
Processor Capacity Reserves:
Operating System Support for Multimedia Applications

Clifford W. Mercer, Stefan Savage, and Hideyuki Tokuda
School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Abstract

Multimedia applications have timing requirements that
cannot generally be satisfied using the time-sharing
scheduling algorithms of general purpose operating sys-
tems. Our approach is to provide the predictability of
real-time systems while retaining the flexibility of a time-
sharing system. We designed a processor capacity reserva-
tion mechanism that isolates programs from the timing and
execution characteristics of other programs in the same way
that a memory protection system isolates them from outside
memory accesses. In this paper, we describe a scheduling
framework that supports reservation and admission control,
and we introduce a novel reserve abstraction, specifically
designed for the microkernel architecture, for measuring
and controlling processor usage. We have implemented
processor capacity reserves in Real-Time Mach, and we
describe the performance of our system on several types of
applications.

1 Introduction

Multimedia applications require that operating systems
support time-constrained data types such as digital audio
and video in a responsive and predictable way. The gen-
eral purpose resource management policies found in most
operating systems are incompatible with these strenuous
timing constraints, and traditional real-time systems are
also poorly matched to the multimedia application environ-
ment since user demands dictate a dynamically changing
mix of both real-time and non-real-time activities. More-
over, supporting commercial “shrink-wrapped” real-time
multimedia software has the additional requirement that

This work was supported in part by a National Science Foundation Gradu-
ate Fellowship, by Bellcore, and by the U.S. Naval Ocean Systems Center
under contract number N00014-91-J-4061. The views and conclusions
contained in this document are those of the authors and should not be
interpreted as representing official policies, either expressed or implied,
of NSF, Bellcore, NOSC, or the U.S. Government.

the operating system must provide a sensible framework
for controlling and communicating resource usage among
independent real-time activities.

1.1 Our solution

We have designed a processor capacity reservation
mechanism which allows the user to control the allocation
of processor cycles among programs. The model supports
both real-time and non-real-time activities. Applications
request processor capacity reservations, and once a reser-
vation has been granted by the scheduler, the application
is assured of the availability of processor capacity. Appli-
cations are also free to increase their reservations at any
time during execution (subject to the availability of addi-
tional resources), and they are always free to decrease their
reservations. This design combines the predictability of
reservations with the flexibility of dynamically adjusting
reservation levels to accommodate a changing application
mix or changing timing requirements within applications.

A new kernel abstraction, called a reserve, tracks the
reservation and measures the processor usage of each pro-
gram. The scheduler utilizes these usage measurements to
enforce reservations, ensuring that programs cannot mo-
nopolize computational resources. Additionally, reserves
may be passed across protection boundaries during IPC
calls. This is especially important in microkernel systems
which employ separately scheduled servers to provide var-
ious system services, and consequently, the true processor
usage of a program includes the processor usage of the
servers invoked by that program.

Our reservation system was designed to support higher-
level resource management policies. For example, a quality
of service (QOS) manager could use the reservation sys-
tem as a mechanism for controlling the resources allocated
to various applications. The QOS manager would trans-
late the QOS parameters of applications to system resource
requirements (including processor requirements), possibly
with the cooperation of the application itself. The manager
would then be able to reserve the resources for each pro-

1

gram, and it could use performance feedback or interactive
user input to change the reservations for various applica-
tions under its control.

Thus we have introduced a useful structure that divides
the problem of scheduling based on QOS requirements into
two parts: a policy for allocating system resources based
on application-level QOS requirements, and an abstrac-
tion and mechanism for scheduling and controlling those
resources. Our model of processor capacity reserves pro-
vides this abstraction and mechanism.

1.2 Current state of the art

Operating system support for digital audio and video
typically includes only primitive scheduling support for
continuous media programs. This support usually comes
in the form of a fixed-priority extension to a time-sharing
scheduler. Continuous media applications can then run at
the highest priority without interference from non-time-
constrained applications. However, such an arrangement
does not protect high-priority applications from interfer-
ence due to interrupt processing or from interference due
to other high-priority applications. Having programs make
reservations for their computational requirements allows
the scheduler to decide whether they can be scheduled suc-
cessfully and thus whether a new reservation request can
be accepted. A program which has its reservation request
refused is free to modify its timing constraints and request
service at a lower rate or to request (through some higher-
level server) an adjustment of capacity usage by other pro-
grams.

