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Training-free, Generic Object Detection using

Locally Adaptive Regression Kernels

Abstract

We present a generic detection/localization algorithm capable of searching for a visual object of

interest without training. The proposed method operates using a single example of an object of interest

to find similar matches; does not require prior knowledge (learning) about objects being sought; and

does not require any pre-processing step or segmentation of a target image. Our method is based on the

computation of local regression kernels as descriptors from a query, which measure the likeness of a pixel

to its surroundings. Salient features are extracted from said descriptors and compared against analogous

features from the target image. This comparison is done using a matrix generalization of the cosine

similarity measure. We illustrate optimality properties of the algorithm using a naive-Bayes framework.

The algorithm yields a scalar resemblance map, indicating the likelihood of similarity between the query

and all patches in the target image. By employing nonparametric significance tests and non-maxima

suppression, we detect the presence and location of objects similar to the given query. The approach

is extended to account for large variations in scale and rotation. High performance is demonstrated on

several challenging datasets, indicating successful detection of objects in diverse contexts and under

different imaging conditions.

Index Terms

Object detection, image representation, correlation and regression analysis

I. INTRODUCTION

Analysis of visual objects in images is a very important component in computer vision systems

which perform object recognition, image retrieval, image registration, and more. Areas where

such systems are deployed are diverse and include such applications as surveillance (security),

video forensics, and medical image analysis for computer-aided diagnosis, to mention just a

few. In particular, the object recognition problem has attracted much attention recently due to

the increasing demand for developing real-world systems.
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Recognition is mainly divided into two parts: category recognition (classification) and detec-

tion/localization [1]. The goal of object category recognition is to classify a given object into

one of several pre-specified categories, while object detection is to separate objects of interest

from the background in a target image. In the current literature, a popular object recognition

paradigm is probabilistic constellation [2] or parts-and-shape models [3] that represent not only

the statistics of individual parts, but also their spatial layout. These are based on learning-based

classifiers, that require an intensive learning/training phase of the classifier parameters and thus

are called parametric methods. Object detection is also a critical part in many applications such as

image retrieval, scene understanding, and surveillance system; however it is still an open problem

because the intra-class variation makes a generic detection very complicated, requiring various

types of pre-processing steps. The sliding window scheme is usually used by taking the peak

confidence values as an indication of the presence of an objet in a given region. Most successful

localization methods at the recent PASCAL VOC 2006 challenge [4] on object localization relied

on this technique too, but these too still required a training phase. In order to make a real-time

object detection system while achieving high detection rates, methods combining classifiers in

a cascade [5], [6] have been proposed.

Recently, the recognition task with only one query (training-free) has received increasing

attention [7], [8], [9], [10] for important applications such as automatic passport control at

airports, where a single photo in the passport is the only example available. Another application

is in image retrieval from the web [2], [7]. In the retrieval task, a single probe or query image

is provided by users and every gallery image in the database is compared with the single probe,

posing an image-to-image matching problem. Recently, the face image retrieval task led to

intensive activity in this area, culminating in FRGC [11] (Face Recognition Grand Challenge).

More generally, by taking into account a set of images which represents intra-class variations,

more robust object recognition can be achieved. Such sets may consist of observations acquired

from a video sequence or by multiple still shots. In other words, classifying an unknown set

of images into one of the training classes can be achieved through set-to-image or set-to-set

matching [10] without an intensive training phase. As a successful example of set-to-image

matching, Boiman et al. [12] very recently showed that a trivial nearest-neighbor (NN) based

image classifier in the space of the local image descriptors such as SIFT [13] and local self-

similarity [7] is extremely simple, efficient and can even outperform the leading learning-based
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image classifiers such as SVM-KNN [14], pyramid match kernel (PMK) [15], and more.

A. Problem Specification

Inspired by this trend toward training-free image analysis, this paper addresses the generic

detection/localization problem of searching for an object of interest (for instance a picture of

a face) within other “target” images with only a single “query” image. In order to avoid the

disadvantages of learning-based methods which require a large amount of training examples, can

result in over-fitting of parameters, and are generally slow in the training phase, we focus on a

novel and sophisticated feature and a reliable similarity measure for comparing a collection of

features.

In general, the target images may contain such similar objects (say other faces) but these

will typically appear in completely different context and under different imaging conditions.

Examples of such differences can range from rather simple optical or geometric differences

(such as occlusion, differing view-points, lighting, and scale changes); to more complex inherent

structural differences such as for instance a hand-drawn sketch of a face rather than a real face.

As an example, we refer the reader to Fig. 3 (a). To date, many methods based on such features

as histograms, gradients, and shape descriptors have been proposed to address this problem. We

refer the interested reader to [16] and references therein for a good summary.

B. Overview of the Proposed Approach

In this paper, our contributions to the object detection task are two-fold. First, we propose to

use local regression kernels as descriptors which capture the underlying local structure of the

data exceedingly well, even in the presence of significant distortions. Second, we propose a novel

approach to the detection problem using a non-parametric nearest-neighbor classifier, along with

a generalization of the cosine similarity to the matrix case. The origin and motivation behind the

use of these local kernels is the earlier work on adaptive kernel regression for image processing

and reconstruction [17]. In that work, localized nonlinear filters were derived, which adapt

themselves to the underlying structure of the image in order to very effectively perform denoising,

interpolation, and deblurring [18]. The fundamental component of the so-called steering kernel

regression method is the calculation of the local steering kernel (LSK) which essentially measures

the local similarity of a pixel to its neighbors both geometrically and radiometrically. The
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Fig. 1. System overview (There are broadly three stages.)

key idea is to robustly obtain local data structures by analyzing the radiometric (pixel value)

differences based on estimated gradients, and use this structure information to determine the

shape and size of a canonical kernel. Denoting the target image (T ), and the query image (Q),

we compute a dense set of local steering kernels from each. These densely computed descriptors

are highly informative, but taken together tend to be over-complete (redundant). Therefore, we

derive features by applying dimensionality reduction (namely PCA) to these resulting arrays, in

order to retain only the salient characteristics of the local steering kernels. Generally, T is bigger

than the query image Q. Hence, we divide the target image T into a set of overlapping patches

which are the same size as Q and assign a class to each patch (Ti). The feature vectors which

belong to a patch are thought of as training examples in the corresponding class (See Fig. 2). The

feature collections from Q and Ti form feature matrices FQ and FTi
. We compare the feature

matrices FTi
and FQ from ith patch of T and Q to look for matches. Inspired in part by the

many studies [19], [20], [21], [22], [23], [24] which took advantage of cosine similarity over the

conventional Euclidean distance, we employ and justify the use of “Matrix Cosine Similarity”

as a similarity measure which generalizes the cosine similarity between two vectors [25], [26],

[27] to the matrix case. We illustrate the optimality properties of the proposed approach using a

naive Bayes framework, which leads to the use of the Matrix Cosine Similarity (MCS) measure.

Furthermore, we indicate how this measure can be efficiently implemented using a nearest-

neighbor formulation. In order to deal with the case where the target image may not include

any objects of interest or when there are more than one object in the target, we also adopt the

idea of a significance test and non-maxima suppression [28].

Very recently, Shechtman and Irani [7] introduced a related matching framework based on

the so-called “local self-similarity” descriptor. It is worth mentioning that this (independently

derived) local self-similarity measure is a special case of the local steering kernel and is also

March 10, 2009 DRAFT



5

Fig. 2. (a) Given a query image Q, we want to detect/localize objects of interest in a target image T . T is divided into a set

of overlapping patches (b) local steering kernels represent the geometric structure of underlying data.

related to a number of other local data adaptive metrics such as Optimal Spatial Adaptation

(OSA) [29] and Non-Local Means (NLM) [30] which have been used for regression in the

image processing community. While the local self-similarity descriptors in [7] were modeled

as a function of a simple sum of squared difference (SSD) between a center image patch and

surrounding image patches, local regression kernels are designed to have more sophisticated

mechanisms to robustly obtain the local structure of images even in the presence of data

uncertainty such as noise and blur. It is the aim of this paper to begin the process of applying

the local regression kernel idea (in particular the local steering kernel) to problems involving

detection of similarity across images, and later videos. It is worth noting that our contribution

in this paper is intended in the same vain as the recent trend toward more extensive use

of statistical signal processing and information theory, as nicely exemplified by the works

[31], [32]. Fig. 1 shows an overview of our proposed framework. The first stage consists of

computing the normalized LSKs WQ,WT and obtaining the salient feature matrices FQ,FT .

