
File System Workload Analysis For Large Scale Scientific Computing
Applications

Feng Wang, Qin Xin, Bo Hong, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long
Storage Systems Research Center

University of California, Santa Cruz
Santa Cruz, CA 95064�

cyclonew, qxin, hongbo, sbrandt, elm, darrell � @cs.ucsc.edu
Tel +1 831-459-4458
Fax +1 831-459-4829

Tyce T. McLarty
Development Environment Group/Integrated Computing and Communications

Lawrence Livermore National Laboratory
Livermore, CA 94551�

tmclarty@llnl.gov �
Tel +1 925-424-6975
Fax +1 925-423-8719

Abstract

Parallel scientific applications require high-performance I/O support from underlying file systems.
A comprehensive understanding of the expected workload is therefore essential for the design of
high-performance parallel file systems. We re-examine the workload characteristics in parallel
computing environments in the light of recent technology advances and new applications.

We analyze application traces from a cluster with hundreds of nodes. On average, each application
has only one or two typical request sizes. Large requests from several hundred kilobytes to several
megabytes are very common. Although in some applications, small requests account for more than
90% of all requests, almost all of the I/O data are transferred by large requests. All of these applica-
tions show bursty access patterns. More than 65% of write requests have inter-arrival times within
one millisecond in most applications. By running the same benchmark on different file models, we
also find that the write throughput of using an individual output file for each node exceeds that of
using a shared file for all nodes by a factor of 5. This indicates that current file systems are not well
optimized for file sharing.

1. Introduction

Parallel scientific applications impose great challenges on not only the computational speeds but also
the data-transfer bandwidths and capacities of I/O subsystems. The U.S. Department of Energy Ac-

This paper was published in the 21st IEEE / 12th NASA Goddard Conference on Mass Storage Systems and
Technologies, April 2004, College Park, Maryland, USA.



celerated Strategic Computing Initiative (ASCI) projects computers with 100 TeraFLOPS, I/O rates
of 50–200 gigabytes/second, and storage system capacities of 0.5–20 PB in 2005. The projected
computing and storage requirements are estimated to 400 TeraFLOPS, 80–500 gigabytes/second,
and 3–20 PB in 2008 [2].

The observed widening disparity in the performance of I/O devices, processors, and communication
links results in a growing imbalance between computational performance and the I/O subsystem
performance. To reduce or even eliminate this growing I/O performance bottleneck, the design of
high-performance parallel file systems needs to be improved to meet the I/O requirements of parallel
scientific applications.

The success of file system designs comes from a comprehensive understanding of I/O workloads
generated by targeted applications. In the early and middle 1990s, significant research efforts were
focused on characterizing parallel I/O workload patterns and providing insights on parallel system
designs [1, 4, 7, 14]. The following decade has witnessed significant improvements in computer
hardware, including processors, memory, communication links, and I/O devices. At the same time,
systems are scaling up to match the increasing demands of computing capability and storage capac-
ity. This advance in technologies also enables new scientific applications. Together these changes
motivate us to re-examine the characteristics of parallel I/O workloads a decade later.

In our research, we traces the system I/O activities under three typical parallel scientific applica-
tions: the benchmark ior2 [6], a physics simulation, f1, running on 343 nodes, and another physics
simulation, m1, running on 1620 nodes. We study both static file system and dynamic I/O workload
characteristics. We use the results to address the following questions:

� What were the file sizes? How old were they?� How many files were opened, read, and written? What were their sizes?� How frequent were typical file system operations?� How often did nodes send I/O requests? What were the request sizes?� What forms of locality were there? How might caching be useful?� Did nodes share data often? What were the file sharing patterns?� How well did nodes utilize the I/O bandwidth?

The remainder of this paper is organized as follows: a brief overview of the related work is given
in Section 2. We then describe the tracing methodology in Section 3 and present our results in
Section 4. Finally, we conclude our paper in Section 5.

2. Related Work

The I/O subsystem has been a system performance bottleneck for a long time. In parallel scientific
computing environments, the high I/O demands make the I/O bottleneck problem even more severe.
Kotz and Jain [3] surveyed impacts of I/O bottlenecks in major areas of parallel and distributed
systems and pointed out that I/O subsystem performance should be considered at all levels of system
design.

Previous research showed that the I/O behavior of scientific applications is regular and predictable [7,
9]. Users have also made attempts to adjust access patterns to improve performance of parallel file
systems [13].

