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Abstract We present a novel human action recognition method basegemegime locally
adaptive regression kernels and the matrix cosine sityilargasure. The proposed method
operates using singleexample (e.g., short video clip) of an action of interestrid Similar
matches. It does not require prior knowledge (learninguébotions being sought; and does
not require foreground/background segmentation, or artjomestimation or tracking. Our
method is based on the computation of the so-called locatietg kernels as space-time
descriptors from a query video, which measure the likenéssvoxel to its surroundings.
Salient features are extracted from said descriptors amgared against analogous features
from the target video. This comparison is done using a matixeralization of the cosine
similarity measure. The algorithm yields a scalar resentddavolume with each voxel here,
indicating the likelihood of similarity between the querigl®o and all cubes in the target
video. By employing nonparametric significance tests amdmaxima suppression, we de-
tect the presence and location of actions similar to themyipeery video. High performance
is demonstrated on the challenging set of action data ($fmachand Irani 2007b) indicat-
ing successful detection of actions in the presence of fatibm different contexts and even
when multiple complex actions occur simultaneously withia field of view of the camera.
Further experiments on the Weizmann dataset (Gorelick &08l7) and the KTH dataset
(Schuldt et al. 2004) for action categorization task dertrates that the proposed method
achieves improvement over other (state-of-the-art) élyos.
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1 Introduction

A huge number of videos (BBCYoutubé&) are available online today and the number is
rapidly growing. Human actions constitute one of the mogidrtant parts in movies, TV
shows, and consumer-generated videos. Analysis of hunmeimsidn videos is considered
a very important component in computer vision systems tsxafi such applications as
human-computer interaction, content-based video retrigisual surveillance, analysis of
sports events and more. The term “action” refers to a simg#am pattern as performed
by a single subject, and in general lasts only for a shoropeof time, namely just a few
seconds. Action is often distinguished from activity in #ense that action is an individual
atomic unit of activity. In particular, human action reféosphysical body motion. Recog-
nizing human actions from video is a very challenging probtiie to the fact that physical
body motion can look very different depending on the contéxsimilar actions with dif-
ferent clothes, or in different illumination and backgrduran result in a large appearance
variation; 2) the same action performed by two differentgdeanay look dissimilar in many
ways.

Over the last two decades, many studies have attemptedkie thés problem broadly
by means of time-series non-parametric approaches, paiagproaches, and volumetric
approaches. For instance, 2-D templates (Bobick and JW[2808), 3-D object models
(Gorelick et al. 2007), and manifold learning methods (Elgal and Lee. 2004) are cate-
gorized into time-series non-parametric approaches vidideen Markov Models (Starner
et al. 1998), linear dynamical systems (Mazzaro et al. 208%) non-linear dynamical sys-
tems (Pavlovic et al. 2000) are called parametric appraadf@umetric approaches (part-
based approach: [Niebles and Fei-Fei. 2007; Niebles etC8i8]2 subvolume matching:
[Shechtman and Irani. 2007b; Ke et al. 2005], and tensagebapproach: [Kim et al. 2007])
tend to outperform the other two approaches. We refer tleedated reader to Turaga et al.
2008, and references therein for a good summary.

As examples of the volumetric approach, Niebles and FeRB6i and Niebles et al.
2008 considered videos as spatiotemporal bag-of-wordsctygating space-time interest
points and clustering the features, and then used a pr@iabllatent Semantic Analysis
(pLSA) model to localize and categorize human actions. Hewehe performance of these
methods can degrade due to 1) the lack of enough traininglean) misdetections and
occlusions of the interest point since they ignore globatsgtime information. Shechtman
and Irani 2007b employed a three dimensional correlatiberse for only action detection.
They focused on subvolume matching in order to find similatioman the two space-time
cubes, which can be computationally heavy. Ke et al. 2008gmted an approach which uses
boosting on 3-D Haar-type features inspired by Haar-likduees in 2-D object detection
(Viola and Jones 2004.) While these features are very aftit@ecompute, many examples
are required to train an action detector in order to achiee@dgperformance. Recently,
Kim et al. 2007 generalized canonical correlation analisiensors and showed very good
accuracy on KTH dataset, but their method requires a maiigahaent process for camera
motion compensation. Ning et al. 2008 proposed a systenatolséor human actions using
a coarse-to-fine approach with a five-layer hierarchicatsgiame model. These volumetric
methods do not require background subtraction, motiomesion, or complex models of
body configuration and kinematics. They tolerate variaionappearance, scale, rotation,
and movement to some extent. Methods such as those in Skechtmd Irani. 2007b; Ning

1 http://wuw.bbcmotiongallery.com/Customer/index.aspx
2 http://www.Youtube.com



Fig. 1 (a) A hand-waving action and possibly sim-
ilar actions

et al. 2008; and Yeo et al. 2008 which aim at recognizing astlmased solely on only one
query (what we shall call training-free) are very useful biaallenging for video retrieval
from the web (e.g., viewdfevideosurf). In these methods, a single query video is provided
by users and every gallery video in the database is compatkdhe given query, posing a
video-to-video matching problem.

1.1 Problem Specification

We present a novel approach to the problem of human actimgné®n as a video-to-
video matching problem. Here, recognition is generallyid#id into two parts: category
classification and detection/ localization. The goal ofactlassification is to classify a
given action query into one of several pre-specified categdfor instance, 6 categories
from KTH action dataset (Schuldt et al. 2004): boxing, hdag@pging, hand waving, jogging,
running, and walking), while action detection is meant toegate an action of interest from
the background in a target video (for instance, spatioteaipocalization of a ballet turn
(1 second) from a long ballet video sequence (25 secondsiy.pBper tackles both action
detection and category classification problems simultasigdoy searching for an action of
interest within other “target” videos with onlysangle“query” video. In order to avoid the
disadvantages of learning-based methods which requirgeafamber of training examples,
we focus on a sophisticated feature representation witHfeoeat and reliable similarity
matching scheme which at the same time, allows us to avoidiffieult problem of explicit
motion estimation.

In general, the target video may contain actions similahéoguery, but these will typi-
cally appear in completely different context (See Fig. Xamples of such differences can
range from rather simple optical or geometric differencegl as different clothes, lighting,
action speed and scale changes); to more complex inherectistl differences such as for
instance a hand-drawn action video clip (e.g., animatiathar than a real human action.