The possibility of persistent processor overload presents
additional problems for current operating systems. Simple
fixed-priority scheduling does not help to detect or prevent
potential overload conditions. Attempting to execute two
continuous media applications which overload the system
results in neither of the programs being able to meet its
timing constraints. Under a reservation scheme, the sys-
tem would admit only one of the programs, and the other
program could change its timing parameters and request
service under the new parameters. A dynamic reserva-
tion strategy prevents overload by refusing to admit new
programs which would result in an overloaded processor.

1.3 The rest of this paper

In the rest of the paper, we describe our model of pro-
cessor capacity reserves more detail. We discuss our reser-
vation strategy in Section 2, and in Section 3 we explore
issues in admission control and scheduling with reserva-
tions. Section 4 describes the new reserve abstraction and
discusses usage measurement and reservation enforcement.
In Section 5, we present a performance evaluation which

illustrates the behavior of several kinds of programs that
use reservations. Sections 6 and 7 discuss future work and
related work, and we make a few concluding remarks in
Section 8.

2 Our reservation strategy

The previous section motivated the design of a processor
capacity reservation system. Here we examine the mecha-
nisms which are necessary to enable this type of resource
management. The reservation strategy must:

1. provide some means for application programs to spec-
ify their processor requirements,

2. evaluate the processor requirements of new programs
to decide whether to admit them or not,

3. schedule programs consistently with the admission
control policy, and

4. accurately measure the computation time consumed
by each program to ensure that programs do not over-
run their reservations.

In the following sections, we example each of these
points in more detail.

2.1 Capacity specification

The first requirement depends on a consistent scheduling
model that can accommodate different kinds of program
timing requirements. For example, an audio application
might be scheduled every 50 ms to generate an audio buffer.
Many programs have no time constraints at all and run
as fast as possible for as long as the computation takes.
Processor percentage providesa straightforward measure to
describe the processor requirement of both of these kinds
of programs. Processor percentage is the processor time
required by a program during an interval divided by the real
time of the interval, and the processor percentage consumed
by a program over time defines its rate of progress.

Periodic programs (which execute repeatedly at a fixed
interval) have a natural rate described by their period and
the computation time required during each period, assum-
ing the computation time is fairly constant. When the
computation time is not constant, a conservative worst case
estimate reserves the necessary processor capacity, and the
unused time is available for background processing. Pro-
grams that are not periodic have no natural computing rate,
but we can assign them a rate. This rate will determine
the duration of time until the program completes, and the
rate must be reserved based on the delay requirements of

2

τ

Computation time

Reservation period

Figure 1: Periodic Framework

the program. Figure 1 illustrates the computational require-
ment of a periodic program � . With this kind of framework,
we can use scheduling algorithmswhich schedule programs
according to their allocated rate.

2.2 Admission control

The second requirement, that the scheduler can eval-
uate the timing constraints of new programs against the
available capacity, calls for a scheduling framework that
translates the processor requirements specified by individ-
ual programs into utilization measures which can be used in
an admission control policy. We shall see that simply sum-
ming the individual utilizations of all executing programs
will work under a dynamic priority scheduling discipline,
but there are drawbacks to this approach. Another approach
is fixed priority scheduling with an appropriate priority as-
signment, but this method does not, in general, allow us to
reserve the full 100% of the processor.

2.3 Scheduling

The third requirement, that the scheduling policy sched-
ule programs in a way that is consistent with the admission
control policy, reflects the fact that the scheduling frame-
work must be consistent across all of the resource manage-
ment policies in the system. If the scheduling policy does
not support the assumptions made by the admission control
policy about how programs are ordered for execution, the
reservation system will fail to operate properly.