2



There are several studies on file system workload characterizations in scientific environments [1,
4, 7, 8, 11]. They have shown that file access patterns share common properties such as large file
sizes, sequential accesses, bursty program accesses, and strong file sharing among processes within
a job. A more recent study [14] showed that applications use a combination of both sequential and
interleaved access patterns and all I/O requests are channeled through a single node when applica-
tions require concurrent accesses; we observe similar phenomena in one of the applications under
our examinations.

Pasquale [9] found that the data transfer rates ranges from 4.66 to 131 megabytes/sec in fifty long-
running large-scale scientific applications. They also demonstrated that the the I/O request bursti-
ness is periodic and regular [10].

Baylor et al. [1] showed that the I/O request rate is on the order of hundreds of requests per second;
this is similar to our results. They also found that a large majority of requests are on the order of
kilobytes and a few requests are on the order of megabytes; our results differ in this regard.

Previous research has mainly investigated scientific workload in 1990’s, although technology has
evolved very quickly since then. We observed changes in large-scale scientific workloads, in our
study, and provided guidelines for future file system designs based on a thorough understanding of
current requirements of large-scale scientific computing.

3. Tracing Methodology

All the trace data in this study was collected from a large Linux cluster with more than 800 dual
processor nodes at the Lawrence Livermore National Laboratory (LLNL). A development version
of Lustre Lite [12] is employed as the parallel file system and the Linux kernel in use is a variant of
2.4.18.

3.1. Data Collection

Tracing I/O activities in large scale distributed file systems is challenging. One of the most critical
issues is minimizing the disturbance of tracing on the system behaviors. A commonly-used method
is to develop a trace module that intercepts specific I/O system calls—a dedicated node in the cluster
collects all trace data and stores them to local disks.

However, due to time limits, we chose a simpler approach: we employed the strace utility with
parameters tuned for tracing file-related system calls. The trace data are written to local files. We
rely on the local host file systems to buffer trace data.

This approach has two shortcomings: first, strace intercepts all I/O-related activities, including
parallel file system, local file system, and standard input/output activities. This results in relatively
large data footprint. Second, the strace utility relies on the local file system to buffer traced data.
This buffer scheme works poorly when the host file system is under heavy I/O workloads. In such a
scenario, the host system performance might be affected by frequent I/Os of the traced data.

However, the strace utility greatly simplifies the tedious data collection process to a simple shell
script. More importantly, the shortcomings mentioned above were not significant in our trace col-

3



Table 1. The ASCI Linux Cluster Parameters

Total Nodes (IBM x355) 960
Compute Nodes 924
Login Nodes 2
Gateway Nodes 32
Metadata Server Nodes 2

Processor per Nodes (Pentium 4 Prestonia) 2
Total Number of Processors 1920
Processor Speed (GHz) 2.4
Theoretical Peak System Performance (TFlops) 9.2
Memory per Node (GB) 4
Total Memory (TB) 3.8
Total Local Disk Space (TB) 115
Nodes Interconnection Quadrics Switch

lection because of the large I/O requests and the relatively short tracing periods. As we discuss in
Section 4, I/O requests in such a large system are usually around several hundred kilobytes to several
megabytes. Even in the most bursty I/O period, the total number of I/Os per node is still around tens
of requests per second. Up to one hundred trace records will be generated on each node per second
on average. Buffering and storing these data only has a slight impact on the system performance.
Moreover, instead of tracing the whole cluster, we only study several typical scientific applications.
Those applications are usually composed of two stages: the computation phase and the I/O phase.
The typical I/O stage ranges from several minutes to several hours. During this period, each node
usually generates several hundred kilobytes of trace data, which can be easily buffered in memory.

3.2. Applications and Traces

All of the trace data were collected from the ASCI Linux Cluster in Lawrence Livermore National
Laboratory. This machine is currently in limited-access mode for science runs and file system
testing. It has 960 dual-processor nodes connected through a Quadrics Switch. Two of them are
dedicated for metadata servers and another 32 nodes are used as the gateways for accessing a global
parallel file system. The detailed configuration of this machine is provided in table 1 [5]. We traced
three typical parallel scientific applications during July, 2003. The total size of the traces is more
than 800 megabytes.

