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Abstract—This paper considers a network composed of optimal sampling trajectories from a parameterized set of
robotic agents a_nd static nodes performln_g spatial estimation of paths. In [11], [12] the focus is on estimating determiwisti
a dynamic physical processes. The physical process is modeledfig|gs when the measurements taken by individual robots are

as a spatiotemporal random field with finite spatial correlation lated. The tracki f level . . I
range. We propose a distributed coordination algorithm to uncorrelated. The tracking or Ievel curves in a noisy scalar

optimize data acquisition across time. The robotic agents take field is discussed in _[13]_- _ _
measurements of the processes and relay them to the static Statement of contributiond/Ve consider a robotic network
nodes. The static nodes collectively compute directions of maxi- comprised of static nodes and robotic sensor agents. The
mum descent of the estimation uncertainty, and relay them back combination of static nodes and mobile robots allows us

to the robotic agents. The technical approach combines tools to distribute the burd iated with . .
from geostatistics, parallel computing, and systems and control. 0 distribute the burden associated with sensing, communi-

We illustrate the soundness of the algorithm in simulation. cation, and computing. The environment is partitioned into
regions, and each static node is responsible of maintaaring
|. INTRODUCTION approximation of the spatial field on its region. The nodes ar

fdeployed so that their communication topology is connected

Problem statementThis paper considers a network o d boti t icate 10 at least q
static nodes and robotic sensors taking sequential me3{1¢ any robotic agent can communicate 1o at least one node
any given time. The robots are responsible for taking

surements of a dynamic physical process. We model i . )
underlying process as a spatiotemporal random field. Omeasu:em(énts ?f the ft'ﬁld a'.’]tq re.liylng Ehem back to the
objective is to determine trajectories for the robots whicl’i‘e_l"’_‘rr]es nodes ao_nbg Wi pfosr|]_|0n informa '?]n' desi f

optimize data acquisition in order to best estimate the .field e main contribution of this paper Is the design of a

This problem has applications in environmental monitqringd'sm_bmﬁd pocl)rdlnatlon algorghlmdto optlrrtl_altly samplle di;
oceanographic surveying, and atmospheric sampling. namic physical proceésses modeied as spatiotemporal random

Literature review: Kriging [1], [2] is a standard geo- I!e!(ds. As ? criterion ff?hr cl)(p_tlr_nallty, we Co_rll_f]'.d?r th:ﬂzpa—
statistical technique for estimating spatiotemporal cend lolemporal average ol the kriging variance. 11is func

fields. Given a set of point measurements, kriging producestl&e natural interpretation Of. an aggregate objective fonct
predictor of the field throughout the environment, alonghwit that measures the uncertainty ab_out the k_nc_;wledge Of. the
a measure of the uncertainty associated with the predictcgﬂndon.n| field. Under the_assumphon of a finite correla_tlc_)n
Under certain conditions on the covariance structure, dafg"nge In space, we prOVI_de an upper bound on the kriging
taken far from the prediction site have very little impactva”ance’ which in tum induces an upper bound on our

on the kriging predictor [3]. When the spatiotemporal ranpbjective function amenable to distributed optimizatidhe

dom field does not have a covariance structure with finit%tat'c nodes compute the gradient of the approximate agerag

spatial correlation, an approximation may be generated vl 'g'rt]ig vane:]r:ce_?r?id reIa;r/ s;:tmple t(;lort]t:ﬁl vsc)tgr;backrmngh nt
covariance tapering [4]. The optimal design literature, [5] ODOMC agents. S guarantees that the ne easurements

[6] deals with the problem of determining sets of location§"® take_n at position; Whi.Ch decrease the approximatelbvera
where data should be taken in order to optimize the resulti certqlnty_of the estlmanqn. We do not pay attention to how
kriging estimation. The work [7] examines the effect tha e estimation is actually implemented, but rather focus on

addition and deletion of measurement locations has on the"/ to minimize the uncertainty of the estimate so that data

error kriging variance, and how this relates to optimal gesi acquisition is optimized. For brevity, some proofs are et
and will appear elsewhere.

