Divide-and-Conquer

Divide-and-conquer.

* Break up problem into several parts.

= Solve each part recursively.

= Combine solutions to sub-problems into overall solution.

Most common usage.

* Break up problem of size n into two equal parts of size zn.
= Solve two parts recursively.

= Combine two solutions into overall solution in linear time.

Consequence. ,
" Brute force: n°.
* Divide-and-conquer: nlog n.

Divide et impera.
Veni, vidi, vici.
- Julius Caesar

5.1 Mergesort

Sorting

Sorting. Given n elements, rearrange in ascending order.

Obvious sorting applications. Non-obvious sorting applications.
List files in a directory. Data compression.
Organize an MP3 library. Computer graphics.
List names in a phone book. Interval scheduling.
Display Google PageRank Computational biology.
results.

Minimum spanning tree.

Supply chain management.
Simulate a system of particles.
Book recommendations on

Problems become easier once
sorted.
Find the median.

Find the closest pair. i\mc;zgni , el
Binary search in a database. oad baldncing on a pdrdiie
computer.

Identify statistical outliers.
Find duplicates in a mailing
list.

Mergesort

Mergesort.

* Divide array into two halves.

" Recursively sort each half.

* Merge two halves to make sorted whole.

Jon von Neumann (1945)

A L G O R I T H M S divide O(1)

A G L O R H I M S T sort 2T(n/2)

A G H I L M O R S T merge O(n)

Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?
* Linear number of comparisons. >|
* Use temporary array.

Challenge f & € | B

using only a constant amount of extra storage

A Useful Recurrence Relation

Def. T(n) = number of comparisons to mergesort an input of size n.

Mergesort recurrence.

0 if n=1
T(n) =< - \T([n/2]) + \T(/2]) + L otherwise
| solve left half solve right half ~ MErging

Solution. T(n) = O(n log, n).

Assorted proofs. We describe several ways to prove this recurrence.
Initially we assume n is a power of 2 and replace < with =.

T(n) =«

Proof by Recursion Tree

0 if n=1
2T(n/2) + n

——

otherwise

| sorting both halves merging

T(n)

,////////////N\\\\\\\\\\\\\

T(n/2)

N

T(n/4)

T2 T2 T(2)

T(n/4)

T(2)

T(n/2)

N

T(n/4) T(n/4)

T@) T2 T()

T(2)

|092n

2(n/2)
4(n/4)
2k(n / 2K

n/2 (2)

nlog,n

Proof by Telescoping

Claim. If T(n) satisfies this recurrence, then T(n) = n log, n.
l

assumes n is a power of 2

r 0) if n=1
Tn)=9 2T(m/2) + n otherwise
Y -
Pf For' n> 1 | sorting both halves merging
I'(n) 2T(n/2) ol
n n
. T(/2) o1
nl?2
_ I(m/4) el el
nl4
T(n/n)

+ 1 +---+ 1

nin ~
log, n

= 10g2 n

Proof by Induction

Claim. If T(n) satisfies this recurrence, then T(n) = n log, n.,

assumes n is a power of 2

0 it n=1
Tn)=3 2T(m/2) + n otherwise
(& ~ J H,_-J
| sorting both halves merging

Pf. (by induction on n)

= Base case: n=1.

» Inductive hypothesis: T(n) = nlog, n.
= Goal: show that T(2n) = 2n log, (2n).

T(2n) 2T(n) + 2n

2nlog,n + 2n
= 2n(log2 (2n) — 1) + 2n
= 2nlog,(2n)

Analysis of Mergesort Recurrence

Claim. If T(n) satisfies the following recurrence, then T(n) =< n [lgn].

T(n)

<

J\

Pf. (by induction on n)
* Base case: n=1.
* Definen;=|n/2], n,=[n/2].

* Induction step: assume true for 1,2, ..., n-1.

T(n)

IA

IA

IA

IA

(0
T([n/Z]) + T(|_n/2J) +
| ksolve left halfJ ;olve ri?;ht halfJ

I'(n)+ T(n,) + n

n
n

n

-lgnl-
e,

lan,

+ n,[lgn,| + n
+ n,[lgn,| + n

+ N

n([lgn]—l) + n
n[lgn]

merging

if n=1

otherwise

|

log,n

n, = -n/2-|
< '2“‘%”1/21
)

= lgn, = [lgn] -1

10

5.3 Counting Inversions

Counting Inversions

Music site tries to match your song preferences with others.
* You rank n songs.
* Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.
* My rank: 1,2, .., n.
* Your rank: aq, ay, ..., G,

" Songs i and j inverted if i< j, but a; > a;.

Brute force: check all ©(n°) pairs i and j.

Songs

A B | C| D] E
e 1 2 3 4 5

Inversions

M

3-2,4-2

B2 1 3 4 2 5
e

12

Applications

Applications.

* Voting theory.

* Collaborative filtering.

* Measuring the "sortedness" of an array.

= Sensitivity analysis of Google's ranking function.
* Rank aggregation for meta-searching on the Web.

* Nonparametric statistics (e.g., Kendall's Tau distance).

13

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

1 5 4 8 10 2 6 9 12 11 3 7

14

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
* Divide: separate list into two pieces.

1 5 4 8 10 2 6 9 12 11 3 7 Divide: O(1).

HEEIEIE DEEERR

15

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
* Divide: separate list into two pieces.
= Conquer: recursively count inversions in each half.

1 5 4 8 10 2 6 9 12 11 3 7

HEEIEIE DEEERR

5 blue-blue inversions 8 green-green inversions

5-4,5-2,4-2,8-2,10-2 6-3,9-3,9-7,12-3,12-7,12-11, 11-3, 11-7

Divide: O(1).

Conquer: 2T(n/ 2)

16

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

* Divide: separate list into two pieces.

* Conquer: recursively count inversions in each half.

" Combine: count inversions where g; and g; are in different halves, and
return sum of three quantities.

1 5 4 8 10 2 6 9 12 11 3 7 Divide: O(1),
BODDON BEDORE o oo
5 blue-blue inversions 8 green-green inversions

9 blue-green inversions
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Combine: ???

Total=5+8 +9 =22,

17

Counting Inversions: Combine

Combine: count blue-green inversions

= Assume each half is sorted.

= Count inversions where qg; and a; are in different halves. il
* Merge two sorted halves into sorted whole.

N

to maintain sorted invariant

557 o s 1o oo Q2 e a3
6 3 2 2 0 0

13 blue-green inversions: 6 +3+2+2+0+0 Count: O(n)

2 3 7 10 11 14 16 17 18 19 23 25 Merge: O(n)

T(n) = T(|n/2])+T([n/2])+O(n) = T(n)=O(nlogn)

18

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition. [Sort-and-Count] L is sorted.

Sort-and-Count (L) {
if list L has one element
return 0 and the list L

Divide the list into two halves A and B
(r,, A) < Sort-and-Count (A)

(rg, B) < Sort-and-Count (B)

(r , L) < Merge-and-Count (A, B)

return r = r, + ry + r and the sorted list L

19