2.4 Reservation enforcement

The fourth requirement, that the scheduler accurately
measure usage and enforce reservations, demands precise
performance monitoring software which typical operating
systems do not provide. Operating systems usually accu-
mulate usage statistics for each process by sampling during
regular clock interrupts [7], but this information is im-
precise over short intervals. Furthermore, the execution
behavior of the monitored program must be independent

of the sampling period. A more precise mechanism mea-
sures durations between context switches and accounts for
interrupt processing time and other system overhead.

Even if the system can accurately measure capacity con-
sumption on a per-process basis, other problems arise. Us-
age statistics in traditional operating systems consist of
system-level usage time and user-level time for each pro-
cess. For monolithic operating systems, this approach is
sufficient, but for microkernel systems where operating sys-
tem services are offered by different user-level servers [4],
the usage statistics of an activity cannot be found in the
usage statistics of a single process. An activity may invoke
separate operating system servers to perform filesystem ac-
cess, networking, naming, etc. To maintain an accurate
picture of an activity’s capacity consumption, the cost of
these services must be charged to the activity itself rather
than to the individual servers. Thus, capacity reserves must
be maintained independently from any particular thread of
execution so that work done by any process or thread on be-
half of the reserved activity can be charged to that activity.
This is accomplished simply by creating an independent
reserve abstraction which may be bound dynamically to
different threads of execution.

With accurate usage measurements and a mechanism to
generate a scheduling event when a program attempts to
overrun its capacity reservation, the scheduler can control
the execution of programs and prevent them for interfering
with other reservations.

3 Admission control and scheduling

A scheduling framework based on the rate of program
progress provides an effective environment for implement-
ing processor reservation. We can associate rates with
periodic and non-periodic programs as described in the
previous section. The rate of a periodic program can be
determined from the period that the programmer has in
mind and the computation time during that period. For
non-periodic programs, the rate arises from delay require-
ments. In either case, the rate alone does not fully specify
the timing attributes of a program; the computation time

3

and period are essential.
For example, a program could specify that it requires

30% of the processor time to run successfully on a given
machine (processor reservation is unavoidably machine-
dependent). But now the question is how to measure the
30%. Does the program require 30 milliseconds (ms) out
of 100 ms? Or would 300 ms out of 1000 ms be sufficient?
These two possibilities are very different: a program that is
designed to output a video stream at 10 frames per second
needs 30 ms out of 100 ms, and 300 ms at the end of
each 1000 ms period is not sufficient to meet the timing
requirements of each 30 ms burst of computation. On the
other hand, a 60-second program compilation that requests
30% of the processor does not need to have its computation
time spread out with 30 ms every 100 ms, incurring much
context-switching overhead; in this case 300 ms every 1000
ms would suffice.

Thus, we have three values which describe the processor
requirement for a program, and two of these are required
to specify a processor percentage. Let � be the processor
percentage, C be the computation time, and T be the pe-
riod of real time over which the computation time is to be
consumed. Then we have

� =
C

T
:

We generally specify processor requirements using � and T
since � is such a natural expression of processor reservation
and since we think of most periodic activities in terms of
the period T .

The computation timeC of a periodic activity is difficult
for the programmer to measure accurately, so our approach
is to have the programmer estimate the computation time
and then depend on the system to measure the computation
time and provide feedback so that the estimate can be ad-
justed if necessary. For non-periodic activities that are to be
limited by a processor percentage, C does not correspond
to the code structure, so specifying � and T defines how far
the computation can proceed before consuming its share
of the processor for each interval. This is in contrast to
periodic activities which would generally associate a code
block with the computation that is to repeat during each
period.

Delay for a non-periodic program which executes at a
given rate can be calculated from the rate of execution and
the total execution time. A program that runs at rate � with
total computation time (service time) S will take

D =
S

�

time to complete execution. This equation can also be used
to derive a suitable rate given the total computation time

and largest acceptable delay. Using the largest acceptable
delay yields the smallest acceptable rate of execution.

We now consider how to go about scheduling programs
assuming we can determine the scheduling parameters �,
C, and T that specify the timing requirements of each pro-
gram. Fixed priority scheduling is a practical policy which
provides a method of assigning priorities that supports pro-
cessor reservation and admission control. Dynamic priority
scheduling, such as earliest deadline scheduling, is another
practical method that also supports reservation and admis-
sion control.

