
© 1997 Theseus Logic Inc. 1

NULL Convention Logic™

Karl M. Fant, Scott A. Brandt
Theseus Logic, Inc.

1080 Montreal Ave., #200
St. Paul, MN 55116-2325

(651) 699-6622

© 1997 Theseus Logic Inc. 2

NULL Convention Logic™

Karl M. Fant Scott A. Brandt
Theseus Logic, Inc. Dept. of Computer Science

1080 Montreal Ave, Suite 200 Campus box 430
St. Paul, Minnesota, USA 55116 University of Colorado

Boulder, Colorado, USA 80309

Abstract

NULL Convention Logic™ (NCL™) is a symbolically complete logic which
expresses process completely in terms of the logic itself and inherently and conveniently
expresses asynchronous digital circuits. The traditional form of Boolean logic is not
symbolically complete in the sense that it requires the participation of a fundamentally
different form of expression, time in the form of the clock, which has to be very carefully
coordinated with the logic part of the expression to completely and effectively express a
process. We introduce NULL Convention Logic™ in relation to Boolean logic as a four
value logic, and as a three value logic and finally as two value logic quite different from
traditional Boolean logic. We then show how systems can be constructed entirely in
terms of NULL Convention Logic™.

1. Introduction

NULL convention Logic™ [7] is derived directly from the Invocation Model of Process
Expression. The Invocation Model is a conceptual model of general process expression in contrast to
a model of computation. It transcends limiting mathematical notions of computation to provide a
unifying conceptual framework which relates all forms of process expression from the simplest
physical and chemical processes to the most complex natural and artificial processes. For instance,
the processes of cell metabolism and of digital computers are characterized in terms of the same
concepts and relationships. They simply occupy different places in a single expression space defined
by the Invocation Model.

A central concept of the Invocation Model is the general notion of completeness. Just how
fundamental the notion of completeness is will become clear in the course of the discussion. It will
appear in many guises in different aspects of process expression but always in service of providing
necessary and sufficient conditions. We will begin with the notion of symbolic completeness of
expression. symbolically complete expression is complete in and of itself solely in terms of the
relationships among symbol values in the expression. It integrates the expression of data
transformation and what is generally viewed as the expression of control in a single symbolically

© 1997 Theseus Logic Inc. 3

determined expression, without appeal to any extra-symbolic expression such as a clock or a
controller. Processes in nature are symbolically complete, resolving spontaneously and
autonomously without appeal to any global time authorities or control sequencers. The artificial
processes devised by humans can also be symbolically complete.

Traditional Boolean logic is not symbolically complete. Among its component elements, a
traditional Boolean logic circuit exhibits time dependent relationships as well as symbolic-value-
dependent relationships. The symbolic-value-dependent relationships depend on the interconnection
of the logic gates and their truth tables. The time-dependent relationships depend on the
propagation delay times of the component elements to express the validity of data values and the
invalidity of data values. These two aspects of expression are independent of each other in that the
time relationships can be expressed quite arbitrarily in relation to the expression of symbolic
relationships and vice versa. These two quite independent and partial expressions must be carefully
and explicitly coordinated to provide a complete correctly resolvable expression of a process. A
carefully engineered Boolean logic circuit with its clock is a complete expression and can be made to
work, but it is not a symbolically complete expression.

Traditionally, in computer science, the expression of data transformation and the expression of
control have been viewed as inherently independent aspects of process expression which must, of
necessity, be carefully coordinated. In programming languages this manifests as explicit sequence
control of assignment statements. In traditional Boolean logic circuits, the gates and their
interconnections are the data transformation aspect and the timing relationships expressed by careful
engineering and the clock are the control aspect (which expresses the validity and invalidity of data
values). But, the data transformation aspect and the control aspect of process expression are not
inherently independent. The expression of both aspects can integrated into a single expression
purely in terms of symbolic-value-dependent relationships with no external control expression at all.
This is what is meant by a symbolically complete expression. It is completely expressed and
completely determined solely in terms of symbolic-value-dependent relationships. A symbolically
complete logic circuit would have no time relationships at all and would be completely insensitive
to the propagation delays among its component elements.

There have been attempts to eliminate time dependencies in digital logic circuits since D. E.
Muller, pioneered the pursuit in the late 1950s [1,2]. These attempts (in order of increasing
independence from time issues) are referred to as fundamental mode circuits, speed-independent
circuits, and delay insensitive circuits. Only the delay insensitive circuits are completely free of delay
issues of all circuit components including gates and wires. Delay insensitive circuits are generally
considered the most difficult, expensive and elusive circuits to design. Only a few truly delay
insensitive circuit designs are known. Fundamental mode circuits typically use matched delay lines
to provide a local time reference for each circuit [4] and speed independent circuits must make
assumptions about the insignificant propagation delay of the wires in the circuit.

These attempts to eliminate time dependencies are nearly always expressed within the traditional
context of Boolean logic. They focus on designing Boolean logic circuits with appropriate switching
behavior and surrounding them with Muller C-elements to express the control, then transmitting
data between circuits with dual rail encoding. These structures of Boolean logic circuits and C-
elements can become very subtle, very large and very expensive[3].

There has been much recent work on asynchronous design [5,6] but, while the pursuit of
asynchronous circuits has produced many interesting results, it has not delivered a theoretically

© 1997 Theseus Logic Inc. 4

complete and economically feasible solution. The current approaches still require some assumptions
about local transmission delay and the extra circuitry needed to achieve asynchronous control is
considerably more than is required by a functionally equivalent clocked Boolean logic circuit.

NULL Convention Logic™ is a theoretically complete and economically feasible approach to
delay insensitive circuits . In this paper we first introduce the NULL Convention in the context of
Boolean logic, showing how to make Boolean logic symbolically complete as a four value logic. Then,
we show how the NULL Convention can be implemented as a two value logic, which will prove to be
the most practical form. We conclude with a discussion of the properties of NULL Convention
Logic™.

2. Making Boolean Logic Symbolically Complete

The invocation model teaches that to achieve symbolic completeness of expression, both data
transformation and control must be expressed in the most primitive inherently enforced mutually
exclusive value assertion domain of the expression. In a mutually exclusive value assertion domain,
only one of a set of two or more values can be asserted at a time. Every expression environment has a
primitive mutually exclusive value assertion domain. For Boolean logic the primitive mutually
exclusive value assertion domain consists of True and False, only one of which can be asserted at a
time. For the decimal number system the values 0 through 9 are mutually exclusive. In both of these
cases the values comprising the mutually exclusive assertion domain express only data meanings .
There is no value in either domain that expresses a control or non-data meaning. The Invocation
Model teaches that to make Boolean logic symbolically complete, we must add a value to the
primitive mutually exclusive assertion domain.

Making Boolean logic symbolically complete will be presented in two steps. The first step is
to assign a value in the most primitive mutually exclusive assertion domain to express the validity /
invalidity of data. To retain the sense of Boolean logic, we will retain the two values expressing data
meanings in the primitive domain, so the first step is to add a third value to the mutually exclusive
value assertion domain which we will call NULL (not a valid data value). We then define the truth
tables to assert a data value (True, False) only when both input values are data values and to assert a
NULL value otherwise. Figure 1 shows the NULL value added to the traditional Boolean truth tables
and specifies the behavior of these preliminary NULL Convention Logic™ gates.