3 http://www.viewdle.com
4 http://www.videosurf.com



Fig. 2 Action detection 1
problem (a) Given a query
video Q, we wish to de-
tect/localize  actions  of
interest in a target vide®d. T

is divided into a set of over-
lapping cubes (b) space-time
local steering kernels (3-D
LSKs) capture the geometric
structure of underlying data.

1.2 Overview of the Proposed Approach

In this paper, our contributions to the action recognitiasktare mainly two-fold. First,
we propose a novel feature representation that is deriwed &pace-time local regression
kernels which capture the underlying structure of the dateedingly well, even in the
presence of significant distortions. The most salient dtarstics are then computed by
performing dimensionality reduction, namely Principalngmmnent Analysis (PCA) on a
collection of the space-time local regression kernelsoBgcwe propose to use a training-
free nonparametric detection scheme, an earlier versiavhah for 2-D object detection
was proposed by Seo and MilarfaFurthermore, we extended the detection scheme to ac-
tion category classification by automatically cropping arshction clip from larger videos.

The key idea behind local regression kernels is to robugttgio local data structures
by analyzing the radiometric (pixel value) differencesdzhen estimated gradients, and use
this structure information to determine the shape and giaecanonical kernel (descriptor).
The motivation to use these local regression kernels isdh&esuccessful work on adap-
tive kernel regression for image denoising, interpolafiftekeda et al. 2007) and deblurring
(Takeda et al. 2008b). Takeda etfabxtended the kernel regression framework to super-
resolution by introducing space-time locgtkeringkernels (3-D LSK) which capture the
essential local behavior of a spatiotemporal neighborhdbe 3-D LSK is fundamentally
based on the comparison of neighboring voxels in both spaddime, which implicitly
contains information about the local motion of the voxelsoas time, thus requiring no
explicit motion estimation.

5 Downloadable fromhttp://uww.soe.ucsc.edu/~rokaf/paper/TrainingFreeGenericObjectDetection_
FinalRevision_Mar10.pdf.

6 Downloadable fromhttp://www.ee.ucsc.edu/~milanfar/publications/journal/SpatiotemporalKer
nelRegression.pdf.



Recently, Seo and Milanfaproposed to use local steering kernels as descriptors for
generic 2-D object detection and demonstrated a high detestcuracy in challenging sets
of real-world objects. Action recognition addressed irs thaper is considered to be more
challenging than static (2-D) object recognition due tdglems such as variations in indi-
vidual motion and camera motion. However, motion providesdditional discriminative
power and 3-D LSKs can implicitly capture local motion infation exceedingly well.

Inspired by these earlier works, we propose to use 3-D LSK#&problems of detec-
tion/localization of actions of interest between a queea and a target video. Denoting
the target videoT), and the query videoQ), we compute a dense set of 3-D LSKs from
each. These densely computed descriptors are highly iafbren but taken together tend
to be over-complete (redundant). Therefore, we derivaufeatby applying dimensionality
reduction (namely PCA) to these resulting arrays, in ordeetain only the salient charac-
teristics of the 3-D LSKs.

Generally, T is bigger than the query videQ. Hence, we divide the target videlo
into a set of overlapping cubes indexedibyhich are the same size @(See Fig. 2(a)).
The feature collections fror@® andT; form feature volume$q andFy,. We compare the
feature volumest andFq from theit" cube of T andQ to look for matches. Inspired in
part by many studies (Fu et al. 2008; Fu and Huang 2008; Li7 2R008; Lin et al. 2005;
Ma et al. 2007) which took advantage of cosine similarityrdbe conventional Euclidean
distance, we employ “Matrix Cosine Similarity” as a simitprmeasure which generalizes
the (vector) cosine similarity between two vectors (Sctieeand Borlund. 2007; Ahlgren
et al. 2003; Rodgers and Nicewander 1988). The optimaldpenties of this approach were
introduced in Seo and Milanfausing a naive Bayes framework, which leads to the use of
the Matrix Cosine Similarity (MCS). In order to deal with thase where the target video
may not include any actions of interest or when there areipt@lbccurrences of action of
interest in the target video, we also adopt the idea of a fagnice test and non-maxima
suppression (Devernay 1995.)

Very recently, Shechtman and Irani 2007a introduced a siaeelocal self-similarity
descriptor for action detection and showed performanceaugment over their previous
approach (Shechtman and Irani 2007b). It is worth mentgpttiat this (independently de-
rived) local space-time self-similarity descriptor is a&sjal case of 3-D LSK and is also
related to a number of other local data adaptive metrics as@ptimal Space-Time Adap-
tation (OSTA) (Boulanger et al. 2005) and Non-Local MeankNN (Buades et al. 2008)
which have been used very successfully for video restoratiehe image processing com-
munity.

Fig. 3 shows an overview of our proposed framework for actietection and category
classification. Before we begin a more detailed descriptiea highlight some aspects of
the proposed framework.

— We propose a novel feature representation derived frometieeemputed 3-D LSKs.
Since the calculation of 3-D LSKs is stable in the presencenckrtainty in the data
(Takeda et al. 2007), our approach is robust even in the peesef noise. In addition,
normalized 3-D LSKs provide a certain invariance to illuation changes (see Fig. 5.)

— As opposed to Shechtman and Irani 2007b who filtered out infarmative” descrip-
tors in order to reduce the time complexity, we automatycalitain the most salient
feature volumes by applying Principal Components Anal{BiSA) to a collection of
3-D LSKs as similarly done in the approach of Ali and Shah 2@88re kinematic fea-
tures were derived from optical flow by applying PCA. The msgd method is feasible



ACTION DETECTION

Query
A
B < %%
arget
T T
‘LA : |
";o‘i‘;?‘;::‘:ifﬁ K compute feature volumes /

2) Significance Tests 1) Resemblance Volume (RV)
3) Non-maxima Suppression using Matrix Cosine Similarity
Final result
' RV ! f(p); //\
max(f(p):)

ACTION CATEGORY CLASSIFICATION ACHION CETEGORT

Query < Automatic cropping
L% of a short action clip

e ACTION
| —
b ° Q l DETECTION

max(f(p);) @
. max(f(p)i) @
Scoring .
max(f();) ©

least similar

LY i a3

most similar
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in practice because the dimension of features after PCAyisfiiantly reduced (e.g.,
from say 3x 3x 7 = 64, to 3 or 4), even though the descriptors are densely computed.