3.1 Admission control under fixed priority
scheduling

Using fixed priority scheduling in our framework re-
quires a method of assigning priorities to programs which
ensures that each program will progress at its assigned rate.
The rate monotonic (RM) priority assignment of Liu and
Layland [9] does just that. Under this regime, the highest
priority is assigned to the highest frequency program and
the lowest priority is assigned to the lowest frequency pro-
gram. The rate monotonic scheduling analysis also gives
us a basis for a processor reservation admission policy.

Let n be the number of periodic programs and denote
the computation time and period of program i byCi and Ti,
respectively. Liu and Layland proved that all of the pro-
grams will successfully meet their deadlines and compute
at their associated rates if

nX

i=1

Ci

Ti
� n(21=n � 1):

When n is large, n(21=n � 1) = ln 2 ' :69. This bound is
pessimistic: it is possible for programs which do not satisfy
the inequality to successfully meet their deadlines, but we
cannot determine this from the Liu and Layland analysis.

An admission control policy follows naturally from this
analysis. To keep track of the current reservations, we must
remember the rates of the programs which have reserved
computation time, and the total reservation is the sum of
these rates. A simple admission control policy is to admit
a new program if the sum of its rate and the total previous
reservation is less than :69. Such a policy would leave a
lot of computation time which could not be reserved. One
possibility is to use that time for unreserved background
computations. Another possibility is to use the exact anal-
ysis of Lehoczky et al. [8] to determine whether a specific
collection of programs can be scheduled successfully, al-
though the exact analysis is more expensive than the simple,
pessimistic analysis above. In their work, Lehoczky et al.
also gave an average case analysis showing that on average,
task sets can be scheduled up to 88% utilization. So in most

4

cases, this unreservable computation time is only 10-12%
rather than 31%.

We note that the rate monotonic scheduling algorithm
was analyzed under simplifying conditions. Liu and Lay-
land [9] made the following assumptions to enable their
analysis:

1. programs are periodic, and the computation during
one period must finish by the end of the period (its
deadline) to allow the next computation to start,

2. the computation time of each program during each
period is constant,

3. programs are preemptive with zero context switch
time, and

4. programs are independent, i.e. programs do not syn-
chronize or communicate with other programs.

Subsequent work focused on ways to relax these assump-
tions [10, 11].

3.2 Admission control under dynamic priority
scheduling

The earliest deadline (ED) scheduling policy, a dynamic
priority policy, is effective for scheduling periodic pro-
grams such as our continuous media programs. We define
the deadline of a computation to be the end of the period in
which it started, and the earliest deadline policy chooses, at
a given point in time, the program which has the smallest
deadline value. Liu and Layland [9] showed that, under
the same assumptions outlined in the section on rate mono-
tonic scheduling, all programs will successfully meet their
deadlines under earliest deadline scheduling if

nX

i=1

Ci

Ti
� 1:

The admission control policy that arises from this anal-
ysis is similar to the RM strategy. We record the reserved
rates of programs that have been admitted, and the total
reservation is the sum of these rates. Admission control
uses this sum to determine whether adding the rate of the
new program would result in a sum less than 100%, and, if
so, the program is admitted. If not, the reservation cannot
be granted.

3.3 Discussion

Earliest deadline scheduling seems preferable to the rate
monotonic scheduling since ED allows the admission con-
trol policy to reserve up to 100% of the processor whereas

RM can only guarantee reservations up to 69%. As men-
tioned previously, the 69% bound for RM is pessimistic,
and in most cases, 88% is a more realistic bound. In fact, the
reservation bound of rate monotonic is 100% for the special
case where all periods are harmonic, i.e. each period is an
even multiple of every period of smaller duration. Addi-
tionally, an amount of unreserved computation time of per-
haps 5-10% may be necessary to avoid scheduling failures
due to inaccuracy in the computation time measurement
and enforcement mechanisms and due to the effects of crit-
ical regions and other synchronization and communication
among programs. So either of the scheduling algorithms
would be appropriate for reservation scheduling.