The field of cooperative control for mobile sensor net- e . . . .
P Organization: Section Il introduces basic notation and

works has received much recent attention. The work [ ols from constrained optimization and kriging estimatio
introduces performance metrics for oceanographic surve i . . .
P grap ection Il introduces the robotic network model and dstail

by autonomous underwater vehicles. The work [9] consideE o overall network obiective. The followind two Sections
a network of robotic sensors with centralized control esti- . . € ; WIng two S€
resent important ingredients in the ulterior algorithrsiga.

mating a static field from measurements with both sensi . o : .
R . : ection 1V specifies the regions of allowed motion for the
and localization error. The work [10] considers choosing th . . . .
robotic agents at each step, while Section V describes an
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Il. PRELIMINARY NOTIONS Name: LINE SEARCHALGORITHM
Goal: Determine step size for projected gradient descent

In this section we introduce some preliminary concept algorithm (1)

\"ZJ

and notation. LeRR, R+, andR>( denote the set of reals, | Input: TeQ
positive reals and nonnegative reals, respectivelyproiR? Assumes: (i) grid sizeT € (0,1)
andr € R, we letB(p, r) denote theclosed ballof radius (i) toleranced € (0, 1)

(iii) maximum step Sizeévmax € Rxo

r centered ap. Given two vectorsy = (ui,...,uq)7, a € Output: o € Rs
Zo, andv = (v, ...,v)T, b € Zso, we denote byu, v) its -
concatenatiorfu, v) = (uy, ..., uq,v1,.-.,v5)". We denote

by 0S the boundary of a sei. Thee-contractionof a setS, 1o = omax

2: repeat

with e > 0, is the set5. = {q € S| d(q,05) > e}. Aconvex | Toow = Projq (z — aVF(x))

polytopeis the convex hull of a finite point set. Forabounded 4., — |z "0 + F(znen) — F(z)

setS C R?, we letCR(S) denote thesircumradiusof S, that 5 if v> 0 then

is, the radius of the smallest-radidsphere enclosing. We 6: a=ar

denote byF(S) the collection of finite subsets . 7. endif
We are concerned with operations on a compact and® UMl ¥ <0

connected seD of Euclidean spac®?, d € N. Since we

deal with a process which varies over time, T2t = D x R

denote the space of points ové@r and time. In general,

we uses € D to denote spatial positiort, ¢ R to denote

continuous timek € Zx, to denote discrete time increments,of iterations. The condition in stef known as the Armijo

andh = (s,t) € D, to denote locations in space and time condition, ensures that the decreasefins commensurate

When disambiguation is required, we use the superscripith the magnitude of its gradient. A sequen¢e;}3

notation f*) when referring to the functiorf at the kth  satisfying these requirements converges in the limik as

timestep, and the subscript notatigh when referring to oo to stationary points of’, see [14, Proposition 1].

the jth component of a vector valued function. To denote

a range of timesteps, we use the notatfdf*2), k, < k,, B. Estimation via Kriging interpolation

TABLE |
LINE SEARCH ALGORITHM.

to indicate the functiory at timestepst; through#s,. This section reviews the geostatistical kriging procedure
A partition of D is a collection ofn polygonsW = for the estimation of spatial processes, see e.g., [2]..[15]
{W1,..., Wy} with disjoint interiors whose union i®. The A time-varying random procesé on D, is second-order
Voronoi partitionV(s) = (Vi(s), ..., Vi(s)) of D generated stationaryif it has constant mean, and its covariance is of the
by the pointss = (s1, ..., s,) is defined by form Cov(8(h1),8(hs)) = C(hy, hy), whereC : D, x D, —
Vi(s)={qe€D||lqg—sill <llg—s;l, Vi #i}. R, is a positive definite covariance function which only
) ) ) depends on the differende, — hy. The covariance matrix
EachVi_(s) is calle_d qur0n0| cel! Two pointss; ands; are  of the vector of pointsh = (h,...,ly) € DL, 1 € N, is
Voronoi neighborsf their Voronoi cells share a boundary. s _ S(h) = [C(hi, hy))',_, € R\ When it is clear from
A. Projected gradient descent the context, we use bold face to denote explicit dependence

. . o __on h. We definec : D, x D! — R! to be the vector of
Next, we describe the constrained optimization technlqug ’ e X Te ™

known as projected gradient descent [14]. This techniqu ?\?.aerfazc:esc(t])le;\:\)/e:er}g(zlr;lgll)e .[??lhé,%hl)gl)a)g(.j the vector

Comb‘”‘?d Wit.h gen'er.alized Armijq stgp sizes,. may be use ,We ,assumeythat the ra;1dor7n prbcéis;;s of the form

to iteratively find minima of an objective function.
Let m € N, and letQ denote a nonempty, closed, and Z(h) = p(h) +6(h), h €D, (2)

convex subset oR™. Let F' : R™ — Rx(, and assume

that the objective is to minimiz&'. Further assume that the

gradientV F' is globally Lipschitz onQ. Let projg, : R™ —

2 denote the orthogonal projection onto the Qeti.e.,

wherey is the mean function andl is a zero-mean second-
order stationary random process with a known covariance
function, C. We assume thaf’ has afinite spatial range

r € Ry, such that

proja(z) = argmin [z = . C (31,11, (s2,82)) = 0, f lsz = s1| >
Consider a sequende:;} € 2, k € N, which satisfies We also assume that measurement dgta= y(h) =
Trr1 = Projg (T — axVF(z1)), 11 € Q, 1) (Y(h1),...,Y (k)T are corrupted with errors according to
where the step sizey, is chosen according to the line search Y (hi) = Z(hi) + e, e id A7 (07 Uf) Lo €R. (3)

algorithm described in Table |, evaluatediat zy,.