The first application is a parallel file system benchmark, ior2 [6], developed by LLNL. It is used for
benchmarking parallel file systems using POSIX, MPIIO, or HDF5 interfaces. Basically it writes
a large amount of data to one or more files and then reads them back to verify the correctness of
the data. The data set is large enough to minimize the operating system caching effect. Based
on different file usages, we collected three different benchmark traces, named ior2-fileproc, ior2-
shared, and ior2-stride, respectively. All of them are running on a 512-node cluster. ior2-fileproc is
configured to assign an individual output file for each node, while ior2-shared and ior2-stride use a
share file for all the nodes. The difference between the last two traces is that ior2-shared allocates a
contiguous region in the shared file for each node, while ior2-stride strides the blocks from different
nodes into the shared file.

4



The second application is a physics simulation run on 343 processes. In this application, a single
node gathers a large amount of data in small pieces from the others nodes. A small set of nodes
will then write these data to a shared file. Reads are executed from a single file independently
by each node. This application has two I/O-intensive phases: the restart phase, in which read is
dominant; and the result-dump phase, in which write is dominant. The corresponding traces are
named f1-restart and f1-write, respectively.

The last application is another physics simulation which runs on 1620 nodes. This application use
individual output file for each node. Like the previous application, it also has a restart phase and a
result-dump phase. The corresponding traces are referred as m1-restart and m1-write, respectively.

3.3. Analysis

The raw trace files required some processing before they could be easily analyzed. Some unrelated
system calls and signals were filtered out. Since each node maintained its own trace records, the raw
trace for each application is composed of hundreds of individual files. We merged those individual
files in chronological order. Thanks to the Quadrics switch, which has a common clock, all the
traced time in those individual trace files are globally synchronized. Our analysis work, such as
request inter-arrival time, have been greatly simplified by sorting all requests into a chronologically
sorted trace file.

A good understanding of file metadata operation characteristics is important, however, our traces
are not large enough to capture general metadata access patterns. Therefore, we focus more on file
data I/O characterization in the following section.

4. Workload Characteristics

We present the characteristics of the workloads, including file distributions and I/O request prop-
erties. We study the distributions of file size and lifetimes and show the uniqueness of large-scale
scientific workloads. We focus on three typical applications as described in Section 3.2 and examine
the characteristics of I/O requests, such as the size and number of read and write requests and the
burst and the distribution of I/O requests on various nodes.

4.1. File Distributions

We collected file distributions from thirty-two file servers that were in use for the ASCI Linux cluster
during the science runs phase. Each file server has storage capacity of 1.4 terabytes. The file servers
were dedicated to a small number of large-scale scientific applications, which provides a good model
of data storage patterns. In average, the number of files on each file server was 350,250, and each
server stores 1.04 terabytes of data, more than 70% of their capacity. On most of the file servers, the
number and capacity of files are similar except for five file servers. table 2 displays statistic values
of the number and capacity of files on these servers, including mean, standard deviation (std. dev.),
median, minimum (min) and maximum (max).

Figure 1(a) presents file size distributions by number and file capacity. The ranges of file sizes
are sampled from 0–1 Byte to 1–2 gigabytes. Some of the partitions were merged due to space
limitations. We observed that over 80% of the files are between 512 kilobytes and 16 megabytes in

5



Table 2. File Numbers and Capacity of the 32 File Servers

Number Capacity

mean 305,200 1044.33 GB
standard deviation 75,760 139.66 GB
median 305,680 1072.88 GB
minimum 67,276 557.39 GB
maximum 605,230 1207.37 GB

range of file sizes
0 1B 1 KB 512 KB 1 MB 2 MB 4M KB 8 MB 16 MB 32 MB 256 MB 512 MB 2 GB

pe
rc

en
ta

ge
 in

 a
ll 

th
e 

fil
es

 (
%

)

0

10

20

30

40

50
number of files
capacity of files

(a) By File Sizes

range of file ages
0 1 day 1 wk 2 wk 4 wk 8 wk 13 wk 26 wk 52 wk

pe
rc

en
ta

ge
 in

 a
ll 

th
e 

fil
es

 (
%

)

0

10

20

30

40

50
number of files
capacity of files

(b) By File Ages

Figure 1. Distribution of Files

size and these files accounted for over 80% of the total capacity. Among various file size ranges,
the most noticeable one is from 2 megabytes to 8 megabytes: about 61.7% of all files and 60.5% of
all bytes are in this range.

We divided file lifetimes into 9 categories: from 0–1 day to 52 weeks and older. As illustrated in
figure 1(b), 60% of the files and 50% of the bytes lived from 2 weeks to 8 weeks, while 6.6% of the
files and 7.3% of the bytes lived less than one day. The lifetime of the traced system is about 1 year
so that no files lived longer than 52 weeks.