— We apply a nonparametric generic object detection framiéivar the action detection
problem and extend it to action category classification byeliging a method which
automatically crops a short action clip.

— The proposed method is tolerant to small deformations :20% scale change;15
degree rotation change) of the query and can detect mudtgtlens that occur simulta-
neously in the field of view of the camera using multiple qeeri

— From a practical standpoint, it is important to note thatgl@posed framework operates
using a single example of an action of interest to find similatches; does not require



any prior knowledge (learning) about actions being sought does not require any
pre-processing step or segmentation of the target video.

This paper is organized as follows. In the next section, veifpthe algorithmic aspects
of our action detection framework, using a novel featuregsgntation which results from
the “space-time locateeringkernel” (3-D LSK) followed by PCA and a reliable similarity
measure (the “Matrix Cosine Similarity”). In Section 3, waend the proposed detection
framework to action category classification. In Sectiond demonstrate the performance of
the system with comprehensive experimental results, ancbwelude this paper in Section
5.

2 Action Detection From a Single Query

As outlined in the previous section, our approach to detetibres consists broadly of three
stages. Below, we describe each of these steps in detaildém tb make the concepts more
clear, we first briefly describe the local steering kernelg-D. For extensive detail on this
subject, we refer the reader to Takeda et al. 2007.

2.1 Local Steering Kernel as a descriptor
2.1.1 Local Steering Kernel in 2-D (LSK)

The key idea behind LSK is to robustly obtain the local suitetof images by analyzing
the radiometric (pixel value) differences based on esthgtadients, and use this structure
information to determine the shape and size of a canonicakkeThe local steering kernel
is defined as follows:

K(x —x;Cj) = -~ dﬁé(C.) exp{ X 7X)_T§:2(X' —x)}» le[L, P, 1)

wherex| = [xl,xz]lT is the space-time coordinatédsjs a global smoothing parametét,is
the total number of samples in a local analysis window arcausdmple position ag, and
the matrixC; € R(?*2) s a covariance matrix estimated from a collection of firshagives
along spatial axes. The covariance ma@jxmodifies the shape and size of the local kernel
in a way which robustly encodes the local geometric strestur

As apparent from Fig. 4(a), the shape of the LSK’s is not syjrapGaussian, despite the
simple definition above. It is important to note that this écéuse for each pixel in the
vicinity of x, a different steering matri&, is used, therefore leading to a far more complex
and rich set of possible shapes for the resulting LSKs. Threesdea is valid in 3-D as well,
as described below.

2.1.2 Space-Time Local Steering Kernel (3-D LSK)

Now, we introduce the time axis to the data model so xhat [xl,xz,t]lT: X1 andx, are the

spatial coordinated,is the temporal coordinate. In this setup, the covarianceixn@, can
be naively estimated a§ J; with

2y (X1), Zg(X1), z(X1)

J = : : :

20 (XP), 2o (¥p), Z(XP)
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Fig. 4 (a) Examples of 2-D LSK in various regions. (b) Examples afcgptime local steering kernel (3-D
LSK) in various regions. Note that key frame means the fratherasthe center of 3-D LSK is located.

wherezy, (-),2,(-), andz(-) are the first derivatives along —,x,—, andt— axes, and®

is the total number of samples inspace-timdocal analysis window (or cube) around a
sample position at. For the sake of robustness, we compute a more stable estoh@t

by invoking the singular value decomposition (SVD)Jpfwith regularization as:

3
C = Zaquvq e R, @)
with
/ / / n a
a]_:ﬂ, azzﬂ’ aazﬂ’ I:(M) (3)
VSt A NEoEY NEoRY P

whereA’ andA” are regularization parameters that dampen the noise eifectestricty;
and the denominators @f;'s from being zero. The singular values (s;, andsg) and the
singular vectors\(i, vo, andvs) are given by the compact SVD df:

J =UiSV] = Udiags:, s, s|[v1,V2,v3] ", @)

Then, the covariance matr&| modifies the shape and size of the local kernel in a way
which robustly encodes the space-time local geometrictires present in the video (See
Fig. 4 (b) for an example.) Similarily to 2D case, 3-D LSKs foamed as follow:

K —x:Cl) = v/ det(Cy) Xp{_(xl -x)TCi(x *X)}’ Cl e R, (5)

h? 2h?

In the 3-D case, orientation information captured in 3-D L&ltains the motion infor-
mation implicitly. It is worth noting that a significant strgth of using this implicit frame-
work (as opposed to the direct use of estimated motion v&ci®the flexibility it provides
in terms of smoothly and adaptively changing the paramelefiaed by the singular values
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Fig. 5 Invariance and robustness of 2-D LSK weighté$x; — x; 2) in various challenging conditions. Note
that WGN means White Gaussian Noise.

in Equation 3. This flexibility allows the accommodation @&a complex motions, so long
as their magnitudes are not excessively large. For a moregthdinalysis of local steering
kernels, we refer the interested reader to Takeda et al., 200Ba.

In what follows, at a positiox, we will essentially be using (a normalized version of)
the functionK(x; —x; C;) as a function of andC, to represent a video'’s inherent local
space-time geometry. To be more specific, the 3-D LSK fundtié(x; — x; C;) is densely
calculated and normalized as follows

w _ Kol —xCy) 1 e[l P
Q(X|7X)* zr:]_K(jg(X|*X;C|)’ E[ 5 7n]7 E[ 5 3 ]7
Wi —x) = —fIXC) oy e Bl @)

i K1j' (x—xCp)

wheren andny are the number of 3-D LSKs in the query vid€oand the target vided®
respectively’ . Next, we describe some key properties of the above.

2.2 Feature representation

Seo and Milanfar have shown that the normalized LSKs in 2-D follow a power-(ae.,

a long-tail) distribution. That is to say, the features aratt®red out in a high dimensional
feature space, and thus there basically exists no dengercinghe descriptor space. The
same principle applies to 3-D LSK case. In order to illustiatd verify that the normalized
3-D LSKs also satisfy this property and follow a power-lawtdbution, we computed an
empirical bin density (100 bins) of the normalized 3-D LSKsifg a total of 50000 3-D
LSKs) computed from 90 videos from Weizmann action dataSetélick et al. 2007) using
the K-means clustering method (See Fig. 6.) The utility &f tibservation becomes clear in
the next paragraphs.