Here the grid size- determines the granularity of the line The constant variance in measurement error models idéntica
search. The toleranaé may be adjusted for a more (largersensors. The covariance betwééfh;) andY (h;) is written
f) or less (smalle®) strict gradient descent. Note that as o e
long as¢ > 0, the line search algorithm must terminate in  Cioy (v (1,), Y'(h,)] Clhi,hy) +o¢, ifi=j,
finite time, while a larger value af will decrease the number Y C(hi, hj), otherwise



Note that the covariance matrix bfwith respect to the noisy
processY may be writtenX, = ¥ (h) = X(h) + 021,
where[,, denotes thex x n identity matrix.

1) The simple kriging predictorAssuming that the mean
function i is known, thesimple kriging predictorat h € D,
from the data measured at locatiohsis the predictor that
minimizes the error variance,

0*(Z(h); h) = Var[Z(h) — pred Z(h); h)],  (4)

among all unbiased predictors of the form p&dh); h) =
S Y (h) + ko Let p = (u(h),...,p(h)T. The
explicit expression of the simple kriging predictor &f at
heD,is

zsk(hih) = p(h) + "=y — ), (5)
with error variance
o3k(Z(h);h) = 0% (h) — "= e. (6)

Here o2 (h) = C(h,
cx_
tor 2sk(h; k). Under the assumption that is stationarys2
is constant, and we drop the dependencé:on

2) The universal kriging predictorRelaxing the assump-
tion that the mean functiop is known, consider a linear
expansion upon a set g € N known basis functions
fiseooy fp o De — R. We write u(h) = f(h)T3, where
F(h) = (fi(h),.... Jo(h)" and B = (B,....5,)" € R
Theuniversal kriging predictoof Z ath € D, is the predic-

h) denotes the variance df(h), while

tor that minimizes the error variance (4) among all unbias

predictors of the form pred(h); h) = 22:1 ;Y (h;). The

explicit expression ab € D, is
ZA’UK(hQ h) =

(c Y F (1577’23;11?)71 (f - FT2;1C)>T > ly, (7)

where F' denotes the matrix whosgh row is f(h;)”. The

error variance o€y (h, h) is
USK(Z(h)§h) —UZ TE

(ffFTZ*%) (FnglF) (ffFTZ*H:). @8)

Note that ifp > n, then the matrixf” ="' F is not full
rank, and the universal kriging predictor is not well-define

In this paper, unless explicitly stated otherwise, our ltssu
make no distinction between simple and universal krigirg. T

simplify notation, we drop the subscript and us& denote
both kriging estimators with associated error variance

A. Robotic sensor network model

Consider a groug Sy, ..., S, } of m € N static nodes
deployed in a convex polytope® c R? Let Q
q1,---,9m) € D™ denote the positions of the static nodes.
Assume that each node has a limited communication radius,
R € R., and that they are positioned so that each one can
communicate with its Voronoi neighbors.

In addition to the static nodes, consider a group
{Ri,...,R,} of n robotic sensor agents. The position of
roboti € {1,...,n} at timet € R is denoted by, (t) € D.

We assume that robots take measurements of the spatial field
at discrete instants of time i>,. Between measurement
instants, each robot moves according to the discrete dysami

pi(k+1) = pi(k) + ui(k),

where ||u;|| < umax for someumax € Rso. The communica-
tion radius of the robotic agents is algt Each node will
need to be able to communicate with any robot which may
be within covariance range of the points in its Voronoi regio

—~

'c represents the variance of the simple kriging predicat the following timestep. To that end, we assume that

R > max
ie{l,...,m}

{CR(Vi(Q))} + 7 + tmax. )

The robots are also assumed to have some limited capabil-
ity of sensing each other, so that a robot knows the positions
of any other robots within a distance dfinax At discrete
timesteps, each robot communicates the measurement and
location to static nodes within communication range, along

ith the locations of any other sensed robots. The nodes are

en responsible for computing an estimate of the field, and
relaying control-specific information back to those robsti
within communication range. Our implementation does not
require direct communication between robotic agents.

B. The average kriging variance as objective function

Given the communication, sensing, and motion capabilities
of the network described in Section IlI-A, our objective
is to design a coordination algorithm that optimizes the
estimation of the spatial field. Here, we introduce the
network objective function that we seek to optimize.