In the second stage, we compare the feature matrices FTi
and FQ using the Matrix Cosine

Similarity measure. The final output is given after a sequence of significance tests, followed by

non-maxima suppression [28]. Before we begin a more detailed description, it is worthwhile to

highlight some aspects of the proposed framework.

• Since the calculation of local regression kernels is stable in the presence of uncertainty in

the data [17], our approach is robust even in the presence of noise. In addition, normalized

local regression kernels provide a certain invariance to illumination changes (see Fig. 4.)

• The approach in [7], similar to selective feature techniques such as SIFT [16] filters out

“non-informative” descriptors, while in our method we apply Principal Components Analysis
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(PCA) to a collection of LSKs in order to learn the most salient features of the data.

• While [7] explicitly models local and global geometric relationship between features, we

simply propose to use “Matrix Cosine Similarity” which is a generalized version of the

cosine similarity which has been shown to outperform the conventional Euclidean distance

for subspace learning and classification tasks [19], [20], [21], [22], [23], [24]. We further

propose “Canonical Cosine Similarity” in order to extend the proposed framework to the

case of vector data such as a color image. As we shall see in Section IV-C, the Canonical

Cosine Similarity is related to the concept of Canonical Correlation analysis [33].

• We employ the idea of nearest-neighbor classification [12] to solve the object detection

problem and show that under the naive-Bayes assumption, theoretically optimal Bayes

decision rule is approximated by the Matrix Cosine Similarity measure. This is in the same

spirit as [21] which shows that the Bayes decision rule can be induced by the whitened

cosine similarity under four strong assumptions.

• From a practical standpoint, it is important to note that the proposed framework operates

using a single example of an image of interest to find similar matches; does not require

any prior knowledge (learning) about objects being sought; and does not require any pre-

processing step or segmentation of the target image.

The proposed framework is general enough as to be extendable to 3−D for such applications

as action recognition [8], [10], suspicious behavior detection [34] etc. using an analogous 3−D

local steering kernel [35]. The discussion of this aspect of the ongoing work is outside the

scope of this paper. This paper is organized as follows. In the next section, we specify the

algorithmic aspects of our object detection framework, using a novel feature (the “local steering

kernel”) and a reliable similarity measure (the “Matrix Cosine Similarity”). Section III provides

a theoretical formulation and justification of the proposed method. In Section IV, we extend the

proposed method to more general scenarios, accounting for larger variations in scale and rotation,

and for color images with the introduction of “Canonical Cosine Similarity”. In Section V, we

demonstrate the performance of the system with some experimental results, and we conclude

this paper in Section VI.
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Fig. 3. (a) A face and some possibly similar images (b) Examples of local steering kernel (LSK) in various regions.

II. TECHNICAL DETAIL OF OBJECT DETECTION FRAMEWORK

As outlined in the previous section, our approach to detect objects consists broadly of three

stages. Below, we describe each of these steps in detail.

A. Extracting Features from the Local Steering Kernel Descriptor

The key idea behind local steering kernel is to robustly obtain the local structure of images

by analyzing the radiometric (pixel value) differences based on estimated gradients, and to use

this structure information to determine the shape and size of a canonical kernel. The local kernel

K(·) is modeled as a radially symmetric function.

K(xl − x;Hl) =
K(Hl

−1(xl − x))

det(Hl)
, l = 1, · · · , P 2, (1)

where xl = [x1, x2]
T
l is the spatial coordinates, P 2 is the number of pixels in a local window

(P × P ) and the so-called steering matrix is defined as

Hl = hC
−

1

2

l ∈ R
(2×2), (2)

where h is a global smoothing parameter, and the matrix Cl is a covariance matrix estimated

from a collection of spatial (x1, x2) gradient vectors within the local analysis window around a

sampling position x. The steering matrix Hl modifies the shape and size of the local kernel in a

way which roughly encodes the local geometric structures present in the image (See Fig. 3 (b)

for an example.) With such steering matrices, we choose a Gaussian function for K(.), which

leads to the following form for the LSKs:

K(xl − x;Hl) =

√
det(Cl)

2πh2
exp

{
−

(xl − x)T
Cl(xl − x)

2h2

}
. (3)

We provide some discussion of this choice below, but for a more in depth analysis, we refer

the interested reader to [17]. In what follows, at a position x, we will essentially be using (a

normalized version of) the function K(xl − x;Hl) as a function of xl and Hl to represent
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Fig. 4. Invariance and robustness of local steering kernel weights W (xl − x; 2) in various challenging conditions. Note that

WGN means White Gaussian Noise.

an image’s inherent local geometry. To be more specific, the local steering kernel function

Kj(xl − x;Hl) at a patch indexed by j is densely calculated and normalized as follows

W
j
Q(xl − x) =

K
j
Q(xl − x;Hl)

∑P 2

l=1 K
j
Q(xl − x;Hl)

, j = 1, · · · , n, l = 1, · · · , P 2,

W
j
T (xl − x) =

K
j
T (xl − x;Hl)

∑P 2

i=1 K
j
T (xl − x;Hl)

, j = 1, · · · , nT , l = 1, · · · , P 2, (4)

where n and nT are the number of patches where LSKs are computed in the query image Q

and the target image T respectively 1. Next, we describe some key properties of the above.

• Takeda et al. [17] showed that LSK based on the locally quadratic data model (regression

order N = 2) consistently outperforms steering kernels based on the locally constant and the

locally linear model (regression order N = 0 and N = 1) in their kernel regression framework for

the tasks of image denoising and interpolation. They further provided the so-called “equivalent

kernel” formulation which is a computationally more efficient and intuitive solution to kernel

regression. To simplify the notation, we describe the normalized local steering kernels with the

regression order N as W (xl − x; N). We observe that 2nd order LSK W (xl − x; 2) provides

better descriptive powers than 0th order LSK W (xl − x; 0) and 1st order LSK W (xl − x; 1)

even in complex texture regions or in the presence of moderate levels of noise. Normalization

of this kernel function yields invariance to brightness change and robustness to contrast change

as shown in Fig. 4. When large amounts of noise are present, the locally quadratic data model

1Note that images here are gray-scale (luminance channel only). In Section IV-C, we will deal with color images as well.
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Fig. 5. (a) Some example images (Shechtman’s object dataset [7]) where LSKs were computed. (b) Plots of the bin density

of LSKs and their corresponding low-dimensional features.

tends to be more sensitive to noise than the locally linear and the locally constant model. Hence,

there is a trade-off between descriptive power of LSK and sensitivity to noise. Recently, Han

and Vasconcelos [36] have proposed complex feature selection based on discriminant saliency

for object classification. They showed that complex discriminant features tend to improve the

performance of training-based image classifiers. Meanwhile, many studies [12], [37], [38] have

shown that densely computed local image features give better results in classification tasks than

key-point based local image features such as SIFT [13] which are designed for mainly invariance

and compact coding. According to these studies, the distribution of the local image feature both

in natural images as well as images of a specific object class follows a power-law (i.e., a long-tail)

distribution [12], [37], [38]. In other words, the features are scattered out in a high dimensional

feature space, and thus there basically exists no dense cluster in the feature space. In order

to illustrate and verify that the normalized LSKs also satisfy this property as described in [7],

[12] and follow a power-law distribution, we computed an empirical bin density (100 bins) of

the normalized LSKs (using a total of 31, 319 LSKs) densely computed from 60 images (from

Shechtman’s general object dataset [7]) using the K-means clustering method (See Fig. 5 for an

example.)