7 Note that videos here are gray scale. The case of color ishvieating independently and is dis-
cussed in the manuscripttp: //wwu . soe.ucsc.edu/~rokaf /paper/TrainingFreeGenericObjectDetection_
FinalRevision_Mar10.pdf.
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Fig. 6 (a) Some example video sequences (Weizman dataset) whiteSks were computed. (b) Plots of
the bin density of 3-D LSKs and their corresponding low-dusienal features.

In the previous section, we computed a dense set of 3-D LS¥s @ andT. These
densely computed descriptors are highly informative, b€t together tend to be over-
complete (redundant). Therefore, we derive features blyeygpdimensionality reduction
(namely PCA) to these resulting arrays, in order to retaily tre salient characteristics of
the 3-D LSKs. As also observed in Boiman et al. 2008, an enkeafldocal features with
even little discriminative power can together offer sigrdfit discriminative power. How-
ever, both quantization and informative feature seleadiom long-tail distribution can lead
to a precipitous drop in performance. Therefore, insteathgfguantization and informative
feature selection, we focus on reducing the dimension ofl3Ris using PCA to enhance
the discriminative power and reduce computational conifylek

This idea results in a new feature representation with a nadeleimension which in-
herits the desirable discriminative attributes of 3-D LSKe distribution of the resulting
features sitting on the low dimensional manifold also tetad®llow a power-law distribu-
tion as shown in Fig. 6 (b) and this attribute of the featulésas us to the use “Matrix
Cosine Similarity” measure which will be illustrated in $iea 2.3. Seo and Milanfathave
illustrated that a naive Bayes decision rule based on tleegares for object detection leads
to the use of “Matrix Cosine Similarity”.

In order to organiz&#\(x —x) andWr (x| —x), which are densely computed frarand
T, let Wo,W+t be matrices whose columns are vectatgwr, which are column-stacked
(rasterized) versions &fig(x| — x) Wr (x| — X) respectively:

WQ:[Wév"’,Wg}ERpxn, WT:[W-}',"',W?—T}GRPXW. @

As described in Fig. 3, the next step is to apply PCAtg for dimensionality reduction
and to retain only its salient characteristics. Applying#0 Wq we can retain the first
(largest)d principal componentswhich form the columns of a matrikg € RP*d. Next,
the lower dimensional features are computed by projedfiizgandW+ ontoAg:

FQ: [f(lg”an] :,A\BWQGIRCMI"I7 FT: [f':IL'77fE|1T] :ABWT ERdXﬂT. (8)

8 Ali and Shah 2008 also pointed out that interest point dpsmrbased action recognition methods have
a limitation in that useful pieces of global information mag lost.
9 Typically, d is selected to be a small integer such as 3 or 4 so that 80 to 6% tinformation” in the

d "
LSKs would be retained. (i.e%‘p:l—j\\f > 0.8 (to 0.9) where; are the eigenvalues.)
i=1"
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andFr are computed from quer® and target vided respectively. Eigenvectors and feature vectors were
transformed to volume and up-scaled for illustration psg=

P

Fig. 7 illustrates the principal componentsAy and shows what the featurég, Fr
look like for a ballet video sequence. In Fig. 8, we can segthtggprincipal components from
different actions in the KTH dataset (Schuldt et al. 2004klIdistinct from one another. We
can infer that the derived feature volumes should have a dsadiminative power.

It is worth noting that a similar approach was also taken byakd Sukthankar 2004
where PCA was applied to interest point descriptors suchl@$, $eading to enhanced
performance. Very recently, Ali and Shah 2008 proposed afskinematic features that
extract different aspects of motion dynamics present irofftecal flow. They obtained bags
of kinematic modes for action recognition by applying PC/Aateet of kinematic features.
We differentiate our proposed method from Ali and Shah 2008i¢ sense that 1) motion
information is implicitly contained in 3-D LSK while Ali an8hah 2008 explicitly compute
optical flow; 2) Background subtraction was used as a pregasing while our method
is fully automatic, 3) Ali and Shah 2008 employed multipletamce learning while the
proposed method does not involve any training phase.

2.3 Detecting Similar Actions using the Matrix Cosine Maasu
2.3.1 Matrix Cosine Similarity
The next step in the proposed framework is a decision ruledas the measurement of

a “distance” between the computed feature voluffgsFr,. We were motivated by earlier
works such as Ma et al. 2007; Fu et al. 2008; and Fu and Huary 8@ have shown the
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Fig. 8 Comparison between Eigenvectdkg’'s and Feature row vectors &fp's from 2 action categories
(running VS. hand clapping) from the KTH dataset (Schuldtle2004). Eigenvectors and feature vectors
were transformed to volume and up-scaled for illustratiorppses. Whilé\g’s andFq’s of running actions
by two different people are similar, they are totally diffat from those of hand clapping actions.

effectiveness of correlation-based similarity. RecerBigo and Milanfar have proposed a
nonparametric detection framework based on “Matrix CoSimailarity” and have achieved
excellent performance in 2-D object detection. Here, we@gse to use this framework for
action detection. For a more in depth analysis on the detedtamework, we refer the
interested reader to Seo and Milar¥ar

The “Matrix Cosine Similarity (MCS)” between two feature rees Fq,Fy, which

consist of a set of vectors can be defined as the “Frobeniwes moduct” between two
normalized matrices as follows:

_ FLFr
p(Fo,Ft) =< Fo,Fr >r=trac ————) € [-1,1], 9)
IFQllr[IFrllr
E_ Fp _ . f6 1 E_ F _ &
whereFo = e = [T Trgle) 2MFT = 1=k = [l T -

Equation 9 can be rewritten as a weighted sum of the standaidecsimilaritiep (fo, fr,) =
.
Héﬁ% (Ma et al. 2007; Fu et al. 2008; Fu and Huang 2008) between peiclof corre-

sponding feature vectors (i.e., columnsfig, Fr, as follows:

v T " IFG I I
QT (gl QT
p(Fo,.Ft) =y 7m——>— = p(fo,f7) e+ (10)
(FoFn) = 2 TRallelFale ~ 2P W Role R e
The weights are represented as the produ Jgi@# and“f[i” which indicate the relative
9 p produteste and eTe

importance of each feature in the feature $ejsF.. We see here an advantage of the MCS
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in that it takes account of the strength and angle similaoftyectors at the same time.
Hence, this measure not only generalizes the cosine sityitaturally, but also overcomes
the disadvantages of the conventional Euclidean distamighvis sensitive to outliers. Fig.
9 shows examples of the computation of the MCS, which inditizdt it provides a reliable
measure of similarity.