4 Reservation enforcement and reserves

Our reservation scheme depends on an enforcement
mechanism to make sure that programs do not exceed their
processor reservations. The main goal is to ensure short-
term adherence to the reservation with the realization that
perfect enforcement is impossible due to synchronization
and communication among programs. We also require that
the computation time of operating system services provided
by user-level servers in a microkernel architecture be ac-
counted for and included in the reservation consumption.

4.1 Measurement and control accuracy

Our enforcement mechanism monitors processor usage
by measuring the time each program is executing on the
processor, and it charges this computation time against the
reserve associated with the program. The reserve contains
the duration of computation time accumulated in the current
period, and the scheduler puts the program in a time-sharing
mode when its reservation has been consumed. Programs
which have not yet consumed their reservation take prece-
dence over unreserved programs, but if there is unreserved
processor time available, unreserved programs can take
advantage of the extra processor time. Even though the
timestamp monitoring method yields an accurate measure
of the processor usage, it is not always possible for the
scheduler to preempt a running program at an arbitrary
point in time. For example, if a computation is in the (non-
preemptive) kernel or in a critical region when it overruns
its reservation, it cannot be summarily truncated, although
the scheduler can easily penalize the program in its next
period based on the duration of the violation.

4.2 Microkernel accounting

In many operating systems, the processor usage for each
process is recorded in a per process logical clock, and the

5

A
C

E

A
B C D

E

B**

B*

D*

D**

S1 S2P

DB

P

Monolithic Kernel

User

Microkernel

User

(a) (b)

Figure 2: Microkernel Accounting

logical clock is usually divided between user time and sys-
tem time [7]. The combination of these two values is an
accurate long-term measure of the computation time used
by the process. In a monolithic system, this is the end
of the story, but in a multi-threaded microkernel architec-
ture, per thread user and system times are meaningless. If
a thread invokes various user-level servers for operating
system services, the computation time consumed by the
overall activity is not reflected in the user and system time
of the single client thread. The computation time for that
activity has been charged to the client thread and to the
server threads as well. Thus, we require an accounting
mechanism that accounts for the computation time of an
activity being spread over a collection of threads.

Figure 2 illustrates the difference between accounting
in monolithic operating systems and the accounting we
require for microkernels. Part (a) shows a program in a
monolithic system which does some processing of its own
and makes two system calls. The arrows represent the
control paths, and each label represents the computation
time required in the associated control path. In this case,
the total usage of the program isP = A+B+C+D+E

and this time is divided into a user time ofPU = A+C+E
and a system time of PS = B +D.

Part (b) of Figure 2 illustrates the control path for a
similar program in a microkernel where the services rep-
resented by B and D are performed by separate servers.
TheB� and B�� labels correspond to the computation time
for the control necessary to issue the server requests, and
likewise for D� and D��. In the monolithic system ac-
counting scheme, the total program usage is measured by
the system to be P = A + B� + C +D� + E where the

user usage is PU = A + C + E and the system usage
is PS = B� + D�. The actual service time is charged
to the servers S1 and S2 and is never accounted for in
the client’s usage measurements. The same control path
measured by our microkernel accounting scheme finds
P = A + B + B� + B�� + C + D + D� + D�� + E,
and this is the accurate measure of processor usage for
program P .

4.3 Reserve abstraction

Our reserve abstraction serves the purpose of accurately
accounting for an activity which invokes user-level services
offered by the operating system. Reserves are associated
with processor reservations and serve the dual purpose of
organizing the reservation parameters and facilitating the
enforcement of reservations by measuring usage against
the reservation. Each thread has an associated reserve to
which computation time is charged. One or more threads
may charge computation time to the same reserve. The
most useful configuration is to associate a reserve, along
with its processor reservation, with each “client” thread in
the system. As this client invokes operations on various
servers, the IPC mechanism forwards the client’s reserve
to be used by the server thread to charge its computation
time on behalf of the client. The result is that an accurate
accounting is made of the resources consumed by the client
thread throughout the system.