N

N

NN
NFF

FT

T F N

T

F

N N

N

NN
NFT

TT

T F N

T

F

N N

T

FT

F

N

AND OR NOT

Figure 1. Boolean truth tables with NULL value added.

We now have a three value logic. Each wire can assert one of three values (T, F or N) and each
gate resolves three input values. The values T and F will be collectively referred to as data values and

© 1997 Theseus Logic Inc. 5

NULL will be referred to as a non-data value. If a data value is asserted on a wire, the data value is
valid. A transition from NULL to a data value marks the beginning of validity. A transition from a
data value to NULL marks the end of validity or the beginning of invalidity.

These truth tables enforce the completeness of input criteria for data. This means that a gate
will assert a data result value only when a complete set of data values is present at its input. In this
case, a complete set of input data values is for both inputs to be data (either TRUE or FALSE, but not
NULL). Furthermore the asserted result data value is the correct resolution of the presented input
data values If either or both input values are NULL a NULL result value is asserted.

THE DATA RESOLUTION WAVE FRONT

The completeness of input criteria is the key to speed independent logic circuits. The
completeness of input criteria for each gate scales up for combinational circuits as a whole. Consider
Figure 2.

input
value
set

result
value

set

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

Figure 2. Example combinational circuit.

Assume that the circuit is in an all NULL state in that all of the input values, internal values
and result values are all NULL. If one input value, A for instance changes to data, gate 0 will
continue asserting a NULL value. Gate 0 does not assert a data value until both input values for A
and B are data. To see how this behavior scales up for the whole circuit consider gate 6. Gate 6 will
not assert a data value until both inputs N and O are data at the gate . It doesn't matter how long it
took for the data values on N and O to propagate to the gate 6 input or in which order they arrive.
When both input values are data at gate 6, it asserts the correct result data value. This transition from
NULL to data also asserts the validity of that result data value and asserts the completion of gate's
resolution entirely symbolically. No other aspect of expression and no time relationship is associated
with the assertion of these three facts. Each gate is a synchronization node managing an orderly
wave front of correct result values propagating through the circuit.

The circuit as a whole will not assert a complete set of result data values until there is a
complete set of input data values and the resolution of the input data values has propagated through
the circuit. If one input value remains NULL at least one result value will remain NULL. For
instance, if all the input values are data except G, which remains NULL, then gate 5 will assert a
NULL result value for Q, gate 7 will assert a NULL result value for T and gate 9 will assert a NULL

© 1997 Theseus Logic Inc. 6

result value for V. When G becomes data, the input data set is complete. The data value will
propagate through the circuit and V will become data and the result data set will be complete (all
datas, no nulls).

When all the result values become data, it means that a complete set of input data values are
presented to the circuit, that the resolution of the presented input value set is complete and the
asserted set of result values is the correct and valid resolution of the presented set of input data
values. This is what is meant by the completeness of input behavior of each gate scaling up for a
circuit as a whole. The circuit does not assert a complete set of result data values until a complete set
of input data values are present at the input to the circuit and resolution of the input values is
complete. The circuit as a whole enforces the completeness of input criteria for data.

The completion of resolution of an input data set can be determined by simply monitoring the
result values. When the result values transition from all NULL to a complete result data value set (all
data at the output), then the resolution of a complete set of input data values is finished. The circuit
indicates its own completion of resolution, autonomously and purely symbolically. No external
expression or authority such as a clock, delay line or controller is needed.

THE NULL -DATA CYCLE

To express the completeness of input criteria for data, the circuits have to start out in an all-
NULL state. After each data set resolution the circuit must be returned to an all NULL state before
the next data set is presented for resolution, so the circuit must cycle alternately between the all
NULL state and the data resolution state. Now we must determine when the circuit enters the all
NULL state from a data resolution state. If we can determine when the circuit is in an all NULL state,
then we will know when it is ready for a new set of input data to be resolved.

It can be seen from the truth tables of Figure 1 that the completeness of input criteria is not
enforced for NULL values in relation to data values. If one input value is NULL then the result
value will become NULL. Referring to Figure 2, it is possible for a single input value to become
NULL and drive all the result values to NULL. For instance if D becomes NULL the NULL value
will propagate through gates 1, 3, 4, 6, 7, 8 and 9 driving all of the result values to NULL while there
are still data values lingering on the input and internal to the circuit.

THE NULL WAVE FRONT

The second step in making Boolean logic symbolically complete is for the gates to enforce the
completeness of input criteria for NULL in relation to data (as well as for data in relation to NULL).
This can be accomplished in two ways.

1. Another (i.e. 4th) value can be added to the primitive mutually exclusive value assertion
domain of the logic.

2. A feedback variable can be added to each gate

© 1997 Theseus Logic Inc. 7

THE INTERMEDIATE VALUE SOLUTION

Adding another value to the primitive mutually exclusive value assertion domain of the logic
provides a solution that is purely delay insensitive and purely symbolically complete. We will add
another value called the Intermediate value and configure the truth tables as shown in Figure 3.

T

I
F

IFT
K L

J K L

I J

I

K

N

N

IFT I

IFF I

III I

III N

T

I
F

IFT
K L

J K L

I J

I

K

N

N

ITT I

IFT I

III I

III N

T

I
F

K

J

I

F

T
I

AND OR NOT

N IN

Figure 3. Intermediate value truth tables.

We now have a four value logic. It can be seen from the truth tables that a gate will only
assert a data result value when both input values are data, and will only assert a NULL result value
when both input values are NULL. The truth tables directly enforce the completeness of input
criteria for both data and NULL. When the result values are all NULL the inputs are all NULL and
circuit is completely reset and ready for a new data set. When the result values are all data, a
complete data set is presented at the input to the circuit and its resolution is completed. The result
values transition from all NULL through Intermediate values to all data then from all data through
Intermediate values to all NULL. The watcher of the result values looks for all data and all NULL at
the output and simply ignores Intermediate values.

Again, the behavior of each gate scales up for the circuit as a whole. Refer to Figure 2 again
and assume each gate is an Intermediate value gate. Beginning with the circuit in an all data state, if
only D becomes NULL gate 1 will assert an intermediate value until C also becomes NULL. If a
single input value remains data there will be at least one result value that remains Intermediate.
When all result values become NULL it means that the input values are all NULL and the NULL
values have propagated through the circuit and that the circuit is in a completely NULL state. The
circuit as a whole enforces the completeness of input criteria for both data in relation to NULL and
for NULL in relation to data.

It can now be determined when the circuit is completely reset to NULL and ready to accept a
new input data set to resolve by simply monitoring the result values. When the result values
transition from a complete result data set to all NULL the circuit is completely reset and ready to
accept a new data set. The circuit indicates its own readiness to accept a new input data set purely
symbolically and autonomously. No expression or authority external to the circuit expression such
as a clock, delay line or controller is needed.

We now have a circuit that is a complete expression in and of itself. It can tell the world when
it is ready to accept data to resolve and it can tell the world when it has completed a data resolution.
Data resolution occurs in an orderly wave front of correct result values within the circuit. It can be a
fully autonomous and asynchronous element of a larger whole (i.e. a system).

© 1997 Theseus Logic Inc. 8

An intermediate value logic circuit is a symbolically complete process expression and is purely
symbolically determined. The Intermediate value solution is a theoretically complete and general
solution to delay insensitive circuit synthesis. Its symbol resolution behavior is not affected in any
way by the propagation delay of any element in an expression.