We computep(Fq,Fr,) overM (a possibly large number of) target cubes and this can
be efficiently implemented by column-stacking the matriegsFr, and simply computing
the (vector) cosine similarity between two long column vestas follows:

N

i =p(Fo,Fr)=§ —2 1
p=pFelf= 2 Tl

fu>f< )

;1‘ 1\/2/ 13 1|f

= p(colstacKFq), colstackFr)) € [—1,1], (11)

where fg"’), fT<f") are elements in thé" vector ff, and ff respectively, and colstach
means an operator which column-stacks (rasterizes) axnatri

It is worth noting that Shechtman and Irani 2007b proposédd &lume correlation
score (global consistency measure between query and tafge} by computing a weighted
average of local consistency measures. The difficulty witit tnethod is that local con-
sistency values should be explicitly computed from eachesponding subvolume of the
query and target video. Furthermore, the weights to caewalobal consistency measure
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Fig. 10 (a) Resemblance volume (RV) which consistgmf (b) Resemblance volume (RV) which consists
of f(pi). Note thatQ andT are the same examples shown in Fig 2 where a female and a nflatedaacer
are taking turning actions.

are based on a sigmoid function, which is somewhat ad-hoe, e claim that our MCS
measure is better motivated, and more general than théiagtmnsistency measure for
action detection.

The next step is to generate a so-called “resemblance voI(RW), which will be a
volume of voxels, each indicating the likelihood of simitgabetween theQ andT. As for
the final test statistic comprising the values in the resend# volume, we use thgopor-
tion of shared variancepf) to that of the “residual” variancél — p2). More specifically,
RV is computed as follows:

RV: f(p) = (12)

1-p2
In Fig. 10, examples of resemblance volume (RV) baseighdoandf (p;) are presented. Red
color represents higher resemblance. As is apparent fregettypical results, qualitatively,
the resemblance volume generated frb(p;) provides better contrast and dynamic range
in the result(f (p;) € [0,00]). More importantly, from a quantitative point of view, we aot
that f (p;) is essentially the Lawley-Hotelling Trace statistic (Teatka 1988 ; Calinski et al.
2006), which is used as an efficient test statistic for detgaorrelation between two data
sets. Furthermore, it is worth noting that historicallystbtatistic has been suggested in the
pattern recognition literature as an effective means ofsuéxag the separability of two data
clusters (e.g. Duda et al. 2000.)

2.3.2 Non-Parametric Significance Test

If the task is to find the most similar cub&) to the query Q) in the target video, one can
choose the cube which results in the largest value in the RV, (haxf (p;)) among all the
cubes, no matter how large or small the value is in the rand®,ef]. This, however, is
unwise because there may notdogy action of interest present in the target video. We are
therefore interested in two types of significance tests. firbeis an overall test to decide
whether there is any sufficiently similar action presenhmtarget video at all. If the answer
is yes, we would then want to know how many actions of inteaestpresent in the target
video and where they are. Therefore, we need two threshafdsverall threshold, and
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[Significance tests ] [ Non-maxima suppression ]

va(p)z 7 e ., 1)Takethecubo;?;::;hs?axmumRV

1) Overall Test

max f(p;) > 70

2) Take the cuboid with
second local maximum

2) Test on the number of actions i T Frame 97
0.5 > ‘ WA
0.4 Empirical PDF
= T =1.9246
0:1 99% significance level i

0 |
0 246 8 101214 1618 20 3) Iterate this process until

local maximum < 7T

Frame 21

Fig. 11 Note that query and target are same as those in Fig. 2. Lefsiggnificance tests, Right: Non-maxima
suppression (Devernay 1995)

a thresholdr to detect the (possibly) multiple occurrences of similaiceaxs in the target
video.

In a typical scenario, we set the overall threshnjdo be, for instance, .96 which is
about 50% of variance in commth(i.e., p2 = 0.49). In other words, if the maximdi(p;)
is just above M6, we decide that there exists at least one action of iritéfae next step is
to chooser based on the properties bfp;). When it comes to choosing thiethere is need
to be more careful. If we have a basic knowledge of the unuterlgistribution of f (0o;),
then we can make predictions about how this particularssiativill behave, and thus it is
relatively easy to choose a threshold which will indicatesthier the pair of features from the
two videos are sufficiently similar. But, in practice, we di have a very good way to model
the distribution off (p;). Therefore, instead of assuming a type of underlying distion,
we employ the idea of nonparametric testing. Namely, we caengn empirical probability
density function (PDF) fronM samplesf (p;) and setr so as to achieve, for instance, a 99
percent significance level in deciding whether the giveneslkre in the extreme (right) tails
of the distribution. This approach is based on the assumptiat in the target video, most
cubes do not contain the action of interest (in other wordo@ of interest is a relatively
rare event), and therefore, the few matches will result lneswhich are in the tails of the
distribution of f (0;).

10 This in effect represents an unbiased choice reflecting amk 6f prior knowledge about whether any
similar actions are present at all.
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Weizmann Data Set KTH Data Set

Boxing Clapping

N

— L3y Jogging Walking

Fig. 12 Some

examples (a) the
Weizmann action
dataset (Gorelick

et al. 2007) (b) -
the KTH action Jaick Jumping sideways Running

dataset (Schuldt
et al. 2004) (a) (b)

2.3.3 Non-maxima Suppression

After the two significance tests witly, T are performed, we employ the idea of non-maxima
suppression (Devernay 1995) for the final detection. We th&evolume region with the
highestf (p;) value and eliminate the possibility that any other actiafetected within some
radiug?® of the center of that volume again. This enables us to avoltiptefalse detections
of nearby actions already detected. Then we iterate thisegsountil the local maximum
value falls below the threshold Fig. 11 shows a graphical illustration of significancegest
and non-maxima suppression.