Assume that the experiment has been runkipg € Z>o
timesteps and a sequence of measurements taken at time in-
tervals {1, ..., kmax}, at space-time locationk € (D7)kmax,
are available. With these measurements a kriging estintate a
h € D, has associated error variance

o?(Z(h); h) = Var[z(h; h)],

where z(h; h) = Z(h) — 2(h; h) is a shorthand notation.
There are a number of ways to define optimality of a kriging

Note that bothz and o> only depend on the positions of estimator. Consider a kriging estimatiéth; h) made onD

the measurements i®., not the actual values. Also note gyer the intervall’ =

that o2 is invariant under permutations @fi, ..., ;. This

guarantees that the value @t remains the same no matter
how the elements of the set are ordered. Thus without loss of
precision, we will evaluate? at a set, instead of at a tuple.

IIl. PROBLEM STATEMENT

[1, kmax. The average error variance
of the estimatoZ(h; h) overs € D andt € T is given by

A= )

The question becomes how to choose the best locations to
take measurements in order to minimiZe Since the mea-

h)dsdt.

In Section IlI-A we introduce the robotic network modelsurements are taken sequentially, and each set is redtricte
and in Section IlI-B we detail the overall network objectiveto a region nearby the previous measurements, one cannot



simply optimize over D" )*m, Additionally, if kmax may not
be known at the start of the experiment.

Consider, instead, a greedy approach in which we use
measurements taken at timestefs..., .k} to choose the ; )
positions for the(k+1)-st set of measurements. Liet'**) ¢ 2
(D™)* be the vector of measurement location and time ‘
pairs for all measurements up to tinke ordered in blocks
corresponding to timesteps, i.e.,

(1:k) _
RUY = ((pr(1), 1), (Pa(1),1),.. -, Fig. 1. Comparison of the regior()}1._, (dashed) with the Voronoi
(p1(k), k) 5., (pn(k), k)T . partition (solid).

Let P = (p1,...,pn) € D? denote the current positions of

the robotic agents, and with a slight abuse of notation we wipresent some results regardifiy*). The following lemma
use (P, k + 1) to denote the vector of space-time locationsiescribes some useful results concerriiti§y).

at spatial positions® and timek + 1. Let A% : D — R

map the next set of locations to the average error variant@mma IV.1 For the network described in Section llI-A, let
of the kriging estimate built with measurements up to anthe initial condition satisfy||p;(0) — p;(0)|| > w for all i #
including timek + 1, i.e., j € {1,...,n}, and assume thaP*+D) ¢ Q*) for all

A(’“)(P) _ / / 2 (Z(s,t); (h“:’“), Pk + 1))) ds dt. k € Z>o throughout the evolution. Then the following holds:
T JD

() llpi(k) — p;(k)[| > w forall i # j € {1,...,n} and
The objective is to choose the set of measurement Iocation?. ?" k ”6 2201 . di ) h

P attimek+1 so as to maximally decrease the valuest). i) tﬁr tad L Gk{ ; "‘/’n} an< jed ""’km}’ we<r2/e
Unfortunately, the gradient ofl®) cannot be computed in a atd(pi(k+1),V;(@)) < v = llpi(k) - ¢sll < R.
distributed way over the communication graph of the static  pygof: Fact (j) follows directly from the definition of

nodes because of the requirement of inverting matricestwhic, 55 the minimum separation distance between any two sets
depend on all measurement locations. Instead, we constryg®) -,40%) To show fact (i), we write
J !

an upper bound tod(®), whose gradient is distributed, and *

design an algorithm to optimize it. d(pi(k+1),V;(Q)) <r

RY, g d(pi(k)7 VJ(Q)) <7+ Umax
. VORONOI CONTRACTION FOR COLLISION AVOIDANCE — |Ipi(k) — g5l < CR(V}(Q)) + 7 + tmax
We begin by specifying the region of allowed movement — |pi(k) — g < R.

for the robotic agents. As noted in Section IlI-A, each rébot

motion is restricted by a maximum velocity at each timestepD the second implication, we have used the fact that
as well as the requirement that it must stay within the phy$-R(V;(Q)) is the maximum distance from; to any point
ical regionD. Here we provide an additional requirementn V;(Q). The final implication is a direct consequence of
which ensures that robots do not collide. Beyond the benefissumption (9). ]

of damage a_voidance, this restriction ensures that eveerundy, | 5calL APPROXIMATION OF THE AVERAGE KRIGING

the assumption of zero sensor error, the kriging error fanct VARIANCE

is well-defined over the space of possible configurations. ) )
Let w € R-, be a desired buffer width. We assume In this section, we compute an upper bound on the average
that w is small compared to the size @. One might use kriging variance. The idea is to construct an approximation
8F the error variance at each location, using only nearby

the diameter of the physical robotic agents as a basis f We begin b idi ful It th
this width, adding space for robustness. To ensure that tﬂéeasurements. e begin by providing a useful result that
isolates the effect of a subset of measurements on the

distance between two robots is never smaller thanwe Kriai _ Bef U ntrod h
introduce a contraction of the Voronoi diagram. rnging variance. betore presen}lng It we introduce the
following notation: givenh; € D. and hy € DI, with