The addition of the NULL value or the Intermediate value did not change the transform
specifications for the data values. Intermediate value NULL Convention Logic™ gates can replace
the gates of a standard Boolean logic combinational circuit one for one, and the circuit will provide
the identical logic function as before. It will simply resolve in a more orderly manner and assert its
own completion, as well as its own readiness to accept a new input data set.

THE FEEDBACK SOLUTION

The feedback solution makes each gate a state machine with hysteresis of result value
assertion. Figure 4 shows the truth table for the feedback gate. Do not be daunted by the seeming
complexity of this table. This is just the first example to introduce the NULL convention.

T
N T F
N T F

R

B
R

F
N T F
N F F

N
AINPUT

RESULT

N
N T F
N N N

T
N T F
F F

F
N T F
F F F

F
N

N T F
N F F

T
N T F
T T

F
N T F

T
N

N T F
N TF T T TT T

RB
A

Fig 4. The feedback gate and its truth table.

R is the result variable fed back to the input. When the gate is asserting NULL it is in the
NULL (N) state and will continue asserting N until both input values become data (T,F) at which
point it will transition its result value to a data value and enter a data state. When the gate is in a
data state (R = F or T) it will continue asserting a data value until both input values become NULL
(N) at which point it will transition its result value to N and enters a null state. The feedback gate
enforces the completeness of input criteria for both data in relation to NULL and for NULL in
relation to data.

Again, the behavior of each gate scales up for the circuit as a whole. Refer to Figure 2 again
and assume each gate has feedback. Beginning with the circuit in an all data state, if only D becomes
NULL gate 1 continues to assert a data value until C also becomes NULL. If a single input value
remains data there will be at least one result value that remains data. When all result values become
NULL it means that the input values are all NULL and the NULL values have propagated through
the circuit and that the circuit is in a completely NULL state. The circuit as a whole enforces the
completeness of input criteria for both data in relation to NULL and for NULL in relation to data.

© 1997 Theseus Logic Inc. 9

A NON-CRITICAL TIME RELATIONSHIP

While the intermediate value solution uses play through gates with no time relationships at all
and is fully delay insensitive, the feedback solution is not fully delay insensitive in that there is a non-
critical time relationship involved. The feedback path around each gate must stabilize faster than
successive wave fronts of transition pass through the circuit as a whole. We call this a non critical
time relationship because it is easy to achieve since the circuit propagation time will typically be
much longer than the feedback propagation time. The feedback solution is not purely delay
insensitive but is effectively delay insensitive.

3. Two Value NULL Convention Logic™

We have shown how to make Boolean logic purely symbolically complete as a four value logic
system and practically symbolically complete as a three value logic system, but three and four value
logic systems are not commercially viable. The next step is to show how the NULL convention can
be applied to a system with only two values such as our favorite digital electronic implementation
environment.

If the logic is limited to two values (0 volts and 5 volts for instance) in its primitive mutually
exclusive value assertion domain (a wire for instance) and one value must be assigned to express
NULL (0 volts), this leaves only one value remaining to express data. This means that each wire can
express only one data meaning which we will call DATA (5 volts). Two data meanings, True and
False for instance, must be expressed with two wires (one wire asserting DATA means TRUE, the
other wire asserting DATA means FALSE). With no inherent means to prevent any two wires from
expressing their DATA values simultaneously there is no longer an inherently enforced mutually
exclusive value assertion domain for data meanings as there was when two data meanings were by
physical necessity mutually exclusively asserted by a single wire. Since there must be mutually
exclusive assertion of DATA values it must be reestablished by convention.

Each wire is still an inherent mutually exclusive value assertion domain that asserts either
DATA or NULL. To reestablish mutually exclusive assertion of data meanings, a convention that
only one wire of a group of wires will assert its DATA value at a time. It is illegal or erroneous for
two or more wires within this group to simultaneously assert DATA values A group of wires that
assert mutually exclusive data meanings will be called a mutually exclusive assertion group.

A mutually exclusive assertion group can be any size. A group of ten wires can directly
express decimal numbers with each wire expressing a digit value. A group of two wires can directly
express True and False. The two wire mutually exclusive assertion group is identical to dual rail
encoding, which is traditionally used as a transmission protocol between speed independent circuits.
The mutually exclusive assertion group in NULL Convention Logic™ is a much more general
concept than dual rail transmission encoding. It is not just a transmission protocol but is inherent in
the logic itself .

© 1997 Theseus Logic Inc. 10

THE SINGLE DATA VALUE LOGIC GATE

NULL expresses a control meaning and is meaningless with respect to data. In fact NULL
means "not data", so the NULL value cannot be considered in resolving data value sets. Since each
input to a gate can express only one DATA value (5 volts for instance) there can be no combinations
of different data values as in Boolean logic. The only discriminable property available when
combining wires at the input to a gate is how many DATA values are presented. Therefore, NULL
Convention Logic™ gates must be discrete threshold gates. A complete input data set for a
threshold gate is sufficient DATA values to meet its threshold. Figure 5 shows a 5 input / threshold 3
gate. If any three or more inputs are DATA the gate will assert a result DATA value. Otherwise it
asserts a NULL value.

3

Figure 5. Threshold gate.

The most direct way to see how discrete threshold gates combine to make an effective logic
circuit is via an example. The half adder will serve as the example and relate the single data value
form of NULL Convention Logic™ to traditional Boolean logic. Figure 6 shows a conventional
Boolean logic half adder circuit with its clock and Figure 7 shows a NULL Convention Logic™ half
adder circuit.

S CA B
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

A
B

C

S

1
2
3
4

567
8
9
10

11 12

Figure 6. Boolean logic half adder circuit with clock.

© 1997 Theseus Logic Inc. 11

2

2

2

2

1

1

1
00

10

01

11 A

B

A_1

A_0

B_1

B_0

C

S

C_1

C_0

S_1

S_0

Figure 7. NULL Convention half adder circuit.

The Boolean half adder circuit expresses 4 possible input data values with two data values (0,
1) on two wires (A, B). The NULL Convention half adder circuit expresses the same 4 possible input
data values with one data value (DATA) on four wires (A_0, A_1, B_0, B_1). Each binary data value
A, B, C and S is expressed by a mutually exclusive assertion group of two wires (A_0, A_1 and B_0,
B_1 and C_0, C_1 and S_0, S_1). Only one wire in each group can assert DATA at a time, so a
complete input data set for the circuit is two DATA values, one from each group (A and B). The
completeness of input criteria for each threshold 2 gate is 2 DATA values. It can be seen that for any
threshold 2 gate to assert a data result value there must be one DATA value asserted in each input
group and that only one threshold 2 gate at a time will assert a result data value as long as the
mutually exclusive assertion convention is enforced for the input groups. The gates, as well as the
circuit as a whole, enforce the completeness of input criteria for data. When the result values
transition from NULL to a complete result data set, which in this case is one DATA value for each
result group (C and S), then the asserted result values are a correct resolution of a complete input
data set. The completeness of input criteria for each gate scales up for the circuit as a whole and as
before, the completeness of resolution can be determined by simply monitoring the result values.
Figure 8 shows the circuit behavior for all four possible input combinations. Bold lines are asserting
DATA and thin lines are asserting NULL.

