conquer
	5.1 Mergesort
	Sorting
	Mergesort
	Merging