Consider the location® = (py,...,p,) of then robotic ) o e
agents at theith timestep. Let(Vi(P)),/» denote they- i (h1) Nip(ha) =0, let .,
contraction ofV;(P). Let 2{*) ¢ D such that g(has k) = [g(hars ha), - Glham; b))
QY = (Vi(P))ya B (i tma shaifu) = ythz) = jthai )
o k) (k) We are now ready to present an upper bound on the kriging
For eaCh] §é 1€ {1, N ,TL}, we haVed(Qi ,Q] ) > w. variance at any point.

Between timesteps and k£ + 1, we will restrict R; to the

. k . . .. .
region QE ), Figure 1 shows an example R of this set. Lemma V.1 (Upper bound on kriging variance) Let h =

Let Q) = T~ QE’“) c (RY)™ denote the region of (hy,h,) denote a full set of distinct measurement locations,
allowed movement of all robotic agents at timeskep Z>o.  with hy = (hy,..., ) € DL and hy = (hig1,...,hn) €
Note thatQ(*) is closed, bounded, and convex. Next weD”, with [ +m = n. Then,



o?(Z(h);h) = 0*(Z(h); h1) — Cov[z(h; h1),5(ho; hy)]-  case the functiouflj(.’“) (P) is only well-defined if the number
- Var[g(hs; h1)]_ Covl[j(ha: h1), 2(h; hy)] of measurement locations available to each node is greater
’2 ’ than or equal to the number of basis functions. In this paper
< o7 (Z(h); ha),

we assume that this holds at all times. °
with equality if Cov[Z(h), y(hs2)] and Cov[y(h1), y(h2)]. ) . .
a Y v12(h), y(ho) vly(h), y(ho) Our next step is to characterize the smoothness propefties o

This result can be proven using [16, Proposition 8.2.4the function A%), Let us start by introducing some useful
to conveniently decompose the inverse covariance matriotation. For eachi € {1,...,n}, let
Note thato?(Z(h); h1) corresponds to the error variance of <kH+1) /2 oy ~(<E41) /s _
a predictor computed with the information at locatidns CS(‘i (. P) = €S (G, P)A i b+ 1}

The following result provides a method to calculate amefine the map<’; : {1,...,m} x D" x D x T — R and
upper bound on the average error variance in a distributed . {1,...,m} x D - R by
way over the communication graph of the static nodes.

y grap Ci(],P,&t) Cov[§((pi, k + 1), CS=F (4, PY),

Proposition V.2 (Spatial agEJrr%(imation for distributed z((s,t) S(Sk+1) (4, P))],
implementation) Define C&¥+1) . Z, x D™ — F(D,) by V., P) = Varlg ((p“k +1),cs=H (5 py),
CS=H1(j, P) = . .
' (1:F) whereg(h; h) = Y (h) — g(h; h) is a convenient shorthand
{(&t) € iF (h  (Pk + 1)) | d(s,V;(Q)) < T“}a notation. Fors € D andt¢ € T, let V;Ci(j, P,s,t) and
V.:Vi(j, P) denote the partial derivative a@f; and V; with

i.e., the subset of measurement locations up to time1l
K . . .respect top;. We are now ready to state our result on the
which are correlated in space to the Voronoi cell of the stati gradient of A

nodej Let fl(k) D" - R be defined by

/ / (s,t); CS=FHD (5, P)) dsdt.  Proposition V.5 Assume that the covariance ¢ is C*
with respect to the spatial position of its arguments. In the
Then the sumA® = Z;n:l Aﬁk) satisfies universal Kriging scenario, fulrther assume that the mean
* () basis functionsfy, ..., f, are C* with respect to the spatial
AW(P) < AM(P). position of their arguments. Thed® is C* on Q®*) and
In addition, if, for all j € {1,...,m}, the points in the ith component of its gradlent is of the form
CS=k+1 (5 P) are not correlated to other measurement v, A0(p ZV AR (p
locations outside it, then equality holds.
Proof: Using the Voronoi partition, the overall average, pare
error variance can be decomposed as )
- v A p = fV (@) Cil4, P, s,t)* ds dt V;Vi(j, P)
Z// h (Pk+1))>dsdt. WA (P) = VP —
| foV(Q) (4, P, s, t)V;Ci(j, P, s, t) ds dt
Since C$*V (5, P) C ig (KM (P k + 1)) , We may use Vi(4, P) '