In addition to reserves, we allow threads to run unre-
served in time-sharing mode. This makes it possible to use
the unreserved capacity or unused reservations for time-
sharing or background processing.

6

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

U
sa

ge

Time (s)

Periodic thread

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

U
sa

ge

Time (s)

Periodic thread

(a) No competition (b) With competition

Figure 3: Unreserved periodic thread without and with competition

5 Performance evaluation

We have implemented processor capacity reserves in
Real-Time Mach [12], and in this section, we illustrate
the reservation system’s behavior in various situations by
showing processor usage measurements for several differ-
ent task sets. The test cases ran on a Gateway2000 33MHz
486-based machine with 16MB of RAM and an Alpha
Logic STAT! timer board for accurate timing. We imple-
mented reserves on version MK78 of Real-Time Mach, and
we use CMU UNIX server version UX39.

5.1 Unreserved periodic thread

The first test case, shown in Figure 3(a), shows the be-
havior of a single periodic thread executing with no com-
petition for the processor. The processor usage is fairly
constant over time in this case. The thread runs its com-
putation of 16 ms during each period of 40 ms (40% uti-
lization), and we take the processor usage measurement for
each period at the end of the period. The reservation of
40% is actually slightly higher than the actual computa-
tion time for the thread; this is done to accommodate slight
variations in computation time. The processor usage for a
reservation period is the processor time consumed during
the period divided by the length of the period, and we plot
a horizontal line (at the appropriate usage level) from the
beginning to the end of the period. Thus, the graph is a
sequence of flat usage levels.

Figure 3(b) illustrates the behavior of the periodic thread
when it competes with other threads for the processor.
There are five other threads in this case, but for simplicity
they are not shown in the figure. All of the threads are

scheduled using the Mach time-sharing policy, including
the periodic thread. The thread’s processor usage is natu-
rally quite unpredictable. We note that after the periodic
thread has been prevented from executing for some time, as
is the case from time 2 to time 2:7 or so, the thread attempts
to catch up on all of the missed computation time. Thus, we
have the surge of “catch-up” activity from time 2:7 to time
3:2. This is clearly not the behavior we desire for periodic
threads.

5.2 Reserved periodic threads

In the next test case, the periodic thread reserves the
processor capacity it needs in advance. So in Figure 4(a),
we see that the periodic thread behaves as if there were
no competition, even though there are five additional un-
reserved threads (not shown) competing for the processor.
The periodic thread executes in reserved mode, and there-
fore enjoys the processor capacity that it needs to run.

Figure 4(b) shows the processor usage of two reserved
threads which are competing with five unreserved threads.
Periodic thread 1 reserves 16 ms of computation time every
80 ms (20% utilization), and Periodic thread 2 reserves 16
ms every 40 ms (40% utilization). Both reserved threads
can successfully achieve their desired computation rates.

5.3 Server invocation with no reservation

In Figure 5, we show what happens if the reservation
system does not coordinate reservations during remote pro-
cedure call (RPC) types of communication. The structure
of the task set is shown in Figure 5(a); reserved threads are
drawn with bold lines in the figure to distinguish them from

7

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

U
sa

ge

Time (s)

Periodic thread

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

U
sa

ge

Time (s)

Periodic thread 1
Periodic thread 2

(a) One reserved thread (b) Two reserved threads

Figure 4: Reserved periodic thread(s) with competition from unreserved threads

1 2 S

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

U
sa

ge

Time (s)

Periodic thread 1
Periodic thread 2

Server thread

(a) Task set structure (b) Measured usage behavior

Figure 5: Uncoordinated client/server reserves

unreserved threads. Periodic thread 1 reserves 16 ms every
80 ms (20% utilization). Periodic thread 2 reserves 16 ms
every 40 ms (40% utilization), and it invokes a server via an
RPC to perform the actual computation. The server thread
is not reserved. In addition to these three threads, there are
five unreserved threads competing for the processor.