4.2. I/O Request Sizes

Figure 2 shows the cumulative distribution function of request sizes and request numbers. Since
all three ior2 benchmarks have identical request size distributions, we only show one of them. As
shown in Figure 2(a), ior2 has only an unique request size of around 64 kilobytes.

Figure 2(b) shows the write request size distribution of the result-dump stage in the physics simu-
lation, f1. Almost all the write requests are smaller than 16 bytes, while almost all the I/O data are

6



Request Size (bytes)

0 10 100 1000 1e4 1e5 1e6

F
ra

ct
io

n 
of

 R
eq

ue
st

s

0

0.2

0.4

0.6

0.8

1
read_num
read_size
write_num
write_size

(a) ior2-fileperproc

Request Size (bytes)

0 10 100 1000 1e4 1e5 1e6

F
ra

ct
io

n 
of

 R
eq

ue
st

s

0

0.2

0.4

0.6

0.8

1

write_num

write_size

(b) f1-write

Request Size (bytes)

0 10 100 1000 1e4 1e5 1e6

F
ra

ct
io

n 
of

 R
eq

ue
st

s

0

0.2

0.4

0.6

0.8

1

read_num

read_size

(c) f1-restart

Request Size (bytes)

0 10 100 1000 1e4 1e5 1e6

F
ra

ct
io

n 
of

 R
eq

ue
st

s

0

0.2

0.4

0.6

0.8

1
read_num

read_size

write_num

write_size

(d) m1-write

Request Size (bytes)

0 10 100 1000 1e4 1e5 1e6

F
ra

ct
io

n 
of

 R
eq

ue
st

s

0

0.2

0.4

0.6

0.8

1
read_num

read_size

write_num

write_size

(e) m1-restart

Figure 2. Cumulative Distribution Functions (CDF) of the Size and the Number of I/O
Requests (X axis-logscale). The read num and write num curves indicate the fraction of
all requests that is smaller than the size given in X axis. The read size and write size
curves indicate the fraction of all transferred data that live in requests with size smaller
than the value given in the X axis.

transferred in the requests with sizes larger than one megabyte. This turns out to be a common I/O
pattern of scientific applications: a master node collects small pieces of data from all computing
nodes and writes them to data files, which results in a huge number of small writes. Other nodes
read and write these data files in very large chunks afterward. There are so few read requests in the
result-dump stage and write requests in the restart stage that we actually ignore the write request
curves in figure 2(b) and figure 2(c).

Figure 2(d) and figure 2(e) show the same write request distribution in the restart and result-dump
stages of the physics simulation, m1. The two spikes in the write num curves indicate two major
write sizes: 64 kilobytes and 1.75 megabytes, respectively. Each of them accounts for 50% of all
write requests. More than 95% of the data are transfered by large requests, which is also shown in
Figures 2(d) and 2(e). Reads in m1 are dominated by small requests less than 1 kilobytes. However,
a small faction (less than 3%) of 8 kilobyte requests still accounts for 30% of all read data transfer.
This is similar to the read distribution in Figure 2(e): only 5% of the read requests contribute to 90%
of all data read.

7



4.3. I/O Accesses Characteristics

Figure 3–5 show I/O accesses characteristics over time. The resolution for these figures is 1 second
except figure 4(a), which uses a resolution of 50 seconds. Figure 3 shows that the request number
distribution and the request size distribution are almost identical in ior2 due to the fixed size re-
quests used in those benchmarks. The ior2-fileproc benchmark, using the one-file-per-node model,
presents the best write performance. Up to 150,000 write requests per second, totaling 9 gigabytes
per second, are generated by the 512 nodes. However, the ior2-shared and ior2-stride benchmarks
can only achieve 25,000 write requests per second, totaling 2 gigabytes per second. These two
benchmarks use the shared-region and the shared-stride file model, respectively. We believe that
the performance degradation is caused by the underlying file consistency protocol. This result is
somewhat counterintuitive. The shared-region file model appears to be similar to the one-file-per-
node model because the contiguous regions in the former can be analogous to the separate files in
the latter. Therefore, their performance should be comparable as well. The severe performance
degradation implies that the shared-file model is not optimized for this scenario.