Lemma V.1 to show the upper bound, .
Note that for eachi € {1,...,n}, V,;A;(P) may be

Z/ /02 §Z(s,t); (h(”“, (P, k + 1))) dsdt < computed by nodg, and thusv; A®*) (P) may be computed
Vj in a manner distributed across the network of nodes.
m Existence of the gradient is only part of the picture. In

Z// < s,t); CS=RFD () P)) ds dt. order to satisfy the convergence criteria for the projected
Vi( gradient algorithm, the gradient must be globally Lipszhit
The condition of equality also follows directly from the This is what the next result states.
statement of Lemma V.1. [ ]
R Proposition V.6 Under the assumptions of Proposition V.5,
Remark V.3 (A(.k) may be calculated with local infor- make the following additional assumptions,
mation only) Note that the locatiorp; contributes only o V; Cov[Z(pi, k+1), Z(sa,15)] is globally Lipschitz on

to A®(P) in those Voronoi regionsV;(Q) for which 0 for eachi € {1,...,n};
d(pi, V;(Q)) < I Thus the requwement (9) ensures t8at | iy the universal kriging case, further assume that the
can calculated". As with o2 , without loss of precision we partial derlvatlvesa f; are globally Lipschitz om(k)
i(k)
will evaluate A, at a set, rather than a tuple. ®  Then the gradienty.A®®) is globally Lipschitz o2, i.e

there existsL € R~ such that
Remark V.4 (Universal kriging with too few measure- =

1 (k k
ments) It should be noted here that in the universal kngmd\VA (1) = VA (Py)|| < L| Py~ Pyf|, ¥P1, Py € Q.



V1. OPTIMIZING INFORMATION RETRIEVAL VIA Name: DISTRIBUTED LINE SEARCH ALGORITHM

GRADIENT DESCENT Goal: Compute step size for gradient descent/bf
. . . o . Input: Configuration,P = (p1,...,pn) € D"
In this section, we design a coordination algorithm tg Assumes: (i) Connected network of static nodes
follow the gradient of A(*), Under the network model of (i) S; knows p;, ViA and Q; for each robot
Section IlI-A, we consider a system in which each statig Wlthln communication range

node is responsible for calculating control vectors for the (iii) Step sizer and tolerancé € (0, 1) known a
priori by all static nodes

robotic agents within the region of influence. We use the oyput:  Step sizep € Rs
formulation of the approximate average error presented i -
Proposition V.2, and follow a projected gradient descent

building on Section Il. The current timestefp, is held fixed Initialization

through the section and, therefore, to reduce notation, wet ?jfeaﬂnfzdc?nnsEznus:“sor?SI’g(olrg)hmsl,...,Sm calculate amax as
leave off the superindex which indicates timestep where

>

11

unnecessary. We use the notatiBn= (pi, ...,pn) for the [FOrJ € {1,...,m}, nodeS; executes concurrently
current positions of the robots. 11 o= amax
2: repeat 5 3
A. Distributed optimization of the approximate averageykri | 3:  calculatesA; (P (@, P ) = A;(P)
ing variance 4. calculatesd; (a, P) , .
5. execute consensus algorithm to get the following:

Ideally, at thekth timestep, we would like the robots to
move to the minimum of the map — .A(P) over the A(P(a, P) ZA7 — A;(P)
region 2. Finding such a minimum over the whole region
is a difficult problem. Instead, we use a distributed version
of the projected gradient descent algorithm, which is adtlea | P — P'(c, P)| Zd a, P)?
guaranteed to converge to a stationary point. Since eaah nod
is working with a reduced set of robot positions, we define ., — ¢ || p— p/(a, P)| + A(P'(a, P)) — A(P)
the following notation for use in the algorithm. Lédt; : 7. if v> 0 then
RxD™ — F(D) map a stepsize and the current configuration 8: a=ar
to the set of next locations as calculated $y i.e., o: endif

, . 10: until » < 0
Pi(a, P) = {prOjQi (pi + aVMl(P)) ,

foreach: s.t. d (p;, V;(Q)) < r + umax+ w}.

TABLE I
DISTRIBUTED LINE SEARCH ALGORITHM.