© 1997 Theseus Logic Inc. 12

2

2

2

2

1

1

1
00

10

01

11

2

2

2

2

1

1

1
00

10

01

11

2

2

2

2

1

1

1
00

01

11

2
2

2

2

1

1

1

C

S

C_1

C_0

S_1

S_0

C

S

C_1

C_0

S_1

S_0

C

S

C_1

C_0

S_1

S_0

C

S

C_1

C_0

S_1

S_0

A

B

A_1

A_0

B_1

B_0

A

B

A_1

A_0

B_1

B_0

A

B

A_1

A_0

B_1

B_0

A

B

A_1

A_0

B_1

B_0

Figure 8. NULL convention half adder circuit behavior.

Another important point to make is that if the mutually exclusive assertion convention is
enforced for the input of the circuit, then the circuit itself maintains the convention at its output . A
system of such circuits communicating among themselves will maintain the convention among

© 1997 Theseus Logic Inc. 13

themselves. The convention only has to be explicitly enforced at the input to the system. It is self
maintaining within the system.

THE NULL WAVE FRONT AGAIN

A single data value NULL Convention Logic™ circuit still has to be returned to an all NULL
state before accepting a new input data set to resolve. As can be seen from the above examples, when
a gate falls below its threshold it will assert a NULL value. The result values can become all NULL
while there are still DATA values lingering on the input and internal to the circuit as shown in Figure
9.

2

2

2

2

1

1

1

C

S

C_1

C_0

S_1

S_0

A

B

A_1

A_0

B_1

B_0

Figure 9. Lack of completeness of input criteria for NULL.

This is identical to the situation with the previous Boolean logic examples and the same two
solutions apply. There is a feedback solution and an Intermediate value solution.

THE FEEDBACK SOLUTION

The feedback solution is simple, straightforward and inexpensive. To provide the necessary
hysteresis behavior, the result value is fed back with a weight of one less than the threshold as shown
in Figure 10. The rounded gate symbol will represent a gate with the hysteresis behavior. This
hysteresis behavior may be provided by feedback internal to the gate or by some inherent behavior of
the gate implementation approach.

4 4

Figure 10. Threshold gate with weighted feedback of threshold -1.

© 1997 Theseus Logic Inc. 14

Beginning in a NULL state with all inputs NULL and asserting a NULL result value, the gate
will not assert a DATA result value until its input data set is complete, which in this case is four
DATAs. With the feedback weight of three, the gate will not transition to a NULL result value until
all of its input values are NULL. As long as at least one input value remains DATA, the gate meets its
threshold and will continue asserting a DATA result value. It does not fall below its threshold and
transition to NULL output until all inputs are NULL. This behavior is shown in Figure 11.

Correct resolution of a
complete input DATA set

Gate reset and ready for a
new input DATA set

3 3 3

3 3 3

Figure 11. Hysteresis behavior of NULL Convention Logic™ gate.

The gate enforces the completeness of input criteria for both data in relation to NULL and
for NULL in relation to DATA. A threshold 1 gate does not require the feedback connection
because its completeness of input criteria is inherently enforced for both DATA and NULL.

THE ENCODED INTERMEDIATE VALUE SOLUTION

Since we are limited to two values in the most primitive mutually exclusive value assertion
domain we can't just add another value as we did in the Boolean logic example, so we have to encode
another value. The intermediate value solution involves another level of encoding convention on top
of the mutually exclusive assertion group encoding. As things stand so far, each data meaning is
expressed with one data value on one wire. True is one wire and False is another wire. Now we will
express each data meaning with two wires. True will be expressed with two wires and False will be
expressed with two wires. encoded_DATA, encoded_INTERMEDIATE and encoded_NULL are
expressed on these two wires with the following encoding.

DATA, DATA -> encoded_DATA
DATA, NULL -> encoded_INTERMEDIATE
NULL, DATA -> encoded_INTERMEDIATE
NULL, NULL -> encoded_NULL

© 1997 Theseus Logic Inc. 15

As shown in Figure 12, each input to a gate is two wires and a single intermediate value gate
consists of several threshold gates without hysteresis.

1

4

A_1

B_0 O

Figure 12. Intermediate encoded 2 input threshold 2 gate.

Starting with the intermediate value gate in an all NULL state with encoded_NULL values on
the inputs and asserting an encoded_NULL value. If one DATA value is applied to A_1 the threshold
1 gate meets its threshold and will assert a DATA result value and the result value for the composite
gate will assert DATA, NULL to express the encoded_INTERMEDIATE value. The result value
remains encoded_INTERMEDIATE until all four input wires are DATA, which means that both
inputs are presenting encoded_DATA values and there is a complete input data set, at which time the
threshold 4 gate asserts a DATA value and the intermediate value gate asserts DATA, DATA to
express the encoded_DATA value. As soon as one input wire becomes NULL the threshold 4 gate
falls below its threshold and asserts NULL and the asserted result for the intermediate value gate is
DATA, NULL expressing the encoded_INTERMEDIATE value. The encoded_INTERMEDIATE
value is maintained until all the input wires become NULL at which time the threshold 1 gate asserts
a NULL value and the result value for the composite gate is NULL, NULL expressing the
encoded_NULL value.

The Intermediate value composite gate asserts a encoded_NULL code only when all of its
input values are NULL and expresses a encoded_DATA only when it has a complete set of input data
values. It enforces the completeness of input criteria for both data and NULL. Figure 13 shows a
three input threshold two gate.

1

4

4

4

1

A_1

B_0

C_1

O

Figure 13. Intermediate encoded 3 input threshold 2 gate.

© 1997 Theseus Logic Inc. 16

Figure 14 shows the Intermediate encoded Half adder circuit.

i2

i2

i2

i2

i1

i1

i1
00

10

01

11 C

S

C_1

C_0

S_1

S_0

A

B

A_1

A_0

B_1

B_0

1

4

A_0

B_0 O

Figure 14. Intermediate encoded half adder circuit.

Translating between intermediate encoded gates and hysteresis gates is straightforward. As
shown in Figure 15 the translation from hysteresis to encoded is simply a matter of fanning out the
single wire. Translating from encoded gates to hysteresis gates can be done with a single threshold 2
hysteresis gate which discriminates encoded_DATA from encoded_NULL and ignores
encoded_INTERMEDIATE.

1

4

A_1

B_0 O2

2
2

Figure 15. Translating between intermediate encoded gates and hysteresis gates.

As can be seen Intermediate encoding is very expensive in terms of resources. The wires are
all doubled and each encoded gate is several simple threshold gates. The feedback solution is more
practical and economical.

Now that both forms of NULL Convention threshold gates enforce the completeness of input
criteria for both DATA in relation to NULL and for NULL in relation to DATA, their behavior again
scales up for circuits as a whole. Figure 16 shows the data-NULL cycle for a single data value NULL
Convention Logic™ circuit.

© 1997 Theseus Logic Inc. 17

2

2

2

2

1

1

1
00

10

01

11

2

2

2

2

1

1

1
00

10

01

11

2

2

2

2

1

1

1
00

10

01

11

2

2

2

2

1

1

1
00

10

01

11

C

S

C_1

C_0

S_1

S_0

C

S

C_1

C_0

S_1

S_0

C

S

C_1

C_0

S_1

S_0

C

S

C_1

C_0

S_1

S_0

A

B

A_1

A_0

B_1

B_0

A

B

A_1

A_0

B_1

B_0

A

B

A_1

A_0

B_1

B_0

A

B

A_1

A_0

B_1

B_0

Figure 16. NULL-DATA cycle for hysteresis gate circuit.

