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Divide-and-Conquer

Divide-and-conquer.
 Break up problem into several parts.
 Solve each part recursively.
 Combine solutions to sub-problems into overall solution.

Most common usage.
 Break up problem of size n into two equal parts of size ½n.
 Solve two parts recursively.
 Combine two solutions into overall solution in linear time.

Consequence.
 Brute force:  n2.
 Divide-and-conquer:  n log n.

Divide et impera.
Veni, vidi, vici.
        - Julius Caesar



5.1  Mergesort
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Obvious sorting applications.
List files in a directory.
Organize an MP3 library.
List names in a phone book.
Display Google PageRank 
results.

Problems become easier once 
sorted.

Find the median. 
Find the closest pair.
Binary search in a database.
Identify statistical outliers.
Find duplicates in a mailing 
list.

Non-obvious sorting applications.
Data compression.
Computer graphics.
Interval scheduling.
Computational biology.
Minimum spanning tree.
Supply chain management.
Simulate a system of particles.
Book recommendations on 
Amazon.
Load balancing on a parallel 
computer.
. . .

Sorting

Sorting.  Given n elements, rearrange in ascending order.
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Mergesort

Mergesort.
 Divide array into two halves.
 Recursively sort each half.
 Merge two halves to make sorted whole.

merge

sort

divide

A L G O R I T H M S

A L G O R I T H M S

A G L O R H I M S T

A G H I L M O R S T

Jon von Neumann (1945)

O(n)

2T(n/2)

O(1)
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Merging

Merging.  Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?
 Linear number of comparisons.
 Use temporary array.

Challenge for the bored.  In-place merge.  [Kronrud, 1969]

A G L O R H I M S T

A G H I

using only a constant amount of extra storage
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A Useful Recurrence Relation

Def.  T(n)  = number of comparisons to mergesort an input of size n.

Mergesort recurrence.  

Solution.  T(n) = O(n log2 n). 

Assorted proofs.  We describe several ways to prove this recurrence. 
Initially we assume n is a power of 2 and replace ≤ with =.

    

€ 

T(n) ≤

 0 if  n =1
T n /2⎡ ⎤( )
solve left half
     

+ T n /2⎣ ⎦( )
solve right half
     

+ n
merging
 otherwise

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 
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Proof by Recursion Tree

T(n)

T(n/2)T(n/2)

T(n/4)T(n/4)T(n/4) T(n/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

n

T(n / 2k)

2(n/2)

4(n/4)

2k (n / 2k)

n/2 (2)

. . .

. . .
log2n

n log2n

    

€ 

T(n) =
0 if  n =1
2T(n /2)

sorting both halves
     + n

merging
 otherwise

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
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Proof by Telescoping

Claim.  If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf.  For n > 1:

    

€ 

T(n)
n

=
2T(n /2)

n
+ 1

=
T(n /2)

n /2
+ 1

=
T(n / 4)

n / 4
+ 1 + 1



=
T(n /n)

n /n
+ 1 ++ 1

log2 n
     

= log2 n

    

€ 

T(n) =
0 if  n =1
2T(n /2)

sorting both halves
     + n

merging
 otherwise

⎧ 

⎨ 
⎪ 

⎩ ⎪ 

assumes n is a power of 2
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Proof by Induction

Claim.  If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf.  (by induction on n)
 Base case:  n = 1.
 Inductive hypothesis:  T(n) =  n log2 n.
 Goal:  show that T(2n) =  2n log2 (2n).

  

€ 

T(2n) = 2T(n)  +  2n
= 2n log2 n  +  2n
= 2n log2(2n)−1( )  +  2n
= 2n log2 (2n)

assumes n is a power of 2

    

€ 

T(n) =
0 if  n =1
2T(n /2)

sorting both halves
     + n

merging
 otherwise

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
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Analysis of Mergesort Recurrence

Claim.  If T(n) satisfies the following recurrence, then T(n)  ≤ n ⎡lg n⎤.

Pf.   (by induction on n)
 Base case:  n = 1.
 Define n1 = ⎣n / 2⎦ ,  n2 = ⎡n / 2⎤.
 Induction step:  assume true for 1, 2, ... , n–1.

  

€ 

T(n) ≤ T(n1)  +  T(n2 )  +  n
≤ n1 lgn1⎡ ⎤  +  n2 lg n2⎡ ⎤  +  n
≤ n1 lgn2⎡ ⎤  +  n2 lg n2⎡ ⎤  +  n
= n lgn2⎡ ⎤  +  n
≤ n( lgn⎡ ⎤−1 )  +  n
= n lgn⎡ ⎤

  

€ 

n2 = n /2⎡ ⎤

≤ 2 lgn⎡ ⎤ / 2⎡ ⎤
= 2 lgn⎡ ⎤ / 2

⇒ lgn2 ≤ lgn⎡ ⎤ −1

    

€ 

T(n) ≤

 0 if  n =1
T n /2⎡ ⎤( )
solve left half
     

+ T n /2⎣ ⎦( )
solve right half
     

+ n
merging
 otherwise

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

log2n



5.3  Counting Inversions
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Music site tries to match your song preferences with others.
 You rank n songs.
 Music site consults database to find people with similar tastes.

Similarity metric:  number of inversions between two rankings.
 My rank:  1, 2, …, n.
 Your rank:  a1, a2, …, an.
 Songs i and j inverted if i < j, but ai > aj.

Brute force:  check all Θ(n2) pairs i and j.

You

Me

1 43 2 5

1 32 4 5

A B C D E

Songs

Counting Inversions

Inversions

3-2, 4-2
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Applications

Applications.
 Voting theory.
 Collaborative filtering.
 Measuring the "sortedness" of an array.
 Sensitivity analysis of Google's ranking function. 
 Rank aggregation for meta-searching on the Web.
 Nonparametric statistics  (e.g., Kendall's Tau distance).
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Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.

4 8 10 21 5 12 11 3 76 9
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Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.
 Divide:  separate list into two pieces.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

Divide:  O(1).
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Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.
 Divide:  separate list into two pieces.
 Conquer: recursively count inversions in each half.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide:  O(1).

Conquer:  2T(n / 2)

5-4, 5-2, 4-2, 8-2, 10-2 6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7
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Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.
 Divide:  separate list into two pieces.
 Conquer: recursively count inversions in each half.
 Combine: count inversions where ai and aj are in different halves, and 

return sum of three quantities.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide:  O(1).

Conquer:  2T(n / 2)

Combine:  ???9 blue-green inversions
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.
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13 blue-green inversions:  6 + 3 + 2 + 2 + 0 + 0 

Counting Inversions:  Combine

Combine:  count blue-green inversions 
 Assume each half is sorted.
 Count inversions where ai and aj are in different halves. 
 Merge two sorted halves into sorted whole.

 

Count:  O(n)

Merge:  O(n)

10 14 18 193 7 16 17 23 252 11

7 10 11 142 3 18 19 23 2516 17

  

€ 

T(n) ≤  T n /2⎣ ⎦( ) + T n /2⎡ ⎤( ) + O(n) ⇒ T(n) = O(n log n)

6 3 2 2 0 0

to maintain sorted invariant
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Counting Inversions:  Implementation

Pre-condition. [Merge-and-Count]  A and B are sorted.
Post-condition.  [Sort-and-Count]  L is sorted.

Sort-and-Count(L) {
   if list L has one element
      return 0 and the list L
   
   Divide the list into two halves A and B
   (rA, A) ← Sort-and-Count(A)
   (rB, B) ← Sort-and-Count(B)
   (rB, L) ← Merge-and-Count(A, B)

   return r = rA + rB + r and the sorted list L
}