After a write, each node reads back one another node’s data as soon as it is available. The gaps
between the write and read curves in each sub-figure reflect the actual I/O times. Obviously, the
ior2-fileproc benchmark demonstrates much better performance: only 10 seconds are used in this
model, while more than 20 seconds are needed to dump the same amount of data when using the
shared file model. Since reads must be synchronous, we can easily figure out the file system read
bandwidth from the read size curve. The ior2-fileproc and ior2-shared benchmarks have compara-
ble read performance. However, the ior2-stride has the worst read performance, which is only 100
megabytes per second for 512 nodes. This result is not surprising: the stride data layout in shared
files limits the chances of large sequential reads.

Figure 4 shows the I/O access pattern of the application f1. As we mentioned before, f1-write has
very few reads and f1-restart has very few writes. Therefore, we can ignore those requests in the
corresponding figures. In Figure 4(a), we chose a resolution of 50 seconds because it becomes
unreadable if we use finer time resolutions. The spike of the write-num curve is caused by the
activities of the master node to collect small pieces of data from other computing nodes. At its peak
time, nearly 1 million requests are issued to file systems per second. However, due to the very small
request size (8 to 16 bytes), this intensive write phase contributes negligable amounts of data to the
overall data size. In the rest of the application, large write requests from 48 nodes dominate the
I/O activities. Requests are issued in a very bursty manner. Figure 4(b) zooms in a small region of
Figure 4(a) by 1 second resolution. It shows that sharp activity spikes are separated by long idleness.
At the peak time, up to 120 megabytes per second of data are generated by 48 nodes. In the restart
phase of f1, read requests become dominant. However, both the number and the data size of read
requests are small compared to those in the write phase.

Figure 5 presents the I/O access pattern of the physics application m1. It demonstrates very good
read performance: nearly 28 gigabytes per second bandwidth can be achieved by 1620 nodes, thanks
to the large read size (1.6 megabytes – 16 megabytes). Like f1, its write activities are also bursty.
We observed that the write curves have similar shapes in figure 5. They all begin with a sharp spike
and then followed by several less intensive spikes. One possible explaination is that the file system
buffer cache absorbs the coming write requests at the begin of the writes. However, as soon as the
buffer is filled out, the I/O rate drops greatly to what can be served by the persistent storage.

8



Snapshot Time (sec.)
0 6 12 18 24N

um
be

r 
of

 I/
O

 O
p.

(X
 1

e4
)

0
2
4
6
8

10
12
14

read_num
write_num

(a) ior2-fileperproc number

Snapshot Time (sec.)
0 6 12 18 24D

at
a 

S
iz

e 
of

 I/
O

 O
p.

 (
G

B
)

0

2.0

4.0

6.0

8.0 read_size
write_size

(b) ior2-fileperproc size

Snapshot Time (sec.)
0 12 24 36 48

N
um

be
r 

of
 I/

O
 O

p.
 (

X
 1

e4
)

0

1

2

3

4

5
read_num
write_num

(c) ior2-shared number

Snapshot Time (sec.)
0 12 24 36 48D

at
a 

S
iz

e 
of

 I/
O

 O
p.

 (
G

B
)

0
0.5
1.0
1.5
2.0
2.5
3.0 read_size

write_size

(d) ior2-shared size

Snapshot Time (sec.)
0 30 60 90 120 150 180

N
um

be
r 

of
 I/

O
 O

p.
 (

X
 1

e3
)

0

5

10

15

20 read_num
write_num

(e) ior2-sharedstride number

Snapshot Time (sec.)
0 30 60 90 120 150 180D

at
a 

S
iz

e 
of

 I/
O

 O
p.

 (
G

B
)

0

0.4

0.8

1.2 read_size
write_size

(f) ior2-sharedstride size

Figure 3. I/O Requests over Time for ior2 Benchmarks

Snapshot Time (sec.)
0 1800 3600 5400

N
um

be
r 

of
 I/

O
 O

p.
 (

X
 1

e6
)

D
at

a 
S

iz
e 

of
 I/

O
 O

p.
 (

G
B

)

0

0.2

0.4

0.6

0.8

1.0
write_num
write_size

(a) time-f1-write

Snapshot Time (sec.)
0 20 40 60 80 100D

at
a 

S
iz

e 
of

 I/
O

 O
p.

 (
G

B
)

0

0.02

0.04

0.06

0.08

0.1 write_size

(b) time-f1-write-short

Snapshot Time (sec.)
0 6 12 18 24

N
um

be
r 

of
 I/

O
 O

p.
D

at
a 

S
iz

e 
of

 I/
O

 O
p.