Figure 5(b) shows the usage of these threads. Periodic
thread 1 executes at its reserved rate as shown by its usage
line which is fairly constant at nearly 20%. The combined
activity of Periodic thread 2 and its server execute unpre-
dictably. Periodic thread 2 always has a small usage since
it is merely invoking the server to do its work, and the
server typically has a large usage since it is doing lots of
computation on behalf of its client. The usage of these two
is always in the same proportion. Since the server is unre-
served, it competes with all of the other unreserved threads

for processor cycles, so the combined client/server activ-
ity is essentially at the mercy of the time-sharing scheduler.
Thus, the combined activity sometimes exceeds its intended
reservation, and sometimes it cannot make progress at all.

5.4 Server invocation with reservation

Figure 6 illustrates the proper behavior for reserved
clients and servers with integrated reserve handling. Figure
6(a) shows the same task structure as the previous example
except that Periodic thread 2’s reserve is passed during the
server invocation, and the server runs as a reserved thread
while it is performing the service. The bold lines of the
server indicate that it executes as a reserved thread.

The usage for this task set is shown in Figure 6(b). As
before, Periodic thread 1 executes at a fairly constant 20%

8

1 2 S

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

U
sa

ge

Time (s)

Periodic thread 1
Periodic thread 2

Server thread

(a) Task set structure (b) Measured usage behavior

Figure 6: Integrated client/server reserves

utilization. And now the combined activity of Periodic
thread 2 and its server execute at a constant 40% combined
usage. The line around 2-3% gives the usage of the client,
and the line around 36% gives the usage of the server. Thus,
by managing the reservations appropriately across thread
interactions, we are able to preserve the isolation provided
by reserves for system activities which cross thread bound-
aries.

6 Future work

The processor reservation mechanism described in this
paper forms a basis for more sophisticated management of
system resources. For example, we envision a reserved
window system with a window manager that controls re-
source reservations for applications running under different
windows. The user interface would be used to dynamically
change the reservations for applications, depending on the
user’s preference or focus.

Toward this end, we plan to provide reservation sup-
port for system resources other that the processor, notably
pages, paging activity, network buffers, and protocol pro-
cessing activity. Our position is that most other resources
are discrete and are therefore easier to allocate and reserve
than processor cycles, so we have concentrated mainly on
the harder problem. We do recognize, however, that some
discrete resources, such as message buffers, are difficult to
reserve in advance.

Processor capacity reserves can support reservation in
distributed multimedia systems by having each reserve
contain reservations for various resources around the dis-
tributed system. Then messages containing requests for
remote service will contain these “sub-reserves” which can

be used to charge the remote service. Another aspect of
reservation in distributed systems concerns the reservation
of protocol processing on each of the hosts. We are plan-
ning to use the notion of a “suspense reserve” to charge the
protocol processing time associated with bringing packets
from the network device to the end point of the communi-
cation session. When the destination program of the packet
is determined, the usage associated with that packet can be
charged to the receiving program.

7 Related work

Many researchers consider resource reservation desir-
able if not absolutely necessary for continuous media op-
erating systems. Herrtwich [5] gives an argument for re-
source reservation and careful scheduling in these systems.
Anderson et al. [2] give additional arguments for introduc-
ing more sophisticated timing and scheduling features into
continuous media operating systems, and their DASH sys-
tem design supports reservation and uses earliest deadline
scheduling for real-time traffic. They use earliest deadline
because it is optimal in the sense that if a collection of
tasks with deadlines can be scheduled by any algorithm, it
can be scheduled by the earliest deadline algorithm. They
do not explicitly describe exactly how processor reserva-
tion is integrated with network reservation or why earliest
deadline is well suited to reservation strategies. We demon-
strate why rate monotonic scheduling and earliest deadline
scheduling are suitable for processor reservation, and we
compare these two approaches. In addition, we explain
how reservations can be enforced and how non-real-time
programs can be integrated with real-time programs in the
scheduling framework.

9

Jeffay et al. implemented a programming model specif-
ically designed for guaranteed real-time scheduling [6].
This involves a restricted programming model and an off-
line analysis. In contrast, our approach is to provide opti-
mistic predictability using a more traditional programming
model and a very fast on-line analysis.