Letd; : R x D™ — R>( denote the total distance traveled
by robots entering/; (@), i.e., summations in step may be calculated via consensus. Thus

d: (a, P) Z | proj (p 4oV A(P)) pill? it suffices to show the foIIowing equalities
5 (&, = Q, \Di i — Dill”-

i€{1,...,n} such that P P _ PJ? d P 11
projq, (Pi+aViA(P))EV;(Q) |7, | Z (a, (112)
Globally, let P’ : R x D™ — D™ be defined agd”’ (o, P) = — L
projo (P + aVA(P)) = A(P (av P)) : Aj (Pj(aa P)) , (11b)
Table Il describes a distributed version of thee SEARCH j=1
ALGORITHM, assuming a starting position @ € Q. The - B LA,
line search starts with a scaling facteyax which scales the A(P) = Z A;(P)- (11c)
j=1

smallest nonzero partial ta,x, €nsuring that all robots with
nonzero partial derivatives have the opportunity to mowe thWwe may decompose the squared norm in the following way

maximum distance. In other words, we write , y ) - )
|P'(a, P) = PIP = Yl projg, (pi+ aV:A(P)) = pi
i=1

Umax

Qmax = minie(;{(l’)';n} {6(i)}’ where (10a) -
)70 9
- =>» dj(a, P
5(i) = HVZA(P)H . (10b) ; 7

Here the first equality stems from the definition Qf as

Lemma VI.1 The DISTRIBUTED LINE SEARCH ALGORITHM  the product of€2;’s. The second equality is a result of the

is equivalent to theLINE SEARCH ALGORITHM with = = P,  fact thatV(Q) is a partition ofD, andd; depends only on
and F = A. those elements aP’(«, P) which lie in V;(Q). This proves

Equation (11a). Equation (11b) follows from Remark V.3,
Proof: By identifying terms, we can see that thewhile Equation (11c) is a result of the definition 4f ®
Armijo conditions in the two algorithms match. Under the We are now ready to present our technique for a greedy
assumption that the network of nodes is connected, ttoptimization algorithm. At timesteg, the nodes follow a



gradient descent algorithm to define a sequence of configu-We compared the performance of our algorithm against

rations,{PJ}, ~ € N, such that two naive strategies. The first strategy was a static corgigur
Pl = p® tion in which the robots remained motionless in an incenter

; ) ) _— Voronoi configuration, i.e., a configuration such that each

P’erl = Projo (Pw - aVA(PQ) , a € Ry, robot is located at the incenter of its own Voronoi cell. The

where « is chosen via theéDISTRIBUTED LINE SEARCH AL- second strategy was a lawnmower-type approach, in which
- - . ivi he environment vertically among the robots, and
GoriTHM. When |A(P!, ) — A(P1)| = 0, the algorithm V& divided t : >
A 7“) AP 0 g had them march back and forth along horizontal trajectpries
avoiding the boundary of the region. Finally, we ran the-
RIBUTED PROJECTEDGRADIENT DESCENTALGORITHM from
G f

terminates, and the nodes set*+) = P! . By the end
of this calculation, each node knows the identity of roboti

ggents that belong to its Voronol C(;" atbtlmers]%eﬁ 1. Node 6 same starting position as the lawnmower-type approach.
j transmitsp;(k + 1) to R;. Each robot then moves 0 ggqp, experiment ran fdtnax = 20 steps. Agent, stopped

pi(k fhl) between t_ime;js_te;%s.bl'l'hlelzl ovr?rall grar(]iient Olescergtansmitting measurements at tirhe= 3, while R, stopped
algorithm is summarized in Table Ill, where we have returnegd; ;. _ 5 "Figure 2 shows the trajectory traveled by the

to the superscript notation to avoid confusion. gradient descent algorithm. Note that the two agents which

Proposition VI.2 Under the assumptions of Proposition V.6,
if the network follows theDISTRIBUTED PROJECTEDGRADI-
ENT DESCENTALGORITHM, then the following holds:
« the algorithm is distributed over the network described
in Section IlI-A,
« the robots will not collide,
« at each timestep after the first, measurements will be
taken at configurations which are stationary points of
the mapP — A% (P) over Q¥

Proof: The first statement follows by construction: each
robotic agent and each static node uses only information
acquired by itself or communicated by its neighbors, as
described in the model of Section IlI-A. The second statesig. 2. Trajectory traced by the projected gradient desatgarithm. The
ment is a direct result of the construction Gf Between squares represent the (static) positions of the noggswith the region
the th and k + 1st timesteps,fi, moves within®,, with  Parioned accordng 10 (), Tne riangles represent the locations at
2NQ; =0, Vi#je{l,...,n}. Therefore the robots will (not incorporated into the calculations).
not collide. The third statement is a result of [14, Proposit
1]. By Proposition V.6,V.A*) is globally Lipschitz on2. ~ stopped sending measurements ceased to move. The other
By Lemma VI.1, the step size calculation matches that in th@gents avoided colliding with them, but filled in around them
LINE SEARCH ALGORITHM. Thus at each timestep, the nodeglue to the gradient. Lezlg“),A(k),Ag) € R>( denote the
generate a sequence of configuratioR$, which converges average error as calculated at theéh step of the static,
in the limit asy — oo to stationary points ofi on ). m lawnmower, and gradient descent algorithms respectively.