 (
K

B
)

0

500

1000

1500 read_num
read_size

(c) time-f1-restart

Figure 4. I/O Requests over Time for f1 Application

4.4. I/O Burstiness

To study I/O burstiness, we measure I/O request inter-arrival times Figure 6 shows the cumulative
distribution functions (CDF) of I/O request inter-arrival times. Note that the x-axis is in the loga-
rithmic scale. Write activities are very bursty in the ior2 benchmarks and the f1 application: over

9



Snapshot Time (sec.)
60 120 180 240

N
um

be
r 

of
 I/

O
 O

p.
 (

X
 1

e3
)

0

4

8

12

read_num
write_num

(a) m1-restart-num

Snapshot Time (sec.)
60 120 180 240D

at
a 

S
iz

e 
of

 I/
O

 O
p.

 (
G

B
)

0
5

10
15
20
25

read_size
write_size

(b) m1-restart-size

Snapshot Time (sec.)
0 60 120 180 240

N
um

be
r 

of
 I/

O
 O

p.
 (

X
 1

e3
)

0

2

4

6

8

10

read_num
write_num

(c) m1-write-num

Snapshot Time (sec.)
0 60 120 180 240D

at
a 

S
iz

e 
of

 I/
O

 O
p.

 (
G

B
)

0

2

4

6

8

read_size
write_size

(d) m1-write-size

Figure 5. I/O Requests over Time for m1 Application

65–100% of write requests have inter-arrival times within 1 millisecond. In ior2 and f1, most of
write activities are due to memory dump and I/O nodes can issue write requests quickly. However,
write activities on m1 are less intensive than those on ior2 and f1

On the other hand, read requests are generally less intensive than write requests because reads are
synchronous. In particular, Figure 6(c) indicates that ior2 under shared-strided files suffers low read
performance, as described in Section 4.3. In this scenario, data are interleaved in the shared file and
read accesses are not sequential.

4.5. I/O Nodes

In this section, we study the distributions of I/O request sizes and numbers over nodes, as shown in
Figure 7. For the ior2 benchmarks, read and writes are distributed evenly among nodes, as shown
in Figures 7(a) and 7(b), because each node executes the same sequence of operations in these
benchmarks.

In the physics application f1, a small set of nodes write gathered simulated data to a shared file.
Therefore, only a few nodes have significant I/O activity in their write phase and most of the trans-
fered data are from large write requests (14% of the write requests), as shown in Figures 7(c)
and 7(d). There is little read activity in the write phase. However, read requests are evenly dis-
tributed among nodes in the restart phase and their sizes are around 1 kilobyte, as shown in Fig-
ures 7(e) and 7(f). There is little write activity in the restart phase.

In the restart and write phases of the physics application m1, I/O activity is well balanced among
nodes, as shown in Figures 7(g)–7(j). We also observe significant write activity in the restart phase.

10



Time (ms.)
0 1 4 16 64 512

F
ra

ct
io

n 
of

 R
eq

ue
st

s

0

0.2

0.4

0.6

0.8

1

read
write

(a) inter-ior2-fileperproc

Time (ms.)
0 1 4 16 64 512

F
ra

ct
io

n 
of

 R
eq

ue
st

s

0

0.2

0.4

0.6

0.8

1

read
write

(b) inter-ior2-shared

Time (ms.)
0 1 4 16 64 512

F
ra

ct
io

n 
of

 R
eq

ue
st

s
0

0.2

0.4

0.6

0.8

1

read
write

(c) inter-ior2-sharedstrided

Time (ms.)
0 1 4 16 64 512

F
ra

ct
io

n 
of

 R
eq

ue
st

s

0

0.2

0.4

0.6

0.8

1

read
write

(d) inter-f1-write

Time (ms.)
0 1 4 16 64 512

F
ra

ct
io

n 
of

 R
eq

ue
st

s

0

0.2

0.4

0.6

0.8

1

read
write

(e) inter-f1-restart

Time (ms.)
0 1 4 16 64 512

F
ra

ct
io

n 
of

 R
eq

ue
st

s

0

0.2

0.4

0.6

0.8

1

read
write

(f) inter-m1-write

Time (ms.)
0 1 4 16 64 512

F
ra

ct
io

n 
of

 R
eq

ue
st

s

0

0.2

0.4

0.6

0.8

1

read
write

(g) inter-m1-restart

Figure 6. Cumulative Distribution Functions (CDF) of Inter-arrival Time of I/O Requests
(X axis-logscale)