Other work, particularly work related to network com-
munication, relies on reservation in network nodes (gate-
ways and hosts) to support bandwidth reservation and rate-
based protocols [1, 3]. Our work provides a basis for
software implementation of these kinds of protocols in the
context of general purpose operating systems.

8 Conclusion

In this paper, we have motivated the design of a proces-
sor reservation strategy for supporting continuous media
applications. Our scheduling framework, based on compu-
tation rates expressed as computation time per duration,
provides an effective way to specify processor require-
ments. Two scheduling algorithms with slightly different
properties are suitable for implementing reservation in this
framework. The design addresses practical issues in im-
plementation of the scheduling framework, and it depends
on a novel reserve abstraction for accurate computation
time measurement and reservation enforcement. This ac-
counting mechanism is well suited to the microkernel archi-
tecture; it tracks processor time used by individual threads
which call on user-level servers to perform system services.

Our prototype implementation using Real-Time Mach
3.0 demonstrates the feasibility of our approach and shows
that applications can achieve predictable real-time perfor-
mance using our reservation mechanism.

Acknowledgements

The authors would like to express their appreciation to
the following people for their comments and suggestions:
Brian Bershad, Ragunathan Rajkumar, Jim Zelenka, Raj
Vaswani, John Zahorjan, and the members of the ART
group and Mach group at CMU.

References

[1] D. P. Anderson, R. G. Herrtwich, and C. Schae-
fer. SRP: A Resource Reservation Protocol for
Guaranteed-Performance Communication in the In-
ternet. Technical Report TR-90-006, International
Computer Science Institute, February 1990.

[2] D. P. Anderson, S. Tzou, R. Wahbe, R. Govindan, and
M. Andrews. Support for Continuous Media in the
DASH System. In Proceedings of the 10th Interna-
tional Conference on Distributed Computing Systems,
pages 54–61, May 1990.

[3] D. Ferrari and D. C. Verma. A Scheme for Real-
Time Channel Establishment in Wide-Area Networks.
IEEE Journal on Selected Areas in Communication,
8(3):368–379, April 1990.

[4] D. Golub, R. W. Dean, A. Forin, and R. F. Rashid.
Unix as an Application Program. In Proceedings of
Summer 1990 USENIX Conference, June 1990.

[5] R. G. Herrtwich. The Role of Performance, Schedul-
ing, and Resource Reservation in Multimedia Sys-
tems. In A. Karshmer and J. Nehmer, editors, Oper-
ating Systems of the 90s and Beyond, number 563 in
Lecture Notes in Computer Science, pages 279–284.
Springer-Verlag, 1991.

[6] K. Jeffay, D. L. Stone, and F. D. Smith. Kernel Sup-
port for Live Digital Audio and Video. Computer
Communications (UK), 15(6):388–395, July-August
1992.

[7] S. J. Leffler, M. K. McKusick, M. J. Karels, and J. S.
Quarterman. The Design and Implementation of the
4.3BSD UNIX Operating System. Addison-Wesley,
1989.

[8] J. P. Lehoczky, L. Sha, and Y. Ding. The Rate
Monotonic Scheduling Algorithm: Exact Characteri-
zation and Average Case Behavior. In Proceedings of
the 10th IEEE Real-Time Systems Symposium, pages
166–171, December 1989.

[9] C. L. Liu and J. W. Layland. Scheduling Algorithms
for Multiprogramming in a Hard Real Time Environ-
ment. JACM, 20(1):46–61, 1973.

[10] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority
Inheritance Protocols: An Approach to Real-Time
Synchronization. IEEE Transactions on Computers,
39(9):1175–1185, September 1990.

[11] B. Sprunt, L. Sha, and J. P. Lehoczky. Aperiodic Task
Scheduling for Hard Real-Time Systems. The Journal
of Real-Time Systems, 1(1):27–60, June 1989.

[12] H. Tokuda, T. Nakajima, and P. Rao. Real-Time
Mach: Toward a Predictable Real-Time System. In
Proceedings of USENIX Mach Workshop, October
1990.

10