3 Action Category Classification

As opposed to action detection, action category clasdificgfuraga et al. 2008, and ref-
erences therein) aims to classify a given action query in®af several pre-specified cat-
egories as shown in Fig. 3. Examples of human actions fronWiigmann action dataset
(Gorelick et al. 2007) and the KTH action dataset (Schuldile2004) are shown in Fig.
12. In earlier discussion on action detection, we assumatdinhgeneral the query video
is smaller than target video. Now we relax this assumptiowl, thus we need a prepro-
cessing step which selects a valid human action from theyquéeo. This idea would not
only allow us to extend the proposed detection frameworlctima category classification,
but also improve both detection and classification accubgagmoving unnecessary back-
ground from the query video. Once the query video is cropged short action clip, the
cropped query is searched against each labeled video irathbake, and the value of the

11 The size of this “exclusion” region will depend on the apafion at hand and the characteristics of the
query video.
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Fig. 13 Automatic action cropping (a) Query frames (b) absoluttetiéhce images (c) empirical PDF of ab-
solute difference images (d) thresholded absolute diffsémages (e) vertical sum corresponding to thresh-
olded absolute difference images (f) action shape by atesdifference images and query with a bounding
cube containing action.

resemblance volume (RV) is viewed as the likelihood of snity between the query and
each labeled video. Then we classify a given query video asobthe predefined action
categories using a nearest neighbor (NN) classifier.

3.1 Automatic Action Cropping

In this section, we introduce a procedure which automdyicagments from the original
query video a small cube with 1 second (25 frames) leAgthat contains human action.
We further decide whether the action has a direction or motifstance, in case of running,
walking, and jogging actions, is it moving to the left or i@h First, in order to reduce
the effect of noise, the query video is spatially blurredvat Gaussian kernel of size [5
x 5] with 0 = 1.5. Then we assign the first frame as a key frame, and computdusds

difference images by subtracting each frame from the kaydraNext, we utilize the idea of
non-parametric significance testing again. With a coltectif absolute difference images,
we compute an empirical PDF from all the difference values sat a thresholdy so as to

achieve, a 95% significance level in deciding whether thergiifference values are in the
extreme (right) tails of the empirical PDF of the absolutifetence values. The approach
is based on the assumption that in the query video, humaonaistia rare event and thus

12 Ning et al. 2008 pointed out that 1 second length video clipcally confines human action. We also
found that from our experiments, 25 frames is long enouglthi@iquery.
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® (h)

Fig. 14 Examples of action shape by thresholded absolute differenages and query videos with a bound-
ing cube containing action on the Weizmann action dataj&efad (b) jump in place (c) wave with one hand
(d) wave with two hands (e) run (f) jump (g) side (h) walk (iiskj) jack.

results in values which are in the tails of the distributiéfter thresholding each absolute
difference image wittry, we calculate a vertical sum to check whether there is atiirec
associated with the action. In order to also reduce noiszteffom the vertical sum, we
apply a Gaussian blurring to the vertical sum with a kernediné 5 witho = 3. If there
are two maxima throughout all frames and one is deviating filee other, we classify this
query video as an action with a dominant direction. Otheswiise query video is considered
to have no direction. What we do next is to crop only valid haraation region by fitting
a 3-D rectangular box to a collection of thresholded abedtiifference images. Figure 13
shows the entire procedure of automatic action croppingvoretction categories (Jack and
Run).

4 Experimental Results

In this section, we demonstrate the performance of the geghonethod with comprehen-
sive experiments on three datasets; namely, the geneiah aettaset (Shechtman and Irani
2007b), the Weizmann action dataset (Gorelick et al. 2087, the KTH action dataset
(Schuldt et al. 2004). While the general action dataset v8asl to evaluate detection per-
formance of the proposed method, the Weizmann action dataddhe KTH action dataset
were exploited for action categorization. Comparison islenaith other state-of-the-art
methods that have reported their results on these datasets.
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Fig. 15 Results searching for walking person on the beach (a) quéep\(a short walk clip) (b) target video
(c) Resemblance volumes (RV) (d) a few frames frbrfe) frames with resemblance volume on top of it.

4.1 Action Detection

In this section, we show several experimental results orckaey with a short query video
against a (typically longer and larger ) target video. Outhue detects the presence and lo-
cation of actions similar to the given query and providesreesef bounding cubes with re-
semblance volume embedded around detected actions. Notethackground/foreground
segmentation is required in the proposed method. This rdetln also handle modest
amount of variations in rotation (up th15 degree), and spatial and temporal scale change
(up to +20%). Once giverQ andT (typically Q of 60 x 70 pixels andT of 180 x 360
pixels), we blur and downsample baghandT by a factor of 3 in order to reduce the time-
complexity. We then compute 3-D LSK of sizex3 (space)x 7 (time) as descriptors so that
every space-time location @ andT yields a 63-dimensional local descriptfq andWt
respectively. The reason why we choose a lager time axidtsrespace axis of the cube is
that we focus on detecting similar actions regardless éémiht appearances, thus we give
a higher priority to temporal evolution information thareipl appearance. The smoothing
parameteh for computing 3-D LSKs was set ta2 We end up wittFq, Fr by reducing
dimensionality from 63 tal = 4 and then, we obtain RV by computing the MCS measure
betweenFq,Fr. The thresholdr for each test example was determined by the 99 percent
confidence level. We applied our method to 3 different exasple. detecting 1) walking
people, 2) ballet turn actions, and 3) multiple actions ie eideo. Shechtman and Irani
2007b have tested their method on these videos using the aang and Shechtman and
Irani 2007a and Ning et al. 2008 also tested their methodsoe ®f these videos. Visually,
we achieved similar (or even better) performance as cordgarthe methods in Shechtman
and Irani 2007a; Shechtman and Irani 2007b; Ning et al. 28Ghawn in Fig 15, 16, and
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Part 2

Part 3

Fig. 16 Results searching for ballet turn on the ballet video (a)yyuieo (a short ballet turn clip) (b) target
video (c) resemblance volumes (RV) (d) a few frames fibife) video frames with resemblance volume on
top of it.