Boiman et al. [12] observed that while an ensemble of local features with little discriminative

power can together offer a significant discriminative power, both quantization and informative

feature selection on a long-tail distribution can lead to a precipitous drop in performance.

Therefore, instead of any quantization and informative feature selection, we focus on reducing

the dimension of densely computed LSKs using PCA to enhance the discriminative power and

reduce computational complexity. It is worth noting that this approach was also taken by Ke et

al. in [39] where PCA was applied to SIFT features, leading to enhanced performance. Ali and
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Shah [40] also applied PCA to derive salient kinematic features from optical flow in the action

recognition task. This idea results in a new feature representation with a moderate dimension

which inherits the desirable discriminative attributes of LSK. The distribution of the resulting

features sitting on the low dimensional manifold also tends to follow a power-law distribution as

shown in Fig. 5 (b) and this attribute of the features will be utilized in applying a nearest-neighbor

approximation in the theoretical formulation in Section III.

1) Feature representation: In order to organize W
j
Q(xl−x) and W

j
T (xl−x), which are densely

computed from Q and T , let WQ,WT be matrices whose columns are vectors w
j
Q,w

j
T , which

are column-stacked (rasterized) versions of W
j
Q(xl − x),W j

T (xl − x) respectively:

WQ = [w1
Q, · · · ,wn

Q] ∈ R
P 2

×n, WT = [w1
T , · · · ,wnT

T ] ∈ R
P 2

×nT . (5)

As described in Fig. 1, the next step is to apply PCA 2 to WQ for dimensionality reduction and

to retain only its salient characteristics. Applying PCA to WQ we can retain the first (largest)

d principal components 3 which form the columns of a matrix AQ ∈ R
P 2×d. Next, the lower

dimensional features are computed by projecting WQ and WT onto AQ:

FQ = [f1
Q, · · · , fn

Q] = A
T
QWQ ∈ R

d×n, FT = [f1
T , · · · , fnT

T ] = A
T
QWT ∈ R

d×nT . (6)

Fig. 6 illustrates the principal components in AQ and shows what the features FQ,FT look like

for some examples such as face and car.

B. Matrix Cosine as a Measure of Similarity

The next step in the proposed framework is a decision rule based on the measurement of a

“distance” between the computed features FQ,FTi
. Earlier works such as [19], [20], [24] have

shown that correlation based metrics outperforms the conventional Euclidean and Mahalanobis

distances for the classification and subspace learning tasks. Motivated by the effectiveness of

correlation-based similarity measure, we introduce “Matrix Cosine Similarity” for the matrix

case and explore the idea behind this measure in this section. In general, “correlation” indicates

the strength and direction of a linear relationship between two random variables. But the idea of

correlation is quite malleable. Indeed, according to Rodgers et al. [27], there are at least thirteen

distinct ways to look at correlation! However, we are interested in two main types of correlation:

2It is worth noting that the use of the PCA here may not be critical in the sense that any unsupervised subspace learning

method such as Kernel PCA, LLE [41], LPP [42] CDA [24], CPCA [19], and CEA [19] can be used.

3Typically, d is selected to be a small integer such as 3 or 4 so that 80 to 90% of the “information” in the LSKs would be

retained. (i.e.,
∑d

i=1
λi∑

P2

i=1
λi

≥ 0.8 (to 0.9) where λi are the eigenvalues.)

March 10, 2009 DRAFT



11

Fig. 6. Face and car examples (a) : AQ learned from a collection of LSKs WQ, (b): Feature row vectors of FQ from query

Q, (c) : Feature row vectors FT from target image T . Eigenvectors and feature vectors were reshaped into image and up-scaled

for illustration purposes.

The Pearson’s correlation coefficient which is the familiar standard correlation coefficient, and

the cosine similarity (so-called non-Pearson-compliant). Note that the cosine similarity coincides

with the Pearson’s correlation when each vector is centered to have zero-mean. In several earlier

papers including [25], [26], it has been shown that the Pearson correlation is less discriminating

than the cosine similarity due to the fact that centered values are less informative than the original

values, and the computation of centered values is sensitive to zero or small values in the vectors.

Since the discriminative power is critical in our detection framework, we focus on the cosine

similarity. The cosine similarity is defined as the inner product between two normalized vectors

as follows:

ρ(fQ, fTi
) =<

fQ

‖fQ‖
,

fTi

‖fTi
‖

>=
fQ

T
fTi

‖fQ‖‖fTi
‖

= cos θi ∈ [−1, 1], (7)

where fQ, fTi
∈ R

d are column vectors. The cosine similarity measure therefore focuses only

on the angle (phase) information while discarding the scale information.

If we deal with the features FQ,FTi
which consist of a set of vectors, “Matrix Cosine

Similarity” can be defined as a natural generalization using the “Frobenius inner product”

between two normalized matrices as follows:

ρ(FQ,FTi
) =< FQ,FTi

>F = trace(
F

T
QFTi

‖FQ‖F ‖FTi
‖F

) ∈ [−1, 1], (8)

where, FQ =
FQ

‖FQ‖F
= [

f1
Q

‖FQ‖F
, · · · ,

fn
Q

‖FQ‖F
] and FTi

=
FTi

‖FTi
‖F

= [
f1
Ti

‖FTi
‖F

, · · · ,
fn
Ti

‖FTi
‖F

].

It is worth noting that this generalization is also known as “vector correlation” in the statistics

literature [43]. Fu et al. [19] also used a generalized cosine similarity to the tensor case for
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subspace learning, and showed performance improvement in the task of image classification.

Returning to our definition, if we look at Equation (8) carefully, it is interesting to note that one

can rewrite it as a weighted average of the cosine similarities ρ(fQ, fTi
) between each pair of

corresponding feature vectors (i.e., columns) in FQ,FTi
as follows:

ρ(FQ,FTi
) =

n∑

ℓ=1

f
ℓ
Q

T
f
ℓ
Ti

‖FQ‖F‖FTi
‖F

=

n∑

ℓ=1

ρ(f ℓ
Q, f ℓ

Ti
)

‖f ℓ
Q‖‖f

ℓ
Ti
‖

‖FQ‖F‖FTi
‖F

. (9)

The weights are represented as the product of
‖f ℓ

Q‖

‖FQ‖F
and

‖f ℓ
Ti

‖

‖FTi
‖F

which indicate the relative

importance of each feature in the feature sets FQ,FTi
. We see here an advantage of the “Matrix

Cosine Similarity” in that it takes care of the strength and angle similarity of vectors at the same

time. Hence, this measure not only generalizes the cosine similarity, but also overcomes the

disadvantages of the conventional Euclidean distance which is sensitive to outliers. We compute

ρ(FQ,FTi
) over all the target patches and this can be efficiently implemented by column-stacking

the matrices FQ,FTi
and simply computing the cosine similarity between two long column

vectors as follows:

ρi ≡ ρ(FQ,FTi
) =

n∑

ℓ=1

f
ℓ
Q

T
f
ℓ
Ti

‖FQ‖F ‖FTi
‖F

=

n∑

ℓ=1

d∑

j=1

f
(ℓ,j)
Q f

(ℓ,j)
Ti√∑n

ℓ=1

∑d

j=1 |f
(ℓ,j)
Q |2

√∑n

ℓ=1

∑d

j=1 |f
(ℓ,j)
Ti

|2
,

= ρ(colstack(FQ), colstack(FTi
)) ∈ [−1, 1], (10)

where f
(ℓ,j)
Q , f

(ℓ,j)
Ti

are elements in ℓth vector f ℓ
Q and f ℓ

Ti
respectively, and colstack(·) means an

operator which column-stacks (rasterizes) a matrix.

In Section IV, we will show that this idea enables us to further generalize the cosine similarity

to a “Canonical Cosine Similarity” which is a corresponding version of the canonical correlation

analysis (CCA) [33] for the vector data case where we have a set of features separately computed

from multiple sources (for instance, color image (YCbCr or CIE L*a*b*) or a sequence of

images). In a similar vain as Boiman et al. [12], we will show in Section III that a particular

version of optimal Naive-Bayes decision rule can actually lead to the use of “Matrix Cosine

Similarity” (MCS) measure.

