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Abstract— This paper considers a network composed of
robotic agents and static nodes performing spatial estimation of
a dynamic physical processes. The physical process is modeled
as a spatiotemporal random field with finite spatial correlation
range. We propose a distributed coordination algorithm to
optimize data acquisition across time. The robotic agents take
measurements of the processes and relay them to the static
nodes. The static nodes collectively compute directions of maxi-
mum descent of the estimation uncertainty, and relay them back
to the robotic agents. The technical approach combines tools
from geostatistics, parallel computing, and systems and control.
We illustrate the soundness of the algorithm in simulation.

I. I NTRODUCTION

Problem statement:This paper considers a network of
static nodes and robotic sensors taking sequential mea-
surements of a dynamic physical process. We model the
underlying process as a spatiotemporal random field. Our
objective is to determine trajectories for the robots which
optimize data acquisition in order to best estimate the field.
This problem has applications in environmental monitoring,
oceanographic surveying, and atmospheric sampling.

Literature review: Kriging [1], [2] is a standard geo-
statistical technique for estimating spatiotemporal random
fields. Given a set of point measurements, kriging produces a
predictor of the field throughout the environment, along with
a measure of the uncertainty associated with the predictor.
Under certain conditions on the covariance structure, data
taken far from the prediction site have very little impact
on the kriging predictor [3]. When the spatiotemporal ran-
dom field does not have a covariance structure with finite
spatial correlation, an approximation may be generated via
covariance tapering [4]. The optimal design literature [5],
[6] deals with the problem of determining sets of locations
where data should be taken in order to optimize the resulting
kriging estimation. The work [7] examines the effect that
addition and deletion of measurement locations has on the
error kriging variance, and how this relates to optimal design.

The field of cooperative control for mobile sensor net-
works has received much recent attention. The work [8]
introduces performance metrics for oceanographic surveys
by autonomous underwater vehicles. The work [9] considers
a network of robotic sensors with centralized control esti-
mating a static field from measurements with both sensing
and localization error. The work [10] considers choosing the
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optimal sampling trajectories from a parameterized set of
paths. In [11], [12] the focus is on estimating deterministic
fields when the measurements taken by individual robots are
uncorrelated. The tracking of level curves in a noisy scalar
field is discussed in [13].

Statement of contributions:We consider a robotic network
comprised of static nodes and robotic sensor agents. The
combination of static nodes and mobile robots allows us
to distribute the burden associated with sensing, communi-
cation, and computing. The environment is partitioned into
regions, and each static node is responsible of maintainingan
approximation of the spatial field on its region. The nodes are
deployed so that their communication topology is connected,
and any robotic agent can communicate to at least one node
at any given time. The robots are responsible for taking
measurements of the field and relaying them back to the
nearest nodes along with position information.

The main contribution of this paper is the design of a
distributed coordination algorithm to optimally sample dy-
namic physical processes modeled as spatiotemporal random
fields. As a criterion for optimality, we consider the spa-
tiotemporal average of the kriging variance. This functionhas
the natural interpretation of an aggregate objective function
that measures the uncertainty about the knowledge of the
random field. Under the assumption of a finite correlation
range in space, we provide an upper bound on the kriging
variance, which in turn induces an upper bound on our
objective function amenable to distributed optimization.The
static nodes compute the gradient of the approximate average
kriging variance and relay simple control vectors back to the
robotic agents. This guarantees that the next measurements
are taken at positions which decrease the approximate overall
uncertainty of the estimation. We do not pay attention to how
the estimation is actually implemented, but rather focus on
how to minimize the uncertainty of the estimate so that data
acquisition is optimized. For brevity, some proofs are omitted
and will appear elsewhere.

Organization: Section II introduces basic notation and
tools from constrained optimization and kriging estimation.
Section III introduces the robotic network model and details
the overall network objective. The following two sections
present important ingredients in the ulterior algorithm design.
Section IV specifies the regions of allowed motion for the
robotic agents at each step, while Section V describes an
upper bound of the spatiotemporal average of the kriging
variance. Section VI presents the distributed coordination
algorithm that the robotic network executes to optimize data
acquisition, along with some illustrative simulations. Sec-
tion VII contains our conclusions and ideas for future work.