Table 3. File Open Statistics

Overall Number of File Opens Number of Data File Opens
Applicatons

Read/Write Read Write Read/Write Read Write

ior2 6,656 5,121 0 1,024 0 0
f1-write 3,871 6,870 718 98 10 34
f1-restart 3,773 6,179 0 0 343 0
m1-restart 17,824 22,681 12,940 0 1,620 12,960
m1-write 17,824 21,061 12,960 0 0 12,960

11



Number of Requests
0 100 200 300 400 500

F
ra

ct
io

n 
of

 N
od

es
0

0.2

0.4

0.6

0.8

1

read
write

(a) node-ior2

Size of Requests (GB)
0 0.02 0.04 0.06 0.08 0.1

F
ra

ct
io

n 
of

 N
od

es

0

0.2

0.4

0.6

0.8

1

read
write

(b) node-ior2

Number of Requests (X 1e6)
0 2 4 6 8 10

F
ra

ct
io

n 
of

 N
od

es

0

0.2

0.4

0.6

0.8

1

read
write

(c) node-f1-write-num

Size of Requests (GB)
0 0.2 0.4 0.6

F
ra

ct
io

n 
of

 N
od

es

0

0.2

0.4

0.6

0.8

1

read
write

(d) node-f1-write-size

Number of Requests
0 5 10 15 20 25 30

F
ra

ct
io

n 
of

 N
od

es

0

0.2

0.4

0.6

0.8

1

read
write

(e) node-f1-restart-num

Size of Requests (KB)
0 200 400 600 800 1000 1200

F
ra

ct
io

n 
of

 N
od

es

0

0.2

0.4

0.6

0.8

1

read
write

(f) node-f1-restart-size

Number of Requests
0 150 300 450 600 750

F
ra

ct
io

n 
of

 N
od

es

0

0.2

0.4

0.6

0.8

1

read
write

(g) node-m1-write-num

Size of Requests (GB)
0 0.02 0.04 0.06 0.08 0.1

F
ra

ct
io

n 
of

 N
od

es

0

0.2

0.4

0.6

0.8

1

read
write

(h) node-m1-write-size

Number of Requests
0 150 300 450 600 750

F
ra

ct
io

n 
of

 N
od

es

0

0.2

0.4

0.6

0.8

1

read
write

(i) node-m1-restart-num

Size of Requests (GB)
0 0.02 0.04 0.06 0.08 0.1

F
ra

ct
io

n 
of

 N
od

es

0

0.2

0.4

0.6

0.8

1

read
write

(j) node-m1-restart-size

Figure 7. Cumulative Distribution Functions (CDF) of the Size of I/O Requests over
Nodes

12



Table 4. Operations During File Open

Avg. open time Avg. IOs per Open Avg. IO Size per Open
Applications

Overall Data File Overall Data File Overall Data File

ior2-fileproc 0.4 sec 4.5 sec 44.4 512.0 2.8 MB 32.8 MB
ior2-shared 0.7 sec 5.2 sec 44.4 512.0 2.8 MB 32.8 MB
ior2-stride 7.6 sec 26.57 sec 44.4 512.0 2.8 MB 32.8 MB
f1-write 20.2 sec 504.9 sec 14.8 142161 2.4 MB 3993.5 MB
f1-restart 0.02 sec 0.1 sec 0.5 1 ��� 1 MB ��� 1 MB
m1-restart 1.2 sec 3.9 sec 4.2 15.3 3.7 MB 8.5 MB
m1-write 1.2 sec 2.4 sec 4.3 17 3.1 MB 6.5 MB

4.6. File Opens

In this section, we study the file open patterns of those applications. We use the term of data files to
refer to those files that actually store results dumped from applications.

In all applications, files tend to be opened as read/write or read-only. We only observe significant
write-only files in the physics application m1, as shown in table 3. However, the data files are
opened either read-only or write-only except the benchmark ior2. The open operations on the data
files only account for small portion of overall file opened. Given the fact that the data file operations
dominate the overall I/Os, the small number of data file opens implies longer open time and more
I/O operations during each open. As listed in table 4, the open duration of data files ranges from
several seconds to several hundred seconds, which is typically 2 to 20 times longer than overall file
open durations. The average number of operations and the size of data files on each open operation
are also much larger than those on the overall files. For example, up to 400 MB data are transferred
during each data file open in physical application f1-write.