The next step is to generate a so-called “resemblance map” (RM), which will be an image with

values indicating the likelihood of similarity between the Q and T . When it comes to interpreting

the value of “correlation”, it is noted in [44], [45] that ρ2
i ∈ [0, 1] describes the proportion of

variance in common between the two feature sets as opposed to ρi which indicates a linear

relationship between two feature matrices FQ,FTi
. At this point, we can use ρi directly as a

measure of resemblance between the two feature sets. However, the shared variance interpretation

of ρ2
i has several advantages. In particular, as for the final test statistic comprising the values
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Fig. 7. (a) Resemblance map (RM) which consists of |ρi| (b) Resemblance map (RM) which consists of f(ρi). Note that Q

and T are the same examples shown in Fig 2.

in the resemblance map, we use the proportion of shared variance (ρ2
i ) to that of the “residual”

variance (1− ρ2
i ). More specifically, RM is computed using the mapping function f as follows:

RM : f(ρi) =
ρ2

i

1 − ρ2
i

. (11)

In Fig. 7, examples of resemblance map (RM) based on |ρi| and f(ρi) are presented. Red

color represents higher resemblance. As is apparent from these typical results, qualitatively, the

resemblance map generated from f(ρi) provides better contrast and dynamic range in the result

(f(ρi) ∈ [0,∞]). More importantly, from a quantitative point of view, we note that f(ρi) is

essentially the Lawley-Hotelling Trace statistic [33], [46], which is used as an efficient test

statistic for detecting correlation between two data sets. Furthermore, it is worth noting that

historically, this statistic has been suggested in the pattern recognition literature as an effective

means of measuring the separability of two data clusters (e.g. [47].)

C. Non-Parametric Significance Test and Non-Maxima Suppression

If the task is to find the most similar patch (Ti) to the query (Q) in the target image, one

can choose the patch which results in the largest value in the RM (i.e., max f(ρi)) among all

the patches, no matter how large or small the value is in the range of [0,∞]. This, however,

is not wise because there may not be any object of interest present in the target image. We

are therefore interested in two types of significance tests. The first is an overall test to decide

whether there is any sufficiently similar object present in the target image at all. If the answer is

yes, we would then want to know how many objects of interest are present in the target image

and where they are. Therefore, we need two thresholds: an overall threshold τo and a threshold

τ to detect the possibly multiple objects present in the target image.
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Fig. 8. Comparison of empirical PDF between ρ and ρ2

1−ρ2 .

In a typical scenario, we set the overall threshold τo to be, for instance, 0.96 which is about

50% of variance in common (i.e., ρ2 = 0.49). In other words, if the maximal f(ρi) is just above

0.96, we decide that there exists at least one object of interest. The next step is to choose τ based

on the properties of f(ρi). When it comes to choosing the τ , there is need to be more careful. If

we have a basic knowledge of the underlying distribution of f(ρi), then we can make predictions

about how this particular statistic will behave, and thus it is relatively easy to choose a threshold

which will indicate whether the pair of features from the two images are sufficiently similar. But,

in practice, we do not have a very good way to model the distribution of f(ρi). Therefore, instead

of assuming a type of underlying distribution, we employ the idea of nonparametric testing. We

compute an empirical PDF from all the give samples of f(ρi) and we set τ so as to achieve,

for instance, a 99 % confidence level in deciding whether the given values are in the extreme

(right) tails of the distribution 4. This approach is based on the assumption that in the target

image, most of patches do not contain the object of interest, and therefore, the few matches will

result in values which are in the tails of the distributions of f(ρi). After the two significance

tests with τo, τ are performed, we employ the idea of non-maxima suppression [28] for the final

detection. We take the region with the highest f(ρi) value and eliminate the possibility that any

other object is detected within some radius 5 of the center of that region again. This enables

us to avoid multiple false detections of nearby objects already detected. Then we iterate this

process until the local maximum value falls below the threshold τ . Fig. 9 shows the graphical

illustration of significance tests and the non-maxima suppression idea.

4Yet another justification for using f(ρi) instead of ρi is the observation that the empirical PDF of ρi is itself heavy-tailed,

making the detection of rare events more difficult. The use of f(ρi) instead tends to alleviate this problem (see Fig. 8.)

5The size of this “exclusion” region will depend on the application at hand and the characteristics of the query image
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Fig. 9. (a) Query (b) Target with detection (c) Two significance tests (d) Non-maxima suppression [28]

III. THEORETICAL JUSTIFICATION

As explained in the previous section, the purpose of the proposed framework is to detect an

object (or objects) of interest in the target image given a single query. In this section, we show

that the naive-Bayes approach in a multiple hypothesis testing framework leads to the Matrix

Cosine Similarity-based decision rule. It is worth noting that this idea is partly motivated by [12]

and [21] who derived optimal Bayes decision rule based on Euclidean distance and the whitened

cosine similarity respectively for the image classification task.

As described earlier, the target image T is divided into a set of overlapping patches and a class

is assigned to each patch. Our task at hand is to figure out which class (i) the features from Q are

most likely to have come from. Since we do not know the class-conditional pdf (p(FQ|class))

of the normalized features extracted from Q, we set out to estimate it using a kernel density

estimation method [48]. Once we have these estimates, we will show that the maximum likelihood

(ML) decision rule boils down to computing and thresholding Matrix Cosine Similarity, which

can be efficiently implemented using a nearest neighbor formulation.

By associating each patch (Ti) of the target image with a hypothesis, we now have the case

where we wish to discriminate between M hypotheses (H0, · · · ,HM−1) as follows:
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H0: Q is similar to T0 ⇔ FQ comes from class 0 (FT0
) ,

H1: Q is similar to T1 ⇔ FQ comes from class 1 (FT1
),

...
...

HM−1: Q is similar to TM−1 ⇔ FQ comes from class M − 1 (FTM−1
).

The task at hand is to find the most likely hypothesis (or a correct class) given the query

image Q. It is a well known fact [47], [49] that maximizing a posteriori probability P (Hi|FQ)

minimizes Bayes risk (or the average classification error.) Assuming that the prior probabilities

P (Hi) are equal, then the maximum a posterior (MAP) decision rule boils down to the M-ary

maximum likelihood (ML) decision rule.

Ĥi = arg max
i

P (Hi|FQ) = argmax
i

p(FQ|Hi). (12)

Since we do not know the conditional probability density function p(FQ|Hi) of features FQ

given the features FTi
of the target patch Ti, we need to estimate it using a kernel density

estimation method, which results in the naive or empirical Bayes approach.

A. Locally Data-adaptive Kernel Density Estimation

The Parzen density estimator is a simple and generally accurate non-parametric density esti-

mation method [48]. However, if the true conditional density that we want to model is close to a

“non-linear” lower dimensional manifold embedded in the higher dimensional feature space,

Parzen density estimator with an isotropic kernel is not the most appropriate method [50],

[51], [52]. As explained earlier, the features FQ,FTi
tend to generically come from long-tailed

distributions, and as such, there are generally no tight clusters in the feature space. When we

estimate a probability density at a particular point, for instance f
ℓ

Q, the isotropic kernel centered

on that point will spread its density mass equally along all the feature space directions, thus

giving too much emphasis to irrelevant regions of space and too little along the manifold. Earlier

studies [50], [51], [52] also pointed out this problem. This motivates us to use a locally data-

adaptive version of the kernel density estimator.