II. PRELIMINARY NOTIONS

In this section we introduce some preliminary concepts
and notation. LetR, R>0, andR≥0 denote the set of reals,
positive reals and nonnegative reals, respectively. Forp ∈ R

d

andr ∈ R>0, we letB(p, r) denote theclosed ballof radius
r centered atp. Given two vectorsu = (u1, . . . , ua)T , a ∈
Z>0, andv = (v1, . . . , vb)

T , b ∈ Z>0, we denote by(u, v) its
concatenation(u, v) = (u1, . . . , ua, v1, . . . , vb)

T . We denote
by ∂S the boundary of a setS. Theǫ-contractionof a setS,
with ǫ > 0, is the setSǫ = {q ∈ S | d(q, ∂S) ≥ ǫ}. A convex
polytopeis the convex hull of a finite point set. For a bounded
setS ⊂ R

d, we letCR(S) denote thecircumradiusof S, that
is, the radius of the smallest-radiusd-sphere enclosingS. We
denote byF(S) the collection of finite subsets ofS.

We are concerned with operations on a compact and
connected setD of Euclidean spaceRd, d ∈ N. Since we
deal with a process which varies over time, letDe = D×R

denote the space of points overD and time. In general,
we uses ∈ D to denote spatial position,t ∈ R to denote
continuous time,k ∈ Z≥0 to denote discrete time increments,
and h = (s, t) ∈ De to denote locations in space and time.
When disambiguation is required, we use the superscript
notation f (k) when referring to the functionf at the kth
timestep, and the subscript notationfj when referring to
the jth component of a vector valued function. To denote
a range of timesteps, we use the notationf (k1:k2), k1 < k2,
to indicate the functionf at timestepsk1 throughk2.

A partition of D is a collection ofn polygonsW =
{W1, . . . ,Wn} with disjoint interiors whose union isD. The
Voronoi partitionV(s) = (V1(s), . . . , Vn(s)) of D generated
by the pointss = (s1, . . . , sn) is defined by

Vi(s) = {q ∈ D | ‖q − si‖ ≤ ‖q − sj‖, ∀j 6= i} .

EachVi(s) is called aVoronoi cell. Two pointssi andsj are
Voronoi neighborsif their Voronoi cells share a boundary.

A. Projected gradient descent

Next, we describe the constrained optimization technique
known as projected gradient descent [14]. This technique,
combined with generalized Armijo step sizes, may be used
to iteratively find minima of an objective function.

Let m ∈ N, and letΩ denote a nonempty, closed, and
convex subset ofRm. Let F : R

m → R≥0, and assume
that the objective is to minimizeF . Further assume that the
gradient∇F is globally Lipschitz onΩ. Let projΩ : R

m →
Ω denote the orthogonal projection onto the setΩ, i.e.,

projΩ(x) = argmin
y∈Ω

‖x − y‖.

Consider a sequence{xk} ∈ Ω, k ∈ N, which satisfies

xk+1 = projΩ (xk − ak∇F (xk)) , x1 ∈ Ω, (1)

where the step size,ak, is chosen according to the line search
algorithm described in Table I, evaluated atx = xk.

Here the grid sizeτ determines the granularity of the line
search. The toleranceθ may be adjusted for a more (larger
θ) or less (smallerθ) strict gradient descent. Note that as
long asθ > 0, the line search algorithm must terminate in
finite time, while a larger value ofθ will decrease the number

Name: L INE SEARCH ALGORITHM
Goal: Determine step size for projected gradient descent

algorithm (1)
Input: x ∈ Ω
Assumes: (i) grid sizeτ ∈ (0, 1)

(ii) toleranceθ ∈ (0, 1)
(iii) maximum step sizeαmax ∈ R>0

Output: α ∈ R≥0

1: α = αmax

2: repeat
3: xnew = projΩ (x − α∇F (x))
4: ν = θ

α
‖x − xnew‖

2 + F (xnew) − F (x)
5: if ν > 0 then
6: α = ατ
7: end if
8: until ν ≤ 0

TABLE I

L INE SEARCH ALGORITHM.

of iterations. The condition in step8, known as the Armijo
condition, ensures that the decrease inF is commensurate
with the magnitude of its gradient. A sequence{xk}

∞
k=1

satisfying these requirements converges in the limit ask →
∞ to stationary points ofF , see [14, Proposition 1].

B. Estimation via Kriging interpolation

This section reviews the geostatistical kriging procedure
for the estimation of spatial processes, see e.g., [2], [15].
A time-varying random processδ on De is second-order
stationaryif it has constant mean, and its covariance is of the
form Cov(δ(h1), δ(h2)) = C(h1, h2), whereC : De×De →
R≥0 is a positive definite covariance function which only
depends on the differenceh1 − h2. The covariance matrix
of the vector of pointsh = (h1, . . . , hl) ∈ Dl

e, l ∈ N, is
Σ = Σ(h) = [C(hi, hj)]

l
i,j=1 ∈ R

l×l. When it is clear from
the context, we use bold face to denote explicit dependence
on h. We definec : De × Dl

e → R
l to be the vector of

covariances between a single point,h ∈ De and the vector
h, i.e., c = c(h,h) = (C(h, h1), . . . , C(h, hl))

T .
We assume that the random processZ is of the form

Z(h) = µ(h) + δ(h), h ∈ De, (2)

whereµ is the mean function andδ is a zero-mean second-
order stationary random process with a known covariance
function, C. We assume thatC has afinite spatial range
r ∈ R>0, such that

C ((s1, t1), (s2, t2)) = 0, if ‖s2 − s1‖ > r.