Beginning with the circuit in an all NULL state one DATA value is applied in one of the
groups. The result values remain all NULL since no threshold is met. When a DATA value is
applied in the second group, a complete input data set is present, the threshold of a gate is met which
asserts a DATA value which propagates to the result values. One result value in each output group
asserts a DATA value which constitutes a complete result data set and expresses the correct

© 1997 Theseus Logic Inc. 18

resolution of a complete input data set. The circuit as a whole enforces the completeness of input
criteria for DATA in relation to NULL and only asserts a complete result data set when a complete
input data set is presented to the circuit.

One of the input DATA values becomes NULL, but the threshold 2 gate and the circuit
continue asserting DATA result values. Only when all inputs to the circuit are NULL does the
threshold 2 gate and hence the circuit transition their result values to NULL. The circuit as a whole
enforces the completeness of input criteria for NULL in relation to DATA and only asserts all NULL
result values when the input to the circuit is all NULL and the NULL values have propagated
through the circuit.

As with the Boolean logic examples with three and four value logic, the completion of
resolution of a complete input data set and the readiness of the circuit to receive a new input data set
to resolve can be determined by simply monitoring the result values. The circuit is symbolically
complete and manages quite on its own its interactions with the rest of the world.

INTERESTING OBSERVATIONS ON SINGLE DATA VALUE NULL CONVENTION LOGIC™ CIRCUITS

A single data value NULL Convention Logic™ circuit can be conveniently monitored for faults
in such a way that it cannot tell a lie as shown in figure 17.

2

2

2

2

1

1

1
00

10

01

11

3 FAULT

A

B

A_1

A_0

B_1

B_0

C

S

C_1

C_0

S_1

S_0

Figure 17. Fault monitoring NULL Convention Logic™ circuit.

If exactly one DATA value is asserted in each output group it is the correct resolution of a
complete input data set. If there are ever three DATA result values simultaneously asserted, it is an
error and the threshold three gate will announce the error. If the circuit only asserts one DATA result
value it will fail to announce completion of resolution and this can be detected with a watchdog
timer. A NULL Convention Logic™ circuit will always either:

1. Assert a correct result.

2. Fail to complete resolution.

3. Assert an explicit error signal.

© 1997 Theseus Logic Inc. 19

A fault will be detected as soon as it causes an actual resolution error. This holds for all single
point faults. It is possible for a NULL Convention Logic™ circuit to tell a lie but it requires two
coordinated faults that produce a valid encoding which is, nevertheless, erroneous.

Single data value NULL Convention Logic™ circuits are similar to neural nets as shown in
figure 18.

2

2

2

2

1

1

1
00

10

01

11

A
B

C

S

1
2
3

4
567

8
9
10

11 12

C

S

C_1

C_0

S_1

S_0

A

B

A_1

A_0

B_1

B_0

Figure 18. Similarity to neural nets.

The single data value NULL Convention Logic™ circuit in the middle performs the same
discrete symbolic processing as the Boolean circuit at the top, while at the same time being a more
complete and autonomous expression of the process than the Boolean logic circuit. The fully
connected neural net at the bottom, with an input layer, a hidden layer and an output layer can be
configured to identically match the NULL Convention Logic™ circuit by setting the thresholds of
each node and setting the weights of each connection appropriately to zero or one. The NULL
Convention Logic™ circuit might be viewed as a pretrained neural net .

© 1997 Theseus Logic Inc. 20

4. The Asynchronous Register

To build a system out of NULL Convention combinational logic circuits we must be able to
manage the communication and interaction among its component circuits. There must be an
asynchronous register, as shown in figure 19, that monitors completeness of resolution as well as
readiness to accept new input data sets and stores the complete set of data values and the all NULL
values between circuits. Each combinational circuit will have an asynchronous register at its input.

collected
input

value set

combinational
expression

acknowledge

result
value
set

r
e
g
i
s
t
e

acknowledge

presented
values

a
s

n
c
h
r
o

y

n
o
u
s

r

Figure 19. The asynchronous register.

The asynchronous register shown in Figure 20 is simply a rank of NULL Convention Logic™
threshold gates with feedback hysteresis (Intermediate value gates won't work here) and a single gate
that watches for complete data sets and all NULL states. It will manage the interaction among
combinational circuits and is itself a very simple NULL Convention Logic™ circuit.

© 1997 Theseus Logic Inc. 21

2

2

A_0

A_1

2

2

B_0

B_1

2

2

C_0

C_1

2

2

D_0

D_1

A_0

A_1

B_0

B_1

C_0

C_1

D_0

D_1

DACK
NACK

NULL
convention

combinational
circuit

4

from next

to previous

Figure 20. The NULL Convention Logic™ asynchronous register.

Each register gate (the threshold 2 gates) receives one wire with a data meaning and one wire
with a control meaning. The threshold 4 gate is the watcher gate. When it sees a complete set of
DATA values it will assert DATA and when it sees all NULL values it transitions to asserting NULL.
When the watcher gate sees a complete data set, which in this case is one DATA value each for A, B,
C and D input groups, it means that a complete data set has been received and stored by the register
gates and it will transition its result value to DATA. The watcher gate will continue to assert the
DATA value until all of its input values are NULL, which means that the register gates have received
and stored all NULL values.

The control input for each register gate comes from the watcher of the next or downstream
register. When the next register has received and stored a DATA wave front playing through the
combinational circuit, it sends back a DATA acknowledge (DACK) that says "I have received and
stored the DATA wave front and now you can send the NULL wave front". This is conveyed by
transitioning the control line value to NULL. But the watcher transitions its result to DATA when it
sees a complete data set so an inverter is needed. The same is true for the reception of the NULL
wave front. When the watcher sees all NULL values it transitions its result value to NULL. This
means "I have received and stored the NULL wave front and now you can send a DATA wave front".
But to authorize a DATA wave front the control value must be DATA, so again the signal must be
inverted.

© 1997 Theseus Logic Inc. 22

The control line requests the sending of a DATA wave front or a NULL wave front. The
register gates are feedback hysteresis gates that enforce the completeness of input for both DATA and
NULL. To pass DATA values, both inputs of a gate must be DATA. Therefore a DATA wave front
cannot pass the register gates until the control line is DATA, or in other words until the next register
has requested the data to be passed. When the control line becomes DATA, the DATA values
presented to the register gates will be passed and as long as the control line remains DATA the data
will be stored by the register gates. When a complete DATA set has been passed and stored by the
register gates the watcher gate will detect the complete DATA set and transition the control line to
the previous register to NULL, indicating that it has received and stored a DATA wave front and the
previous register can pass a NULL wave front.

Because of the hysteresis behavior of the register gates, they will not pass a NULL wave front
until both inputs are NULL. So when the NULL wave front arrives at the register gates and the
control line becomes NULL, the NULL values will be passed and stored as long as the control line is
remains NULL. After the NULL values are passed and stored, the watcher will detect the all NULL
value set and transition the control line to the previous register to DATA indicating that it has
received and stored the NULL wave front and the previous register can pass a DATA wave front.

The behavior of the asynchronous register is detailed in figure 21.