The estimated conditional density p̂(FQ|Hi) is defined as a sum of kernels (weight functions)

centered at the features fTi
in Ti which belong to the hypothesis Hi. More specifically,

p̂(FQ|Hi) =

∑n

j=1 Kj(f
ℓ

Q − f
j

Ti
,xℓ

Q − x
j
Ti

)
∑

ℓ∈ΩQ

∑n

j=1 Kj(f
ℓ

Q − f
j

Ti
,xℓ

Q − x
j
Ti

)
, ℓ ∈ ΩQ, (13)
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Fig. 10. The estimated conditional density p̂(FQ|Hi) is a sum of kernels (weight functions) centered at the features fTi
in

Ti which belongs to the hypothesis Hi. In the Density Estimate Map, red value means a high conditional probability density

p̂(fQ|Hi) while blue value represents a low conditional probability density p̂(fQ|Hi) .

where Kj is a locally data adaptive kernel function, ΩQ is the query image domain consisting of

|ΩQ| pixels and xℓ
Q,x

j
Ti

are column vectors denoting spatial coordinates of corresponding features

f
ℓ

Q and f
j

Ti
. A simple and intuitive choice of the Kj is to consider two terms for penalizing the

spatial distance between the point of interest and its neighbors, and the radiometric “distance”

between the corresponding features f
ℓ

Q and f
j

Ti
. More specifically, the kernel function is defined

as follows:

Kj(f
ℓ

Q − f
j

Ti
,xℓ

Q − x
j
Ti

) = Kj
r (f

ℓ

Q − f
j

Ti
)Kj

s(xℓ
Q − x

j
Ti

),

= exp

(
−

1

2σ2
r

dist(f
ℓ

Q, f
j

Ti
)

)
exp

(
−

1

2σ2
s

||xℓ
Q − x

j
Ti
||2
)

, ℓ ∈ ΩQ, (14)

where we define dist(f
ℓ

Q, f
j

Ti
) = ‖

f ℓ
Q

‖FQ‖F
−

f
j
Ti

‖FTi
‖F
‖2, and σr, σs are parameters controlling the

fall-off of weights in radiometric and spatial domains.

Inserting equation (14) into equation (13), the estimated conditional density p̂(FQ|Hi) becomes

p̂(FQ|Hi) =
1

β

n∑

j=1

exp

(
−

1

2σ2
r

dist(f
ℓ

Q, f
j

Ti
)

)
exp

(
−

1

2σ2
s

||xℓ
Q − x

j
Ti
||2
)

, ℓ ∈ ΩQ, (15)

where β is a normalization factor (β =
∑

ℓ∈ΩQ

∑n

j=1 Kj(f
ℓ

Q − f
j

Ti
,xℓ

Q − x
j
Ti

)). Fig. 10 depicts

how the conditional density function p̂(FQ|Hi) is estimated, given Q and Ti.

In principle, all n features should be employed to obtain an accurate density estimation.

However, this is too computationally time-consuming. Hence, as we describe next, we use an

efficient approximation of this locally data-adaptive kernel density estimator.
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Fig. 11. The estimated conditional probability densities p̂(FQ|Hi) using n samples and 1 sample are shown in the middle

and the scores on right side means
∑n

ℓ=1 log p̂(f
ℓ

Q|Hi). The higher this score is, the more likely FQ comes from class i (FTi
)

B. Approximation of Locally Data-adaptive Kernel Density

Assuming that f
1

Q, f
2

Q, · · · , f
n

Q are i.i.d. given hypothesis Hi, the ML decision rule can be

rewritten by taking the log probability of the ML decision rule (12) as:

Ĥi = arg max
i

log p̂(FQ|Hi) = arg max
i

log p̂(f
1

Q, · · · , f
n

Q|Hi) = argmax
i

n∑

ℓ=1

log p̂(f
ℓ

Q|Hi). (16)

What we do next is to estimate each local individual probability density p̂(f
ℓ

Q|Hi) separately:

p̂(f
ℓ

Q|Hi) =
1

β′

n∑

j=1

Kj(f
ℓ

Q − f
j

Ti
,xℓ

Q − x
j
Ti

), ℓ = 1, · · · , n, (17)

where β ′ is a normalization factor (β ′ =
∑n

ℓ=1

∑n

j=1 Kj(f
ℓ

Q−f
j

Ti
,xℓ

Q−x
j
Ti

)). As nicely motivated

in [12] and discussed in Section II-A, since the distribution of the features on the low-dimensional

manifold tends to follow a power-law (i.e., long-tail or heavy-tail), it should be sufficient to

use just a few features in Ti to get a reasonable estimate of the conditional density p̂(f
ℓ

Q|Hi).

Therefore, we consider using a single (spatially nearest) neighbor for the approximation, which

yields:

p̂(f
ℓ

Q|Hi) ≈ exp

(
−

1

2σ2
r

dist(f
ℓ

Q, f
ℓ

Ti
)

)
,

= exp

(
−

1

2σ2
r

(
‖f ℓ

Q‖
2

‖FQ‖2
F

+
‖f ℓ

Ti
‖2

‖FTi
‖2

F

− 2ρ(f ℓ
Q, f ℓ

Ti
)

‖f ℓ
Q‖‖f

ℓ
Ti
‖

‖FQ‖F‖FTi
‖F

)

)
, ℓ = 1, · · · , n. (18)

The approximate version of density estimator using one sample is compared to p̂(FQ|Hi)

estimated using all n samples in Fig. 11. Qualitatively, we observe that the resulting estimates

are quite similar. More precisely, consistent with [12], we have verified that the use of the
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Algorithm 1 Pseudo-code for the non-parametric object detection algorithm

Q : Query image, T : Target image, τo : Overall threshold, α : Confidence level, P 2 : Size of local steering kernel (LSK) window.

Stage1 : Feature representation

1) Construct WQ,WT which are a collection of normalized LSK associated with Q,T .

2) Apply PCA to WQ and obtain projection space AQ from its top d eigenvectors.

3) Project WQ and WT onto AQ to construct FQ and FT .

Stage2 : Compute Matrix Cosine Similarity

for every target patch Ti, where i ∈ [0, · · · , M − 1] do

ρi =<
FQ

‖FQ‖F
,

FTi

‖FTi
‖F

>F and compute resemblance map (RM) : f(ρi) =
ρ2

i

1−ρ2

i

.

end for

Then, find max f(ρi).

Stage3 : Significance tests and Non-maxima suppression

1) If max f(ρi) > τo, go on to the next test. Otherwise, there is no object of interest in T .

2) Threshold RM by τ which is set to achieve 99 % confidence level (α = 0.99) from the empirical PDF of f(ρi).

3) Apply non-maxima suppression to RM until the local maximum value is below τ .

approximation takes little away from the performance of the overall algorithm, which is discussed

in Section II-A.

Since log p̂(f
ℓ

Q|Hi) is approximately proportional to −(
‖f ℓ

Q‖2

‖FQ‖2
F

+
‖f ℓ

Ti
‖2

‖FTi
‖2

F

−2ρ(f ℓ
Q, f ℓ

Ti
)

‖f ℓ
Q‖‖f ℓ

Ti
‖

‖FQ‖F ‖FTi
‖F

),

the ML decision rule becomes

Ĥi =argmax
i

n∑

ℓ=1

log p̂(f
ℓ

Q|Hi) ⇒ arg max
i

n∑

ℓ=1

−(
‖f ℓ

Q‖2

‖FQ‖2
F

+
‖f ℓ

Ti
‖2

‖FTi
‖2

F

−2ρ(f ℓ
Q, f ℓ

Ti
)

‖f ℓ
Q‖‖f

ℓ
Ti
‖

‖FQ‖F ‖FTi
‖F

),

= arg max
i

(−2 + 2

n∑

ℓ=1

f
ℓ
Q

T
f
ℓ
Ti

‖FQ‖F ‖FTi
‖F

),

= argmax
i

n∑

ℓ=1

f
ℓ
Q

T
f
ℓ
Ti

‖FQ‖F ‖FTi
‖F

=argmax
i

<
FQ

‖FQ‖F

,
FTi

‖FTi
‖F

>F . (19)

We can clearly see that the ML decision rule in Equation (19) boils down to the computation

of the Matrix Cosine Similarity, due to the relationship <
FQ

‖FQ‖F
,

FTi

‖FTi
‖F

>F≈
2+
∑n

ℓ=1 log p̂(f
ℓ

Q|Hi)

2
.