5. Conclusion

In this study, We analyze application traces from a cluster with hundreds of nodes. On average, each
application has only one or two typical request sizes. Large requests from several hundred kilobytes
to several megabytes are very common. Although in some applications, small requests account for
more than 90% of all requests, almost all of the I/O data are transferred by large requests. All of
these applications show bursty access patterns. More than 65% of write requests have inter-arrival
times within one millisecond in most applications. By running the same benchmark on different
file models, we also find that the write throughput of using an individual output file for each node
exceeds that of using a shared file for all nodes by a factor of 5. This indicates that current file
systems are not well optimized for file sharing. In all those applications, almost all I/Os are to a
small set of files containing the inter-mediate or final computation results. Such files tend to be
opened for a relatively long time, from several seconds to several hundred seconds. And a large
amount of data are transferred during each open.

13



Acknowledgments

Feng Wang, Qin Xin, Scott Brandt, Ethan Miller, Darrell Long were supported in part by Lawrence
Livermore National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratory
under contract B520714. Bo Hong was supported in part by the National Science Foundation under
grant number CCR-073509. Tyce McLarty’s effort was under the auspices of the U.S. Department of
Energy by the University of California, Lawrence Livermore National Laboratory under Contract
No. W-7405-Eng-48. This document was reviewed and released as unclassified with unlimited
distribution as LLNL-UCRL-CONF-201895.

We are also grateful to our sponsors: National Science Foundation, USENIX Association, Hewlett
Packard Laboratories, IBM Research, Intel Corporation, Microsoft Research, ONStor, Overland
Storage, and Veritas.

References

[1] S. J. Baylor and C. E. Wu. Parallel I/O workload characteristics using Vesta. In Proceedings of the
IPPS ’95 Workshop on Input/Output in Parallel and Distributed Systems (IOPADS ’95), pages 16–29,
Apr. 1995.

[2] DOE National Nuclear Security Administration and the DOE National Security Agency. Proposed
statement of work: SGS file system, Apr. 2001.

[3] D. Kotz and R. Jain. I/O in parallel and distributed systems. In A. Kent and J. G. Williams, editors,
Encyclopedia of Computer Science and Technology, volume 40, pages 141–154. Marcel Dekker, Inc.,
1999. Supplement 25.

[4] D. F. Kotz and N. Nieuwejaar. File-system workload on a scientific multiprocessor. IEEE Parallel and
Distributed Technology, 3(1):51–60, 1995.

[5] Lawrence Livermore National Laboratory. ASCI linux cluster. http://www.llnl.gov/linux/alc/, 2003.
[6] Lawrence Livermore National Laboratory. IOR software.

http://www.llnl.gov/icc/lc/siop/downloads/download.html, 2003.
[7] E. L. Miller and R. H. Katz. Input/output behavior of supercomputing applications. In Proceedings of

Supercomputing ’91, pages 567–576, Nov. 1991.
[8] A. L. Narasimha Reddy and P. Banerjee. A study of I/O behavior of perfect benchmarks on a multipro-

cessor. In Proceedings of the 17th International Symposium on Computer Architecture, pages 312–321.
IEEE, 1990.

[9] B. K. Pasquale and G. C. Polyzos. A static analysis of I/O characteristics of scientific applications in
a production workload. In Proceedings of Supercomputing ’93, pages 388–397, Portland, OR, 1993.
IEEE.

[10] B. K. Pasquale and G. C. Polyzos. Dynamic I/O characterization of I/O-intensive scientific applications.
In Proceedings of Supercomputing ’94, pages 660–669. IEEE, 1994.

[11] A. Purakayastha, C. S. Ellis, D. Kotz, N. Nieuwejaar, and M. Best. Characterizing parallel file-access
patterns on a large-scale multiprocessor. In Proceedings of the 9th International Parallel Processing
Symposium (IPPS ’95), pages 165–172. IEEE Computer Society Press, 1995.

[12] P. Schwan. Lustre: Building a file system for 1000-node clusters. In Proceedings of the 2003 Linux
Symposium, July 2003.

[13] E. Smirni, R. A. Aydt, A. A. Chien, and D. A. Reed. I/O requirements of scientific applications: An
evolutionary view. In Proceedings of the 5th IEEE International Symposium on High Performance
Distributed Computing (HPDC), pages 49–59. IEEE, 1996.

[14] E. Smirni and D. Reed. Lessons from characterizing the input/output behavior of parallel scientific
applications. Performance Evaluation: An International Journal, 33(1):27–44, June 1998.

14