© 1997 Theseus Logic Inc. 23

2

2

A_0

A_1

2

2

B_0

B_1

A_0

A_1

B_0

B_1

DACK
NACK

2

A

B

A

B

From NextTo Previous

Arrival of NULL before arrival of request for NULL

Synchronization Register Behavior

DATA
presented

DATA
received

NULL
requested

DATA
requested

NULL
presented

DATA
maintained

NULL
requested

DATA
requested

2

2

2

2

DACK
NACK

2

A

B

A

B

From NextTo Previous

DATA presented, requested and passed

Stable Stable

NULL
wavefront

is
blocked

A_0

A_1

B_0

B_1

A_0

A_1

B_0

B_1

2

2

2

2

DACK
NACK

2

A

B

A

B

From Next

To
Previous

NULL
presented

NULL
detected

DATA
requested

NULL
requested

NULL requested from NEXT

2

2

2

2

DACK
NACK

2

A

B

A

B

From Next

To
Previous

2

2

2

2

DACK
NACK

2

A

B

A

B

From Next

To
Previous

NULL passed NULL detected and DATA
requested from previous

Stable
NULL

presented
NULL

passed

NULL
requested

In
transition

NULL
presented

NULL
requested

In
transition

A_0

A_1

B_0

B_1

A_0

A_1

B_0

B_1

A_0

A_1

B_0

B_1

A_0

A_1

B_0

B_1

A_0

A_1

B_0

B_1

A_0

A_1

B_0

B_1

Figure 21a. Asynchronous register behavior.

© 1997 Theseus Logic Inc. 24

Synchronization Register Behavior

2

2

2

2

DACK
NACK

2

A

B

A

B

From Next

To
Previous

Arival of DATA before arrival of request for DATA

DATA
presented

NULL
maintained

DATA
requested

NULL
requested

Stable

DATA
wavefront is

blocked

A_0

A_1

B_0

B_1

A_0

A_1

B_0

B_1

2

2

2

2

DACK
NACK

2

A

B

A

B

From Next

To
Previous

DATA
presented

DATA
detected

NULL
requested

DATA
requested

DATA requested from NEXT

2

2

2

2

DACK
NACK

2

A

B

A

B

From Next

To
Previous

DATA passed DATA detected and NULL
requested from previous

Stable
DATA

presented
DATA

passed

DATA
requested

In
transition

DATA
presented

DATA
requested

In
transition

2

2

2

2

DACK
NACK

2

A

B

A

B

From Next

To
Previous

A_0

A_1

B_0

B_1

A_0

A_1

B_0

B_1

A_0

A_1

B_0

B_1

A_0

A_1

B_0

B_1

A_0

A_1

B_0

B_1

A_0

A_1

B_0

B_1

Figure 21b. Asynchronous register behavior.

© 1997 Theseus Logic Inc. 25

Synchronization Register Behavior

Arival of request for NULL before arrival of NULL

DATA
presented

DATA
maintained

NULL
requested

NULL
requested

Stable

2

2

2

2

DACK
NACK

2

A

B

A

B

From Next

To
Previous

A_0

A_1

B_0

B_1

A_0

A_1

B_0

B_1

2

2

2

2

DACK
NACK

2

A

B

A

B

From Next

To
Previous

NULL
presented

NULL
detected

DATA
requested

NULL
requested

NULL arrives from previous

2

2

2

2

DACK
NACK

2

A

B

A

B

From Next

To
Previous

2

2

2

2

DACK
NACK

2

A

B

A

B

From Next

To
Previous

NULL passed NULL detected and DATA
requested from previous

Stable
NULL

presented
NULL

passed

NULL
requested

In
transition

NULL
presented

NULL
requested

In
transition

A_0

A_1

B_0

B_1

A_0

A_1

B_0

B_1

A_0

A_1

B_0

B_1

A_0

A_1

B_0

B_1

A_0

A_1

B_0

B_1

A_0

A_1

B_0

B_1

Figure 21c. Asynchronous register behavior.

© 1997 Theseus Logic Inc. 26

Synchronization Register Behavior

2

2

2

2

DACK
NACK

2

A

B

A

B

From Next

To
Previous

Arival of request for DATA before arrival of
DATA

NULL
presented

NULL
maintained

DATA
requested

DATA
requested

Stable

A_0

A_1

B_0

B_1

A_0

A_1

B_0

B_1

2

2

2

2

DACK
NACK

2

A

B

A

B

From Next

To
Previous

DATA
presented

DATA
detected

NULL
requested

DATA
requested

DATA arrives from
previous

2

2

2

2

DACK
NACK

2

A

B

A

B

From Next

To
Previous

DATA
passed

DATA detected and
NULL requested from
previous

Stable
DATA

presented
DATA

passed

DATA
requested

In
transition

DATA
presented

DATA
requested

In
transition

2

2

2

2

DACK
NACK

2

A

B

A

B

From Next

To
Previous

A_0

A_1

B_0

B_1

A_0

A_1

B_0

B_1

A_0

A_1

B_0

B_1

A_0

A_1

B_0

B_1

A_0

A_1

B_0

B_1

A_0

A_1

B_0

B_1

Figure 21d. Asynchronous register behavior.

© 1997 Theseus Logic Inc. 27

ASYNCHRONOUS REGISTER SUMMARY

The asynchronous register manages the fully asynchronous flow of data wave fronts and
NULL wave fronts among NULL Convention Logic™ circuits. Passage of DATA or NULL through a
register occurs strictly after the request for DATA or NULL, and the detection of complete DATA or
all NULL state occurs strictly after the passage and storage of the DATA or NULL values. The
asynchronous registers and their behavior are fully delay insensitive and are purely symbolically
determined. There are no time dependency relationships whatever. With the asynchronous register
a fully delay insensitive and purely symbolically determined system can be built .

STRUCTURES OF ASYNCHRONOUS REGISTERS

The interaction behavior among combinational circuits can be seen with the simple pipeline
example shown in Figure 22.

2

2

A_0

A_1

2

2

B_0

B_1

2

2

C_0

C_1

2

2

D_0

D_1

2

2

A_0

A_1

2

2

B_0

B_1

2

2

C_0

C_1

2

2

D_0

D_1

DACK
NACK

NULL
convention

combinational
circuit

4

DACK
NACK

4

2

2

A_0

A_1

2

2

B_0

B_1

2

2

C_0

C_1

2

2

D_0

D_1

NULL
convention

combinational
circuit

DACK
NACK

4

A_0

A_1

B_0

B_1

C_0

C_1

D_0

D_1

NULL
convention

combinational
circuit

previous current next

Figure 22. NULL Convention asynchronous pipeline.

Assume that all the circuits are in a NULL state and that the current watcher and the next
watcher is requesting a DATA wave front and that the previous register is presenting a complete
DATA set to its combinational circuit. As the wave front propagates through the previous circuit to
the current register, the current register passes the data since its control line is DATA. When a
complete data set is recognized by the current watcher, the current watcher transitions its control line
to the previous register to NULL to indicate that it has received and stored the data wave front and
the previous register can pass a NULL wave front. The requested NULL wave front from the

© 1997 Theseus Logic Inc. 28

previous register can arrive at the current register but, as long as its control line is DATA, the NULL
wave front will be blocked and the current register will maintain the presentation of the set of DATA
values to the current circuit. The control line for the current register will remain DATA until the
DATA wave front has propagated through the current circuit and has been received by the next
register. When the next register receives and stores the DATA wave front, the DATA set no longer
needs to be maintained by the current register. The next watcher detects the complete DATA set and
transitions its acknowledge line to NULL to indicate that it has the DATA wave front and the current
register can allow a NULL wave front through.