While the assumptions leading to the above conclusions may seem somewhat restrictive, in

practice they appear to hold true, and they do provide a framework in which the proposed

algorithm can be considered optimal in the naive Bayes sense. Indeed, as can be seen from

the practical experimental results in Section V, the range of applicability of the algorithm thus

justified is quite wide. To summarize, the overall pseudo-code for the algorithm is given in

Algorithm 1.
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IV. HANDLING VARIATIONS IN SCALE AND ROTATION, AND COLOR IMAGES

Up to now, we only dealt with the detection of objects in a gray image at a single scale.

Although our detection framework can handle modest scale and rotation variations by adopting

a sliding window scheme, robustness to larger scale and rotation changes (for instance above

±20% in scale, 30 degrees in rotation) are desirable. Furthermore, the use of color images as

input should be also considered from a practical point of view. In this section, the approach

described in the previous sections for detecting objects at a single scale is extended to detect

objects at different scales and at different orientations in an image. In addition, we deal with a

color image by defining and using “Canonical Cosine Similarity”.

A. Multi-Scale approach

In order to cope with large scale variations, we construct a multi-scale pyramid of the target

image T . This is a non-standard pyramid as we reduce the target image size by steps of 10 ∼

15%, so that a relatively fine quantization of scales are taken into account. Fig. 12 (a) shows

the block diagram of the multi-scale approach. The first step is to construct the multi-scale

pyramid T 0, T 1, · · · , T S where S is the coarsest scale of the pyramid. As shown in Fig. 12

(a), FQ,FT 0 ,FT 1 ,FT 2(S = 2) are obtained by projecting WQ and WT 0,WT 1,WT 2 onto the

principal subspace defined by AQ as follows:

FQ = A
T
QWQ, FT 0 = A

T
QWT 0 , FT 1 = A

T
QWT 1 , FT 2 = A

T
QWT 2 . (20)

We obtain three resemblance maps RM0, RM1, RM2 by computing f(ρi) =
ρ2

i

1−ρ2
i

. These resem-

blance maps represent the likelihood functions p(f(ρi)|Si) where Si is the scale at ith point.

However the sizes of the respective resemblance maps RM0, RM1, RM2 are naturally different.

Therefore, we simply upscale all the resemblance maps by pixel replication so that they match

the dimensions of the finest scale map RM0. Next, the maximum likelihood estimate of the scale

at each position is arrived at by comparing the upscaled resemblance maps as follows 6:

Ŝi = arg max
Si

p(RM|Si). (21)

B. Multi-Rotation approach

In order to cope with large rotations, we take a similar approach and generate rotated im-

ages (this time of the query image Q) in roughly 30 degree steps. As seen in Fig. 12 (b),

6By RM we mean a collection of RM indexed by i at each position.
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Fig. 12. (a) Block diagram of multi-scale object detection system, (b) Block diagram of multi-rotation object detection system

FQ0 ,FQ1, · · · ,FQ11 and FT are obtained by projecting WQ0, · · · ,WQ11 and WT onto the

principal subspace defined by AQ0, · · · ,AQ11 . After computing f(ρi) =
ρ2

i

1−ρ2
i

from 12 pairs by

employing the sliding window scheme, we obtain twelve resemblance maps RM0, · · · , RM11. We

compute the maximum likelihood estimate of the best matching pattern accounting for rotation

as follows:

R̂i = arg max
Ri

p(RM|Ri). (22)

C. Canonical Cosine Similarity

Now, we define Canonical Cosine Similarity (CCS) to extend the proposed framework with

a single gray-scale query image to vector-valued images. In particular, suppose at each pixel,

the image has q values. As per the earlier discussion (Section II-B), we generate q feature sets

Fℓ
Q,Fℓ

Ti
(ℓ = [1, · · · , q]) by projecting Wℓ

Q,Wℓ
Ti

onto the subspaces Aℓ
Q respectively and form

the overall feature set as follows:

FI = [colstack(F
1
I), · · · , colstack(F

q

I)] ∈ R
(d×n)×q, I ∈ {Q, Fi} . (23)

The key idea is to find the vectors uQ and uTi
which maximally correlate two data sets (FQ,FTi

).

vI = FIuI = uI1colstack(F1
I) + · · · + uIq

colstack(Fq

I) ∈ R
(d×n), I ∈ {Q, Fi} , (24)

where uQ = [uQ1, · · · , uQq
]T ∈ R

q and uTi
= [uT1 , · · · , uTq

]T ∈ R
q.

Then, the objective function we are maximizing is the cosine similarity between dQ and dTi

as follows.

ρ = max
uQ,uTi

v
T
QvTi

‖vQ‖‖vTi
‖

= max
uQ,uTi

u
T
QF

T
QFTi

uTi

‖FQuQ‖‖FTi
uTi

‖
, such that ‖FQuQ‖ = ‖FTi

uTi
‖ = 1, (25)

where uQ and uTi
are called canonical variates and ρ is the canonical cosine similarity. The

above is inspired by canonical correlation analysis (CCA) [33].

The canonical cosine similarity ρ and canonical variates uQ,uTi
can be obtained by solving

the coupled eigenvalue problems as follows (Deriviation is given in the appendix):

(FT
QFQ)−1(FT

QFTi
)(FT

Ti
FTi

)−1(FT
Ti

FQ)uQ = ρ2
uQ,

(FT
Ti

FTi
)−1(FT

Ti
FQ)(FT

QFQ)−1(FT
QFTi

)uTi
= ρ2

uTi
. (26)
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Fig. 13. (a) Examples of correct detections on the UIUC single-scale car test set [53]. (b) Examples of correct detections on

the UIUC multi-scale car test set. Confidence level α was set to 0.99 and RM only above the threshold τ corresponding to α

is embedded in test images. Bounding boxes are drawn at the correct locations. In case of a multiple detection, a red bounding

box indicates higher resemblance to Query than a blue bounding box.

The positive square root of eigenvalues ρ2 is the “Canonical Cosine Similarity”. If FQ,FTi

are each composed of a single vector (colstack(FQ), colstack(FTi
)), the above equations reduce

to
(colstack(FQ)T colstack(FTi

))2

‖colstack(FQ)‖2‖colstack(FTi
)‖2 = ρ2 which is just the squared cosine similarity defined earlier in

Section II-B.

Now, we take a closer look at the particular case of color images where q = 3. A natural

question here is whether we can gain more if we use the color information instead of using only

the luminance channel as we have so far. The answer to this question is positive. There exist

many color spaces such as RGB, YCbCr, CIE L*a*b* etc. We observe that CIE L*a*b color

model provides the most discriminative information among all as also observed by Shechtman

and Iran [7]. We define the respective RM 7 as the summation of mapping function f(ρi(ℓ))

of CCS ρi(ℓ) between a set of features which are calculated from each channel (ℓ = 1, · · · , q),

where
∑dc

ℓ=1
ρ2

i (ℓ)

1−ρ2
i (ℓ)

) (dc is the number of canonical cosine similarity values ρi(ℓ) greater than

zero). Also illustrated in the next section, the color approach based on CCS not only provides

better discriminative power, but also gives more accurate localization results than the luminance

channel only does.
V. EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of the proposed method with comprehensive

experiments on three datasets; namely, the UIUC car dataset [53], MIT-CMU face dataset [54],

7Again as mentioned earlier, note that
∑dc

ℓ=1

ρ2

i (ℓ)

1−ρ2

i
(ℓ)

is analogous to the Lawley-Hotelling trace test statistic
∑

ρ2

1−ρ2 which

is used in the significance test of canonical variates in canonical correlation analysis [33], [46].
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Fig. 14. (a) Recall versus 1-Precision curves of the proposed method (b) Recall versus 1- Precision curves of the proposed

method without PCA on the UIUC single-scale car test set [53] using 5 different query images.

Fig. 15. Comparison of Recall versus 1-Precision curves between the proposed method and state-of-the-art methods [53], [55],

[56] on the UIUC single-scale test set [53].

and Shechtman’s general object dataset [7]. The proposed algorithm provides a series of bounding

boxes around objects of interest using the criterion described in [53]. More specifically, if the

detected region by the proposed method lies within an ellipse of a certain size centered around

the ground truth, we evaluate it as a correct detection. Otherwise, it is counted as a false positive.

