
1

Divide-and-Conquer

Divide-and-conquer.
 Break up problem into several parts.
 Solve each part recursively.
 Combine solutions to sub-problems into overall solution.

Most common usage.
 Break up problem of size n into two equal parts of size ½n.
 Solve two parts recursively.
 Combine two solutions into overall solution in linear time.

Consequence.
 Brute force: n2.
 Divide-and-conquer: n log n.

Divide et impera.
Veni, vidi, vici.
 - Julius Caesar

5.1 Mergesort

3

Obvious sorting applications.
List files in a directory.
Organize an MP3 library.
List names in a phone book.
Display Google PageRank
results.

Problems become easier once
sorted.

Find the median.
Find the closest pair.
Binary search in a database.
Identify statistical outliers.
Find duplicates in a mailing
list.

Non-obvious sorting applications.
Data compression.
Computer graphics.
Interval scheduling.
Computational biology.
Minimum spanning tree.
Supply chain management.
Simulate a system of particles.
Book recommendations on
Amazon.
Load balancing on a parallel
computer.
. . .

Sorting

Sorting. Given n elements, rearrange in ascending order.

4

Mergesort

Mergesort.
 Divide array into two halves.
 Recursively sort each half.
 Merge two halves to make sorted whole.

merge

sort

divide

A L G O R I T H M S

A L G O R I T H M S

A G L O R H I M S T

A G H I L M O R S T

Jon von Neumann (1945)

O(n)

2T(n/2)

O(1)

5

Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?
 Linear number of comparisons.
 Use temporary array.

Challenge for the bored. In-place merge. [Kronrud, 1969]

A G L O R H I M S T

A G H I

using only a constant amount of extra storage

6

A Useful Recurrence Relation

Def. T(n) = number of comparisons to mergesort an input of size n.

Mergesort recurrence.

Solution. T(n) = O(n log2 n).

Assorted proofs. We describe several ways to prove this recurrence.
Initially we assume n is a power of 2 and replace ≤ with =.

€

T(n) ≤

 0 if n =1
T n /2⎡ ⎤()
solve left half

+ T n /2⎣ ⎦()
solve right half

+ n
merging
 otherwise

⎧

⎨
⎪

⎩
⎪

7

Proof by Recursion Tree

T(n)

T(n/2)T(n/2)

T(n/4)T(n/4)T(n/4) T(n/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

n

T(n / 2k)

2(n/2)

4(n/4)

2k (n / 2k)

n/2 (2)

. . .

. . .
log2n

n log2n

€

T(n) =
0 if n =1
2T(n /2)

sorting both halves
 + n

merging
 otherwise

⎧

⎨
⎪

⎩ ⎪

8

Proof by Telescoping

Claim. If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf. For n > 1:

€

T(n)
n

=
2T(n /2)

n
+ 1

=
T(n /2)

n /2
+ 1

=
T(n / 4)

n / 4
+ 1 + 1

=
T(n /n)

n /n
+ 1 ++ 1

log2 n

= log2 n

€

T(n) =
0 if n =1
2T(n /2)

sorting both halves
 + n

merging
 otherwise

⎧

⎨
⎪

⎩ ⎪

assumes n is a power of 2

9

Proof by Induction

Claim. If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf. (by induction on n)
 Base case: n = 1.
 Inductive hypothesis: T(n) = n log2 n.
 Goal: show that T(2n) = 2n log2 (2n).

€

T(2n) = 2T(n) + 2n
= 2n log2 n + 2n
= 2n log2(2n)−1() + 2n
= 2n log2 (2n)

assumes n is a power of 2

€

T(n) =
0 if n =1
2T(n /2)

sorting both halves
 + n

merging
 otherwise

⎧

⎨
⎪

⎩ ⎪

10

Analysis of Mergesort Recurrence

Claim. If T(n) satisfies the following recurrence, then T(n) ≤ n ⎡lg n⎤.

Pf. (by induction on n)
 Base case: n = 1.
 Define n1 = ⎣n / 2⎦ , n2 = ⎡n / 2⎤.
 Induction step: assume true for 1, 2, ... , n–1.

€

T(n) ≤ T(n1) + T(n2) + n
≤ n1 lgn1⎡ ⎤ + n2 lg n2⎡ ⎤ + n
≤ n1 lgn2⎡ ⎤ + n2 lg n2⎡ ⎤ + n
= n lgn2⎡ ⎤ + n
≤ n(lgn⎡ ⎤−1) + n
= n lgn⎡ ⎤

€

n2 = n /2⎡ ⎤

≤ 2 lgn⎡ ⎤ / 2⎡ ⎤
= 2 lgn⎡ ⎤ / 2

⇒ lgn2 ≤ lgn⎡ ⎤ −1

€

T(n) ≤

 0 if n =1
T n /2⎡ ⎤()
solve left half

+ T n /2⎣ ⎦()
solve right half

+ n
merging
 otherwise

⎧

⎨
⎪

⎩
⎪

log2n

5.3 Counting Inversions

12

Music site tries to match your song preferences with others.
 You rank n songs.
 Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.
 My rank: 1, 2, …, n.
 Your rank: a1, a2, …, an.
 Songs i and j inverted if i < j, but ai > aj.

Brute force: check all Θ(n2) pairs i and j.

You

Me

1 43 2 5

1 32 4 5

A B C D E

Songs

Counting Inversions

Inversions

3-2, 4-2

13

Applications

Applications.
 Voting theory.
 Collaborative filtering.
 Measuring the "sortedness" of an array.
 Sensitivity analysis of Google's ranking function.
 Rank aggregation for meta-searching on the Web.
 Nonparametric statistics (e.g., Kendall's Tau distance).

14

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

4 8 10 21 5 12 11 3 76 9

15

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
 Divide: separate list into two pieces.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

Divide: O(1).

16

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
 Divide: separate list into two pieces.
 Conquer: recursively count inversions in each half.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide: O(1).

Conquer: 2T(n / 2)

5-4, 5-2, 4-2, 8-2, 10-2 6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7

17

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
 Divide: separate list into two pieces.
 Conquer: recursively count inversions in each half.
 Combine: count inversions where ai and aj are in different halves, and

return sum of three quantities.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide: O(1).

Conquer: 2T(n / 2)

Combine: ???9 blue-green inversions
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.

18

13 blue-green inversions: 6 + 3 + 2 + 2 + 0 + 0

Counting Inversions: Combine

Combine: count blue-green inversions
 Assume each half is sorted.
 Count inversions where ai and aj are in different halves.
 Merge two sorted halves into sorted whole.

Count: O(n)

Merge: O(n)

10 14 18 193 7 16 17 23 252 11

7 10 11 142 3 18 19 23 2516 17

€

T(n) ≤ T n /2⎣ ⎦() + T n /2⎡ ⎤() + O(n) ⇒ T(n) = O(n log n)

6 3 2 2 0 0

to maintain sorted invariant

19

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition. [Sort-and-Count] L is sorted.

Sort-and-Count(L) {
 if list L has one element
 return 0 and the list L

 Divide the list into two halves A and B
 (rA, A) ← Sort-and-Count(A)
 (rB, B) ← Sort-and-Count(B)
 (rB, L) ← Merge-and-Count(A, B)

 return r = rA + rB + r and the sorted list L
}