The registers and circuits can be configured in more complex structures than a simple pipeline.
Figure 23 shows a fan in configuration of circuits

DACK
NACK

DACK
NACK

DACK
NACK

DACK
NACK

2

2

1

Combinational
Circuit

Combinational
Circuit

Combinational
Circuit

2

1

1

Combinational
Circuit

2

2

2

3

Control To
Previous

Control From

Next

Control To

Previous

Control To

Previous

Figure 23. Fan in configuration of registers and circuits.

In Figure 23 each threshold 2 gate represents a complete rank of register gates. In this
configuration three circuits present their results to a single circuit. The single circuit receives the
wave fronts from all three and does not signal completeness of DATA or completeness of NULL until
all three wave fronts are present and complete. It then sends the acknowledge to all three. The wave
fronts of the three circuits are synchronized at the register of the single circuit .

© 1997 Theseus Logic Inc. 29

DACK
NACK

2

1

Combinational
Circuit

Control To

Previous

DACK
NACK

2

1

Combinational
Circuit

DACK
NACK

2

1

Combinational
Circuit

DACK
NACK

2

1

Combinational
Circuit

3

Control From

Next

Control From

Next

Control From

Next

Figure 24 Fan out configuration of registers and circuits.

Figure 24 shows a fan out configuration where a single circuit delivers its result values to three
circuits. Each of the three circuits receives the wave front individually and generates its own
acknowledge control signal. The threshold three gate collects the acknowledge signals. It does not
assert DATA until all three acknowledge inputs are DATA, meaning all three circuits have received a
complete DATA wave front, and it does not assert NULL until all three acknowledge inputs are
NULL, meaning that all three have received a complete NULL wave front. So the fanned out wave
front is synchronized by the threshold 3 gate.

© 1997 Theseus Logic Inc. 30

THE SEQUENTIAL CIRCUIT

The next structure required to build a system is a sequential circuit. Figure 25 shows a
sequential circuit constructed with asynchronous registers and a combinational circuit.

2

2

A_0

A_1

2

2

B_0

B_1

2

2

2

2

4

2

2

A_0

A_1

2

2

B_0

B_1

2

2

2

2

DACK
NACK

NULL
convention

combinational
circuit

4

DACK
NACKDACK

NACK

2

2

2

2

2

from nextto previous

A_0

A_1

B_0

B_1

input
registe

r

output
registe

r

feedback
register

Figure 25. NULL Convention Logic™ sequential circuit.

The top four gates of the input register hold the inputs from the previous circuit. The top four
gates of the output register receive the result values for the next register. The bottom four gates of the
output register receive the internal state of the circuit and direct it back to the bottom four gates of the
input register through the intermediate register at the bottom of the circuit which buffers successive
DATA and NULL wave fronts from the output to the input of the circuit. The next DATA set
arriving at the top four gates is synchronized with the previous DATA set’s output arriving at the
bottom four input gates from the feedback register.

The sequential circuit is symbolically complete. The behavior of the circuit is purely
symbolically determined, the behavior of the asynchronous registers are purely symbolically
determined and their combination into a system structure is purely symbolically determined. There
is no external control authority. The circuit's behavior is driven completely by the DATA-NULL
input wave fronts and acknowledge signal interaction with its predecessor circuit and with its
successor circuit.

© 1997 Theseus Logic Inc. 31

The basic elements to build a system (combinational circuits, registers and sequential circuits)
have been demonstrated.

5. Some Adder Circuits

Next we show some adder circuits to demonstrate some advantages of NCL™ over previous
approaches to asynchronous circuits. To give a sense of the logic we begin with the Boolean logic
Minterm form of the full adder shown in figure 26.

Z_0

Z_1
ZX_0

X_1

Y_0

Y_1
Y

X

CI_0

CI_1
CI

CO_0

CO_1
CO

Figure 26. Minterm version of full adder.

This can be transformed directly into an asynchronous delay insensitive circuit by replacing
the AND gates with 3 input C-elements as shown in figure 27. This is a well known asynchronous
circuit called delay insensitive minterm synthesis or DIMS (8). What is not known is how to optimize
this circuit which is expressed partly in Boolean logic and partly in terms of C-elements.

© 1997 Theseus Logic Inc. 32

C

C

C

C

C

C

C

C

C

C

X_0

X_1

Y_0

Y_1
Y

X

CI_0

CI_1
CI

Z_0

Z_1
Z

CO_0

CO_1
CO

Figure 27. Minterm version of full adder.

Because NCL™ is a uniform and consistent logic, the NCL™ version of the same DIMS circuit
can be optimized. Figure 28 is the NCL™ version of the DIMS full adder.

© 1997 Theseus Logic Inc. 33

3

3

3

3

3

3

3

3

1

1

1

1
2

2

X_0

X_1

Y_0

Y_1
Y

X

CI_0

CI_1
CI

Z_0

Z_1
Z

CO_0

CO_1
CO

Figure 28. Minterm version of full adder.

The DIMS full adder counterpart can be optimized to the full adder circuit shown in figure 29
with expression transforms entirely within the context of NCL™.

2

2
Z

3

3

CO

X_0

X_1

Y_0

Y_1
Y

X

CI_0

CI_1
CI

Z_0

Z_1

CO_0

CO_1

Figure 29. The optimized full adder.

© 1997 Theseus Logic Inc. 34

Full adder circuits can be combined in the evident way to form a ripple carry adder as shown
in figure 30.

2

2

3

3

111

000

111

000

2

2

3

3

111

000

111

000

2

2

3

3

111

000

111

000

•
•
•

2

2

3

3

111

000

111

000

X0_0
X0_1

Y0

X0

CI_0

CI_1
CI

Y0_0

Y0_1

X1_0

X1_1

Y1

X1

Y1_0

Y1_1

Xn-1_0
Xn-1_1

Yn-1

Xn-1

Yn-1_0

Yn-1_1

Xn_0
Xn_1

Yn

Xn

Yn_0

Yn_1

Z0_0

Z0_1

Z0

Z1_0

Z1_1

Z1

Zn-1_0

Zn-1_1

Zn-1

Zn_0

Zn_1

Zn

CO_0

CO_1

CO

Figure 30. Ripple carry adder circuit.

Figure 31 shows the ripple carry adder with an output asynchronous register.

© 1997 Theseus Logic Inc. 35

2

2

3

3

111

000

111

000

2

2

3

3

111

000

111

000

2

2

3

3

111

000

111

000

•
•
•

2

2

3

3

111

000

111

000

2

2

2

2

2

2

2

2

2

2

DACK
NACK

3

DACK
NACK

•
•
•

X0_0
X0_1

Y0

X0

CI_0

CI_1
CI

Y0_0

Y0_1

X1_0

X1_1

Y1

X1

Y1_0

Y1_1

Xn-1_0
Xn-1_1

Yn-1

Xn-1

Yn-1_0

Yn-1_1

Xn_0
Xn_1

Yn

Xn

Yn_0

Yn_1

Z0_0

Z0_1

Z0

Z1_0

Z1_1

Z1

Zn-1_0

Zn-1_1

Zn-1

Zn_0

Zn_1

Zn

CO_0

CO_1

CO

Figure 31. Ripple carry adder with output asynchronous register.