Eventually, we compute Precision and Recall defined as

Recall =
TP

nP
, Precision =

TP

TP + FP
, (27)

where, TP is the number of true positives, FP is the number of false positives, nP is the

total number of positives in dataset, and 1 − Precision = FP
TP+FP

. Experimental results on each
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dataset will be presented as recall versus (1-precision) curve and Detection equal-error rate8 in

the following sections.

A. Car detection

The UIUC car dataset [53] consists of learning and test sets. The learning set contains 550

positive (car) images and 500 negative (non-car) images. The test set is divided into two parts:

170 gray-scale images containing 200 side views of cars with size of 100 × 40, and 108 gray-

scale images containing 139 cars at various sizes with a ratio between the largest and smallest

car of about 2.5. Since our method is training-free, we use only one query image at a time from

the 550 positive examples.

1) Single-scale test set: We compute LSK of size 9 × 9 as descriptors, as a consequence,

every pixel in Q and T yields an 81-dimensional local descriptor WQ and WT respectively. The

smoothing parameter h for computing LSKs was set to 2.1. We end up with FQ,FT by reducing

dimensionality from 81 to d = 4 and then, we obtain RM by computing the MCS measure

between FQ,FTi
. The threshold τ for each test example was determined by the confidence level

α = 0.99. Fig. 13 (a) shows the output of the proposed method on single-scale test images.

We conducted an experiment by computing RM without performing PCA in order to verify that

the use of dimensionality reduction step (PCA) plays an important role in extracting only salient

features and improving the performance. We also repeated these experiments by changing the

query image and computing precision and recall. In Fig. 14, recall-precision curves represent

a performance comparison between the proposed method and the proposed method without

PCA using 5 different query images. We can clearly see that the performance of our system

is not terribly affected by a choice of the query images, but is quite consistent. Furthermore,

PCA consistently contributes to a performance improvement. The detection equal-error rates

comparison is provided in Table I as well.

To show an overall performance of the purposed method on five different query images, we

summed up TP and FP over the entire experiment, then computed recall and precision at

various steps of the threshold value τ according to the confidence level α. Note that, to the

best of our knowledge, there are no other training-free methods evaluated on the UIUC dataset

8Note that Detection equal-error rate is a detection (recall) rate when a recall rate is the same as the precision rate.
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Fig. 16. (a) Recall versus 1-Precisions curve using 5 different query images (b) Comparison of Recall versus 1-Precision curves

between the proposed method and state-of-the art methods [56], [57], [53] on the UIUC multi-scale test set [53].

[53], and thus, comparison is largely only made with state-of-the-art training-based methods. The

proposed method which is training-free performs favorably against state-of-the-art training-based

methods [53], [55], [56] which use extensive training as shown in Fig. 15.

TABLE I

SINGLE-SCALE RESULT: DETECTION EQUAL-ERROR RATES ON THE UIUC SINGLE-SCALE CAR TEST SET [53]

The proposed Query Query Query Query Query Agarwal et al. Wu and Nevatia Mutch and Lowe

method w/o PCA 1 2 3 4 5 [53] (1) [55] [57]

Detection rates 79.29 % 88.12 % 81.11 % 80.41 % 87.11 % 77.08 % 97.5 % 99.94 %

The proposed Query Query Query Query Query Agarwal et al. Kapoor and Winn Lampert et al.

method 1 2 3 4 5 [53] (2) [56] [58]

Detection rates 85.26 % 87.27 % 87.13 % 80.57 % 86.73 % 76.72 % 94.0 % 98.5 %

2) Multi-scale test set: As explained in Section IV, we construct a multi-scale pyramid of

the target image T : 5 scales with scale factors 0.4, 0.6, 0.8, 1, and 1.2. More specifically,

we reduce the target image size by steps of 20% up to 40% of the original size and upscale

the target image by 20% so that we can deal with both cases of either the size of objects in

the target images being bigger or smaller than the query. The rest of the process is similar to

the single-scale case. Fig. 16 (b) shows examples of correct detections using τ corresponding

to α = 0.99. The overall performance improvement of the proposed method (using 5 different

query images) over Agarwal et al. [53] is even greater (over 30%) on the multi-scale test set as
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TABLE II

MULTI-SCALE RESULT: DETECTION EQUAL-ERROR RATES ON THE UIUC MULTI-SCALE CAR TEST SET [53]

The proposed Query Query Query Query Query Agarwal et al. Mutch Kapoor Lampert

method 1 2 3 4 5 [53] and Lowe [57] and Winn [56] et al. [58]

Detection 75.47 77.66 70.21 75.00 74.22 43.77 ∼ 44.00 90.6 93.5 98.6

rates % % % % % % % % %

shown in Table II and Fig. 16. As for the interpretation of the performance on the UIUC car

dataset (both single-scale and multi-scale cases), our methods show performance that is not far

from the state-of-the-art training-based methods, except that it requires no training at all.

B. Face detection

We showed the performance of the proposed method in the presence of a moderate scale

variation (a ratio between the largest and smallest object of about 2.5) in the previous section.

In this section, we further evaluate our method on more general scenario where the scale ratio

between the largest and smallest is over 10 and large rotations of objects may exist. Therefore,

a test set is chosen from a subset of the MIT-CMU face dataset [54]. The test set is composed

of 43 gray-scale images 9 containing 149 frontal faces at various sizes and 20 gray-scale images

10 containing 30 faces with various rotations. A query face image of size 35× 36 was employed

as shown in Fig. 17, and images for a rotation experiment were resized so that faces are about

the same size as the query face. Such parameters as the smoothing parameter (h), LSK size

(P ), confidence level (α) remain same as the ones used in the UIUC car test sets. However, we

increased scale steps for the multi-scale pyramid up to 29, and rotation steps were set to 24 (i.e.,

rotate the query image by 15 degrees) to achieve an accurate rotation estimation. Fig. 17, Fig.

18, and Fig. 19 show that the proposed method is capable of detecting and localizing faces at

distinct scale and rotation angle even in the presence of large variations in scale and rotation. We

9
The 43 images (from the web:http://vasc.ri.cmu.edu/idb/html/face/index.html) are listed as follows: aerosmith-double.gif, blues-double.gif,

original2.gif, audrey1.gif, audrey2.gif, baseball.gif, cfb.gif, cnn1714.gif, cnn2020.gif, cnn2600.gif, crimson.gif, ew-courtney-david.gif, gpripe.gif,

hendrix2.gif, henry.gif, john.coltrane.gif, kaari1.gif, kaari2.gif, kaari-stef.gif, knex0.gif, lacrosse.gif, married.gif, police.gif, sarah4.gif,

sarah live 2.gif, tammy.gif, tori-crucify.gif, tori-entweekly.gif, tp.gif, voyager2.gif, class57.gif, trek-trio.gif, albert.gif, madaboutyou.gif, fris-

bee.gif, me.gif, speed.gif, ysato.gif, wxm.gif, torrance.gif, mona-lisa.gif, karen-and-rob.gif, and Germany.gif.

10
The 20 images (from the web:http://vasc.ri.cmu.edu/idb/html/face/index.html) are listed as follows: 3.gif, 217.gif, 221.gif, af2206b.gif,

am4945a.gif, am5528a.gif, am6227a.gif, bm5205a.gif, bm6290a.gif, boerli01.gif, cast1.gif, dole2.gif, jprc.gif, pict 6.gif, pict 28.gif, sbCelSte.gif,

siggi.gif, tf5189a.gif, tf5581a.gif, and tm6109a.gif
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Fig. 17. Detection Results on the MIT-CMU multi-scale test set [54]. α was set to 0.99. Hand-drawn faces on the white board

were also detected using a real face query image.

repeated the experiment by changing the query image. Fig. 20 shows Recall versus 1-Precision

curves and (for the sake of completeness) corresponding receiver operating characteristic (ROC)

curves with respect to two different queries. Note that, in the ROC curve, detection rate Pd

and false alarm rate Pf are defined as TP
nP

(= recall) and FP
FP+TN

respectively, where TN is the

number of true negatives. As seen in Fig. 20, the performance of our method on this test set is

consistent with the results in the UIUC car test sets. More specifically, the performance of the

proposed method is little affected by the choice of similar query images and is quite stable.