Figure 3 shows a plot of these errors /asn creases from
Remark VI.3 (Robustness to failure) One benefit to this 1 t0 kmax It can be seen that the gradient descent algorithm
algorithm over trajectories determined a priori is thatsit i

robust to agent failures. If an agent stops sending position ool Faras, ..
information to the nodes, it will cease to receive new cdntro (- . feaa .
vectors, remaining in place. Meanwhile the network will 9 * e
naturally fill in the gaps. . o6 fe
B. Simulation results 94 S M
We performed simulations with the following parameters: 92 MM .
m = 5 static nodesp = 10 robotic agents, and the domain e :
D = {(0,.1), (2.5,.1), (3.45,1.6), (3.5,1.7), (3.45,1.8), 5 10 15 20

(2.7,2.2), (1,2.4), (0.2,1.3)}. We used the separable co-
variance function defined byov[Z(s1,t1), Z(s2,t2)] =

Chap(]] Il,0.4)Ciap(|t1 — t2],9.5), wh ask increases.
51— 520, B — t2],9.5), where _ | o
o Tl 52 has smaller error than either the static configuration or the

s 38 -
Crap(0,7) = {e ’ (1 T W) ifo <, lawnmower-type approach.
0 otherwise VII. CONCLUSIONS AND FUTURE WORK

This is a tapered exponential function belonging to thesclas We have considered a network composed of robotic sen-
of covariance functions suggested in [4]. sors and static nodes performing spatial estimation tasks.

Fig. 3. Average errorsAgk) (triangle),.A(Lk) (diamond), andA(C?) (star)



Name: DISTRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM
Goal: Find a local minimum of4*) within Q).
Assumes: (i) Connected network of static computing nodes and mobile robotic seagiegts
(i) Static nodes deployed ovéP such thatR > max;c(1,....m} {CR(Vi(Q))} + 7 + tmax
(iii) Step sizer and tolerance valué € (0,1) known a priori by all nodes (iv) Some termination marker known to all
U nodes and robots which may be sent to mark the end of a gradienintiésop.
ses:

(i) Each node uses the temporary vectéts:, respectivelyPrex to hold the configuration at the current, respective
next step of the gradient projection algorithm. For ease of expositiomseelobal notation althoug$i; only calculates
and uses the parts of these vectors which correspond to agentstiguwiéhin communication range.

y

At time k € Z>o, nodesS; executes:

1o setsReov(j) = {Ri | d(pi(k),V;(Q)) <1}

2: collects measurements and locations from all robot&dg ()

3: SetsPnex[ = P<k)

4: repeat

5. setspcur = Pnexl(jg

6: calculates—VAf (Peur)

7: transmits vecto’; A% (Per) to all robots in Reou()

8:  collects sumV; A*¥) (P from all robots inReov(5)

9: executes the BTRIBUTED LINE SEARCH ALGORITHM at
Py to calculatex ~

10: sets Prext = NIDcur + OZVA(IC) (Pcur)

11:  calculates A(Prext) — A(FPeur)| via consensus

12: Untl| |A(Pnext) — .A(Pcur)‘ =0

13: setsPF Y = Prey

14: sends a termination marker to all robots currentiWi{Q)

15: conveysp;(k + 1) to robots that currently belong 19, (Q)

Attime k € Z>o, robot R; executes:

Lo setsSeou(i) = {S5; | d(pi(k), Vi(Q)) <7}

2: takes measurement gi(k)

3: sends measurement and position to all node%if7)

4: repeat

5. receives vectorsy; A (P®*)) from all nodes in
Scov(i) ~

6: calculates sunv; A®) (P®*)

7. sendsV; A®) (P®) to all nodes inScov(i)

8: until receives termination marker from any node

9: receives next locatiop; (k + 1)

10: moves top;(k + 1).

TABLE Il
DISTRIBUTED PROJECTEDGRADIEN

have focused on the problem of optimizing data acquisitions]
in order to better estimate a spatiotemporal random field
We have used the average error variance of the krigin
estimator as a metric for the design of optimal measurement
trajectories of the robots. In our approach, mobile robotd’]
take measurements of the environment and static nodes are
responsible for collecting the measurements and computings]
locally optimal configurations for estimation. The design
of the overall coordination algorithm combines Voronoi
partitions, distributed projected gradient descent, aiglrig [0l
interpolation technique to design. We have compared in
simulations the performance of our approach against astati
network configuration and a lawnmower-based approach. [10]
Future work will focus on the investigation of theoretica
guarantees on the performance and robustness to failure of
the proposed coordination algorithm, the development ¢f1]
statistically-sound techniques for the case when, in usate
kriging, any particular robot only has a small number of12
measurements available to it, and the quantification of the
communication requirements of the proposed approach.

6]

[13]
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