The point to appreciate is that the output register is just another NCL™ combinational circuit.
There is no difference between the control expression of the circuit and the data processing aspect of
the circuit and, indeed, they can be optimized in combination. Figure 32 shows such an optimization
where the last rank of gates in the circuit are performing both the last stage of data processing and
registration.

© 1997 Theseus Logic Inc. 36

Looking back to the circuit in Figure 30 we see that the last rank of full adder gates are also
hysteresis gates that maintain their state between wave fronts just like the asynchronous register
gates . Since the wave front state is maintained by the adder gates there is really no need for a
separate rank of gates just to maintain state (i.e. a separate asynchronous register). We can connect
the acknowledge line directly to the last rank of processing gates and integrate the asynchronous
registration function directly into the combinational circuit as shown in Figure 32.

With both input meanings and the acknowledge control signal going into the last rank of gates
their threshold must now be 4.

© 1997 Theseus Logic Inc. 37

2

2
Z0_0

Z0_1

Z0

X0_0
X0_1

Y0

X0

CI_0

CI_1
CI

Y0_0

Y0_1

4

4

111

000

111

000

DACK
NACK

2

2
Z1_0

Z1_1

Z1

X1_0

X1_1

Y1

X1

Y1_0

Y1_1

4

4

111

000

111

000

2

2
Zn-1_0

Zn-1_1

Zn-1

Xn-1_0
Xn-1_1

Yn-1

Xn-1

Yn-1_0

Yn-1_1

4

4

111

000

111

000

•
•
•

2

2
Zn_0

Zn_1

Zn

Xn_0
Xn_1

Yn

Xn

Yn_0

Yn_1

4

4

111

000

111

000

CO_0

CO_1

CO

2

2

3

DACK
NACK

•
•
•

•
•
•

Figure 32. Ripple carry adder with embedded asynchronous register.

NULL Convention Logic™ expresses data processing and control identically and indeed the
expressional distinction between the two domains disappears. NULL Convention Logic™ is a
uniform, consistent and general language for the expression of asynchronous circuits and systems.
NCL™ delivers on the promises of asynchronous design where the traditional Boolean logic based
approaches have failed to deliver.

© 1997 Theseus Logic Inc. 38

6. Summary

NULL Convention Logic™ conveniently and straightforwardly delivers all of the traditionally
expected benefits of asynchronous circuit design.

EASE OF DESIGN

NULL Convention Logic™ circuits are purely symbolically determined in that circuit behavior
depends solely on the interconnections among the gates. Delay insensitivity is inherent in the logic
itself. It does not depend on subtle and expensive circuit constructs. Consequently an NCL™ circuit
is a complete and autonomous expression in and of itself. It signals its own completion of processing
and also signals its readiness to accept new input data, without any appeal to an external expression
or authority such as a clock, delay line or controller. NCL™ circuits can be fully expressed in high
level languages without regard for timing issues and compiled to silicon in the same sense that high
level programs are compiled to machine instructions.

LOWER DESIGN COST AND RISK

The clock is eliminated with all its attendant design complexities and risks including clock
skew. The system can be designed in parts and then directly composed. There are no global
coordination issues as with synchronous systems.

LOWER POWER CONSUMPTION

Only portions of the system that are doing useful work consume power. Integrating logic
function and registration in a single gate reduces the power required for system control. There is no
spurious switching of transistors. The NULL state is an inherent and automatic power idle state. The
clock driving power is eliminated. NCL™ systems operate entirely in terms of synchronized wave
fronts of monotonic level transitions. There are no pulses or edge triggering involved in the circuit
behavior. The asynchronous nature of NULL Convention Logic™ circuits distributes the demand for
power.

CONVENIENT TECHNOLOGY MIGRATION

Because the logic is inherently delay insensitive it is insensitive to the behavior properties of
the physical implementation. NULL Convention Logic™ circuits are insensitive to changes in
implementation technology, to changes in scale, and to propagation delay changes due to aging or
manufacturing variations eliminating portability and evolvability issues.

© 1997 Theseus Logic Inc. 39

AUTOMATIC ADAPTATION TO PHYSICAL PROPERTIES

The delays of the various circuit elements change differentially with the change in physical
parameters such as voltage, temperature, age, manufacturing variations and different
implementation environments. Since the circuits are delay insensitive, they will continue to operate
correctly over a large range of variation of these physical parameters.

RELIABILITY

All failure modes due to timing problems (race, hazards, skew, etc.) are eliminated. NCL™
provides advantages for design cost and risk, reliability of circuit performance and evolvability
beyond the barriers of complexity and feature size facing clocked Boolean logic.

TESTING

Testing complexity is reduced in that stuck-at-1 faults halt the circuit. Only stuck-at-0 faults
need to be exercised with applied patterns. Design time and risk as well as circuit testing
requirements are expected to be decreased because of the elimination of the complexity of the clock
with its critical timing issues.

SPEED OF OPERATION

NULL Convention Logic™ circuits are speed competitive even though they require two
propagation cycles per unit of processing. They will operate at the full rate the logic and material
allow and when appropriate will take advantage of average case propagation behavior. There are no
margins added onto worst case propagation delays as with clocked circuits. Integration of the
registration in logic gates allows more finely grained pipelining and consequently higher throughput
rates than convention clocked techniques.

Two value NULL Convention Logic™ preserves all the advantages of traditional Boolean
logic (two values, simple gates, straightforward synthesis) while, additionally, providing self
determined, locally autonomous, self synchronizing, delay insensitive, and fault detecting behavior.
Furthermore, NCL™ is compatible with the existing fabrication and design infrastructure and with
existing clocked systems allowing convenient low cost market entry.

© 1997 Theseus Logic Inc. 40

7. References

1. C. L. Seitz, “System Timing.” in Introduction to VLSI Systems , ed. by Carver Mead and Lynn
Conway (Reading, Mass., Addison-Wesley, 1980), pp. 242-262.

2. Stephen H. Unger, Asynchronous Sequential Switching Circuits (New York, Wiley-
Interscience, 1969)

3. Ilana David, Ran Ginosar and Michael Yoeli, "An Efficient Implementation of Boolean
Functions as Self-Timed Circuits", IEEE Transactions on Computers , Vol. 41, No. 1, January
1992, pp. 2-10.

4. Ivan E. Sutherland, "Micropipelines", Communications of the ACM , Vol. 32, No. 6, June 1989,
pp. 720-738.

5. J. A. Brzozowski and C-J. H. Seger, "Advances in Asynchronous Circuit Theory Part I: Gate
and Unbounded Inertial Delay Models", Bulletin of the European Association for Computer
Science , Vol. 42, October 1990, pp. 198-248.

6. J. A. Brzozowski and C-J. H. Seger, "Advances in Asynchronous Circuit Theory Part II:
Unbounded Inertial Delay Models, MOS Circuits, Design Techniques", Bulletin of the
European Association for Computer Science , Vol. ??, Month Year, pp. 198-263.

7. Karl M. Fant and Scott A. Brandt, NULL Convention Logic™ System, US patent 5,305,463
April 19,1994.

8. H. Hulgaard and P. H Christensen, “Automated synthesis of Delay insensitive Circuits,” M.Sc.
thesis (IDE 511), Dept of Computer Science, Tech. Univ. of Denmark, Lyngby, 1990.