C. General object detection

We have shown the performance of the proposed method on data sets composed of gray-scale

images which contain specific objects such as car and face. In this section, we have applied our

method to a more difficult scenario where general real-world images containing flowers, hearts,

and human poses are considered. Furthermore, rough hand-drawn sketches are used as a query

instead of real images. Shechtman et al.’s general object dataset [7] consists of many challenging

pairs of color images (60 pairs with queries such as flowers, hearts, peace symbols, face, and

human poses; see Fig. 5). In order to justify the usefulness of the MCS measure for this dataset

and to further verify the advantage of the CCS defined in Section IV-C over the MCS measure,

we begin with evaluating the proposed method on the luminance channel only. In Fig. 21, some
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Fig. 18. Detection Results on the MIT-CMU multi-scale test set [54]. α was set to 0.99. Among 57 faces present, we detected

54 faces at a correct location with 4 false alarms.

Fig. 19. Detection Results on the MIT-CMU multi-rotation test set [54]. α was set to 0.99.

examples of RM are shown. Fig. 22 and Fig. 23 show that the proposed method is able to detect

and localize reliably.

We further justify the use of LSKs by comparing the performance with state-of-the-art local

descriptors evaluated in [16] as similarity done in [7]. We densely computed such local descriptors

as gradient location-orientation histogram (GLOH) [16], Shape Context [59], and SIFT [13]

using the implementation in [16]. By replacing LSKs with these descriptors, but keeping the rest

of the steps the same, we repeated the experiment on this test set. The Precision-Recall curve

in Fig. 24 verifies that our LSKs have more discriminative power than other local descriptors.

The proposed method is also evaluated on full CIE L*a*b* data. If we look at recall rates
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Fig. 20. Left: Precision-Recall curves, Right: ROC curves on the MIT-CMU test set [54] using 2 different query images. Note

that detection rate Pd and false alarm rate Pf are defined as TP
nP

(= recall) and F P
F P+TN

respectively, where TN is the number

of true negatives.

Fig. 21. Some examples of detection results with RMs in Shechtman’s object test set [7]. RMs are shown in bottom row.

in the range of 0 ≤ (1-precision) ≤ 0.1 in Fig. 24, we can see that full CIE L*a*b* data

provide more information, and thus CCS outperforms the MCS measure as also observed in

[7]. Consistent with these results, it is worth noting that Shechtman and Irani [7] also showed

that their local self-similarity descriptor clearly outperformed other state-of-the-art descriptors in

their ensemble matching framework. However, the performance figures they provide are rather

incomplete. Namely, they mentioned 86% detection rate without specifying either any precision

rates or false alarm rates. Therefore, we claim that our proposed method is more general and

practical than the training-free detection method in [7] .

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we have proposed a novel and powerful training-free non-parametric object

detection framework by employing local steering kernels (LSKs) which well capture underlying

data structure, and by using the “Matrix Cosine Similarity” (MCS) measure. We have justified

the approach using a naive Bayes decision which leads to the use of MCS measure. The
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Fig. 22. Left: hand-drawn sketch query (human poses) Right: targets and examples of correction detections/ localizations in

Shechtman’s object test set [7]. α was set to 0.98.

Fig. 23. Query: hearts, hand-drawn face, peace symbol and flower. Some targets and examples of correction detections/

localizations in Shechtman’s object test set [7] are shown. Some false positives appeared in a girl’s T-shirt and candle. α was

set to 0.98.

proposed method can automatically detect in the target image the presence, the number, as well

as location of similar objects to the given query image. To deal with more general scenarios,

accounting for large variations in scale and rotation, we further proposed multi-scale and -rotation

approach. The “Canonical Cosine Similarity” (CCS) has proven to be more effective than MCS
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Fig. 24. Left: Comparison of Recall versus 1-Precision curves between luminance channel only and CIE L*a*b* channel on

the Shechtman’s test set [7]. It is clearly shown that such descriptors as SIFT [13], GLOH [16], Shape Context [59] turn out to

be inferior to LSKs in terms of discriminative power. Right: Comparison of ROC curves. Note that detection rate Pd and false

alarm rate Pf are defined as TP
nP

(= recall) and F P
F P+TN

respectively, where TN is the number of true negatives.

when vector-valued images are available though this requires further study. Challenging sets of

real-world object experiments have demonstrated that the proposed approach achieves a high

detection accuracy of objects of interest even in completely different context and under different

imaging conditions. Unlike other state-of-the-art learning-based detection methods, the proposed

framework operates using a single example of an image of interest to find similar matches; does

not require any prior knowledge (learning) about objects being sought; and does not require any

segmentation or pre-processing step of the target image. The proposed framework is general

enough as to be extendable to 3−D for such applications as action recognition, suspicious

behavior detection etc. using analogous 3−D LSKs [35], [60]. Since the proposed system is

designed with detection accuracy as a high priority, improvement of the computational complexity

of the proposed method via an efficient searching method such as a branch and bound search [58]

is also a direction of future research worth exploring. Additionally, for the proposed method to be

feasible for scalable image retrieval, we may adopt the idea of encoding the features as proposed

in [61], [62]. Interestingly, the detection framework proposed in our paper can also be useful

for solving the bottom-up saliency detection problem [32] by computing a self-resemblance map

between a center feature set (as a query) and surrounding feature sets (as a target). We also expect

to be able to apply the proposed method to other challenging medical/ diagnostic problems such

as change detection in medical imaging applications.

APPENDIX

The Lagrangian objective function to the minimization problem in Equation (25) is

f(λQ, λT ,uQ,uTi
) = u

T
QF

T
QFTi

uTi
−

λQ

2
(uT

QF
T
QFQuQ − 1) −

λTi

2
(uT

Ti
F

T
Ti

FTi
uTi

− 1) (28)
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Taking derivatives with respect to uQ and uTi
, we obtain

∂f

∂uQ

= F
T
QFTi

uTi
− λQ(FT

QFQuQ) = 0 (29)

∂f

∂uTi

= F
T
Ti

FQuQ − λTi
(FT

Ti
FTi

uTi
) = 0 (30)

We pre-multiply u
T
Ti

to Equation (30) and also pre-multiply u
T
Q to Equation (29). By subtracting these two

equations, we have

u
T
QF

T
QFTi

uTi
− λQ(uT

QF
T
QFQuQ) − u

T
Ti

F
T
Ti

FQuQ − λTi
(uT

Ti
F

T
Ti

FTi
uTi

) = 0, (31)

where (uT
QF

T
QFTi

uTi
)T = u

T
Ti

F
T
Ti

FQuQ is a scalar.

Enforcing the constraints (uT
QF

T
QFQuQ)T =(uT

Ti
F

T
Ti

FTi
uTi

)T =1, we are led to the conclusion that λQ=λTi
.

We define ρ=λQ=λTi
. Assuming F

T
Ti

FTi
is invertible from Equation (30),

uTi
=

(FT
Ti

FTi
)−1

FTi
FQuQ

ρ
(32)

and so plugging in Equation (29), we have

(FT
QFTi

)(FT
Ti

FTi
)−1(FTi

FQ)uQ

ρ
= ρ(FT

QFQ)uQ (33)

Assuming F
T
QFQ is also invertible, we are left with

(FT
QFQ)−1(FT

QFTi
)(FT

Ti
FTi

)−1(FT
Ti

FQ)uQ = ρ2
uQ. (34)

Similarly, we have

(FT
Ti

FTi
)−1(FT

Ti
FQ)(FT

QFQ)−1(FT
QFTi

)uTi
= ρ2

uTi
. (35)
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