17. It is worth noting here that these training-free actietedtion methods did not provide
either threshold values or describe how they selectedhblgsalues in reporting detec-
tion performance. On the other hand, the threshold valuesigiomatically chosen in our
algorithm with respect to the confidence level as explaireaties.

Fig. 15 shows the results of searching for instances of wglReople in a target beach
video (460 frames of 18& 360 pixels). The query video contains a very short walking
action moving to the right (14 frames of 6070 pixels) and has a background context which
is not the beach scene. In order to detect walking actiongheredirections, we used two
queries Q and its mirror-reflected version) and generated two RVs. &yng the higher
score among values from two RVs at every space-time locatierarrived at one RV which
includes correct locations of walking people in the cordiaction. Fig. 15 (a) shows a few
sampled frames from. In order to provide better illustration af, we dividedT into 3
non-overlapping sections. Fig. 15 (b) and (c) represerit padt of T and its corresponding
RV respectively. Red color represents higher resemblaritke Wwlue color denotes lower
resemblance values. Fig. 15 (d) and (e) show a few frames Tr@nd RVs superimposed
onT respectively.

Fig. 16 shows the results of detecting ballet turning actioa target ballet video (284
frames of 144« 192 pixels). The query video contains a single turn of a malecdr (13
frames of 90x 110 pixels). Fig. 16 (a) shows a few sampled frames f@niNext, Fig. 16
(b) and (c) represent each partfand its corresponding RV respectively. Fig. 16 (d) and
(e) show a few frames from and RVs superimposed dnrespectively. Most of the turns
of the two dancers (a male and a female) were detected evegtthbis video contains
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Fig. 17 Results searching for multiple actions (a) four differembrs video queries. Note that white boxes
represent automatic cropping results as explained in SeqI3). target videdl' (c) resemblance volumes
(RV)s with respect to each query.

very fast moving parts and contains large variability intEdascale and appearance (the
female dancer wearing a skirt) as compared to the given q@eWe observed that one of
the female dancer’s turning actions was missed becausegef &patial scale variation as
compared to the give®. However, we can easily deal with this problem by either siifjig
the significance level or using a multi-scale approach as #foSeo and Milanf&t The de-
tection result of the proposed method on this video visualperforms those in Shechtman
and Irani 2007b; Ning et al. 2008 which had a number of misedietins and false alarms,
and compares favorably to that in Shechtman and Irani 200 Terins of visual detection
accuracy.

Fig. 17 shows the results of detecting 4 different actionga(k”, “wave”, “clap”, and
“jlump”) which occur simultaneously in a target video (12@rfres of 288x 360 pixels).
Four query videos were matched against the target vide@amtkently. Fig. 17 (a) and (b)
show a few sampled frames frojhandT respectively. White boxes in Fig. 17 (a) represent
automatic cropping results as explained in Sec 3.1. Thdtieg®RVs are shown in Fig. 17
(c). Most of the actions were detected although one of twag’thctions on the target video
was missed.

In all the above examples, we used the same parametersvitdeng based on all the
results above, that the proposed training-free actiorctietebased on 3-D LSK works well
and is robust to modest variations in spatiotemporal scale.
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4.2 Action Category Classification

Our baseline algorithm is designed for detecting actionsdaos, but this method can also
be extended to action classification as explained in Se@&iaffe conducted an extensive
set of experiments to evaluate the action classificatiofopaance of the proposed method
on the Weizmann action dataset (Gorelick et al. 2007) an&Tre action dataset (Schuldt

et al. 2004).

4.2.1 Weizmann Action Data Set

The Weizmann action dataset contains 10 actions (bend,jjaok forward, jump in place,
jump sideways, skip, run, walk, wave with two hands, and waik one hand) performed
by 9 different subjects (See Fig. 12 (a).) This dataset cositadeos with static cameras and
simple background, but it provides a good testing enviramr evaluate the performance
of the algorithm when the number of categories are large eoeapto the KTH dataset (a
total of 6 categories). The testing was performed in a “leave-out” settingi.e., for each
run the videos of 8 subjects are labeled and the videos okthaining subject are used for
testing (query). We applied the automatic action croppimghmd introduced in Section 3.1
to the testing video. Then the resulting short action climached against the remaining
labeled videos using the proposed method. We classify estimg video as one of the 10
action types by 3-NN (nearest neighbor) as similarly dori¢ing et al. 2008. The results are
reported as the average of nine runs. We were able to achiegmgnition rate of 96% for
all ten actions. The recognition rate comparison is pravideTable 1 as well. The proposed
method which is training-free performs favorably agaitatesof-the-art methods (Niebles
et al. 2008; Junejo et al. 2008; Liu et al. 2008; Jhuang eldl7 2Ali and Shah 2008; Batra
et al. 2008) which largely depend on trainlfg

Table 1 Comparison of average recognition rate on the Weizmanrseef&orelick et al. 2007)

[ Our Approach (1-NN)[ Juenjoet al. (Junejo et al. 2008) | Liu et al.(Liu et al. 2008)

90% 95.33% 90%
Our Approach (2-NN)| Niebleset al. (Niebles et al. 2008) Ali et al. (Ali and Shah 2008)

90% 90% 95.75%
Our Approach (3-NN)| Jhuanget al. (Jhuang et al. 2007)| Batraet al. (Batra et al. 2008)

| 96% | 988% | 92% |

We further provide the results using 1-NN and 2-NN for congmar. We observe that
these results also compare favorably to several stateeséitt methods even though our
method involves no training phase, and requires no backg/éreground segmentation.
It is worth noting that the method in Jhuang et al. 2007 is msighed for action localiza-
tion, but only for action classification. Fig. 18 shows thaftsion matrix for our method.
Note that our method is mostly confused by similar actiorss#es, such as “skip” with

“jump”,“run”, and “side”.

13 1t is worth noting that different groups employed differeetperimental methodologies. There are
broadly two main evaluation methods: 1) leave-one-out andpit-data-equally. The split-data-equally
means that the a collection of video sequences are dividedwo equal sets randomly: one for training
examples and the other for testing (query). Since our medoed not involve any training, we adopted the
leave-one-out in this paper.
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o e Fig. 18 Average confusion matrix for the Weizmann
6@/70 St %, % % % %4%1@ %L@ action dataset. (Here, 3-NN was used as similarly done
© v e in Ning et al. 2008.)

4.2.2 KTH Action Data Set

In order to further verify the performance of our algorithne also conducted experiments
on the KTH dataset. The KTH action dataset contains six tgésiman actions (boxing,
hand waving, hand clapping, walking, jogging, and runnimgrformed repeatedly by 25
subjects in 4 different scenarios: outdootsg){ outdoors with camera zoong,, outdoors
with different clothes ¢3), and indoors ¢;). Some samples are shown in Fig. 12 (b). This
dataset seems more challenging than the Weizmann datasetdecthere are large varia-
tions in human body shape, view angles, scales, and appeaiBme “leave-one-out” cross
validation is again used to measure the performance. Mageifgally, for each run the
videos of 24 subjects are designated as labeled video sgtharideos of the remaining
subject is used for testing. Fig. 19 shows the confusionicestifrom our method for each
scenario. Fig. 20 shows the average confusion matrix aalbssenarios. We were able to
achieve a recognition rate of @5% on these six actions. The recognition rate comparison
with competing methods is provided in Table 2 as well. It igtivanoting that our method
outperforms all the other state-of-the-art methods andlig &utomatic like the method in
Ning et al. 2008 while the method in Kim et al. 2007 manualigraéd the actions in space-
time. Table 3 further shows that our scenario-wise recagnitates are consistently higher
than those reported in Ning et al. 2008, and Jhuang et al..2007

Table 2 Detailed comparison of recognition rate on the KTH data&egis the average across 4 scenarios.

Methods c1 C C3 [ Avg
Our Approach 97.33% | 92.67% | 95.3% |97.32% | 95.66%
Ning et al. (Ning et al. 2008) (3-NN) 95.56 %] 82.41 %| 90.66 %| 94.72%| 92.09%
Jhuanget al. (Jhuang et al. 2007)| 96.0 % | 89.1% | 89.8 % | 94.8% | 91.7%

Our system is designed with recognition accuracy as a higlifyr A typical run of
the action detection system takes a little over 1 minute cerget videoT (50 frames of
144 x 192 pixels, Intel Pentium CPU 2.66 Ghz machine) using a q@(¢3 frames of
90 x 110). Most of the run-time is taken up by the computation of $4@bout 9 seconds,
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Table 3 Comparison of average recognition rate on the KTH dataset

[ Our Approach (1-NNJ Kim et al. (Kim et al. 2007) | Ning et al. (Ning et al. 2008) |

89% 95.33% 92.31% (3-NN)
Our Approach (2-NN) Ali et al. (Al and Shah 2008)| Niebleset al. (Niebles et al. 2008|
93% 87.7% 815%
Our Approach (3-NN) Dollar et al. (Dollar et al. 2005] Wonget al. (Wong et al. 2007)
| 95.66% | 8117% | 84% |
Scenario 1 Scenario 2
box E 00 .04 .00 .00 . box E .04 .04 00 .00 .

hclp

hwav

walk | .

boy hc{;_, f’WaVJbg Tup Wy boy frc,b bway.ibg Tup W

Scenario 3 Scenario 4

00 .00 .04 .00

.00 .00 .08 .04

bok hc‘b thyjc@ Uun Wa/k bo,Y ft‘c‘[p hwayjbg Uun Wa/k

Fig. 19 Tables of confusion matrix for the KTH action dataset in eacenario (Here, 3-NN was used as
similarly done in Ning et al. 2008.)

and 16.5 seconds for the computation of 3-D LSKs filQmandT respectively, which needs
to be computed only once.) There are many factors that affecprecise timing of the
calculations, such as query size, complexity of the vidad,3D LSK size. Our system runs
in Matlab but could be easily implemented using multi-thiear parallel programming as
well as General Purpose GPU for which we expect a significaintig speed. Even though
our method is stable in the presence of moderate amount afreamotion, our system can
benefit from camera stabilization methods as done in Medkb@il. 2001 and Veit et al.
2004 in case of large camera movements.

5 Conclusion and Future Directions

In this paper, we have proposed a novel action recognitigarighm by employingspace-
time local steering kernel@-D LSKs) which robustly capture underlying space-timé&da
structure; and by using a training-free nonparametric diete scheme based on “Matrix
Cosine Similarity” (MCS) measure. The proposed method caanaatically detect in the
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box ’E 02 .04 .00 .00 .00
help | .00 m 01 .00 .00 .00
hwav | .00 .00 m .00 .00 .00
jog |.00 .00 .00 E 01 [.04

run | .00 .00 .00 .05

walk | .00 .00 .00 .05 .01
Fig. 20 Average confusion matrix for the KTH action

bo,\, hc/p hWeV Jog fup Wa//( d_atz_iset across all _scenarios (Here, 3-NN was used as
similarly done in Ning et al. 2008.)

target video the presence, the number, as well as locatiactiohs similar to the given query
video. In order to increase the detection accuracy anddudbal with action classification,
we developed a simple but effective automatic action crappiethod. Challenging sets of
real-world human action experiments demonstrated thapith|gosed approach achieves a
high recognition accuracy and improves upon other statbefirt methods. Unlike most of
the state-of-the-art methods that involve training phasaskground/foreground segmenta-
tion, and manual aligning of actions, the proposed methedaips using singleexample of
an action of interest to find similar matches; does not recariy prior knowledge (learning)
about actions being sought; and does not require any segtitenor pre-processing step
of the target video. In order to improve time-efficiency oé toroposed method, a coarse-
to-fine approach can be applied or a background subtraciieachon space-time saliency
detection (Mahadevan and Vasconcelos 2008; Marat et a)2@M be utilized. Since local
regression kernels in 2-D and in 3-D were originally desibfte image (video) restoration,
the proposed framework should solve the joint problem ofutimmeous super-resolution
and recognition when there might be a low-resolution quehylerthe database contains
only high-resolution images (videos). By computing loagnession kernels from images
(video) at once, we may be able to not only detect objectsofa}t of interest, but denoise,
deblur, and super-resolve images (videos) at the same Tihese aspects of the work are
the subject of ongoing research.
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