We also assume that measurement datay = y(h) =
(Y (h1), . . . , Y (hl))

T are corrupted with errors according to

Y (hi) = Z(hi) + ǫi, ǫi
iid
∼ N

(

0, σ2
ǫ

)

, σǫ ∈ R. (3)

The constant variance in measurement error models identical
sensors. The covariance betweenY (hi) andY (hj) is written

Cov[Y (hi), Y (hj)] =

{

C(hi, hj) + σ2
ǫ , if i = j,

C(hi, hj), otherwise.



Note that the covariance matrix ofh with respect to the noisy
processY may be writtenΣǫ = Σǫ(h) = Σ(h) + σ2

ǫ In,
whereIn denotes then × n identity matrix.

1) The simple kriging predictor:Assuming that the mean
functionµ is known, thesimple kriging predictorat h ∈ De

from the data measured at locationsh is the predictor that
minimizes the error variance,

σ2(Z(h);h) = Var [Z(h) − pred(Z(h);h)] , (4)

among all unbiased predictors of the form pred(Z(h);h) =
∑l

i=1 αiY (hi) + k. Let µ = (µ(h1), . . . , µ(hl))
T . The

explicit expression of the simple kriging predictor ofZ at
h ∈ De is

ẑSK(h;h) = µ(h) + cT
Σ

−1
ǫ (y − µ), (5)

with error variance

σ2
SK(Z(h);h) = σ2

Z(h) − cT
Σ

−1
ǫ c. (6)

Hereσ2
Z(h) = C(h, h) denotes the variance ofZ(h), while

cΣ−1
ǫ c represents the variance of the simple kriging predic-

tor ẑSK(h;h). Under the assumption thatZ is stationary,σ2
Z

is constant, and we drop the dependence onh.
2) The universal kriging predictor:Relaxing the assump-

tion that the mean functionµ is known, consider a linear
expansion upon a set ofp ∈ N known basis functions
f1, . . . , fp : De → R. We write µ(h) = f(h)T β, where
f(h) = (f1(h), . . . , fp(h))T and β = (β1, . . . , βp)

T ∈ R
p.

Theuniversal kriging predictorof Z at h ∈ De is the predic-
tor that minimizes the error variance (4) among all unbiased
predictors of the form pred(Z(h);h) =

∑l
i=1 αiY (hi). The

explicit expression ath ∈ De is

ẑUK(h;h) =
(

c + F
(

F T
Σ

−1
ǫ F

)−1 (

f − F T
Σ

−1
ǫ c

)

)T

Σ
−1
ǫ y, (7)

whereF denotes the matrix whoseith row is f(hi)
T . The

error variance of̂zUK(h,h) is

σ2
UK(Z(h);h) = σ2

Z − cT
Σ

−1
ǫ c+

(

f − F T
Σ

−1
ǫ c

)T(

F T
Σ

−1
ǫ F

)−1(

f − F T
Σ

−1
ǫ c

)

. (8)

Note that if p > n, then the matrixF T
Σ

−1
ǫ F is not full

rank, and the universal kriging predictor is not well-defined.
In this paper, unless explicitly stated otherwise, our results

make no distinction between simple and universal kriging. To
simplify notation, we drop the subscript and useẑ to denote
both kriging estimators with associated error varianceσ2.
Note that bothẑ and σ2 only depend on the positions of
the measurements inDe, not the actual values. Also note
that σ2 is invariant under permutations ofh1, . . . , hl. This
guarantees that the value ofσ2 remains the same no matter
how the elements of the set are ordered. Thus without loss of
precision, we will evaluateσ2 at a set, instead of at a tuple.

III. PROBLEM STATEMENT

In Section III-A we introduce the robotic network model
and in Section III-B we detail the overall network objective.

A. Robotic sensor network model

Consider a group{S1, . . . , Sm} of m ∈ N static nodes
deployed in a convex polytopeD ⊂ R

d. Let Q =
(q1, . . . , qm) ∈ Dm denote the positions of the static nodes.
Assume that each node has a limited communication radius,
R ∈ R>0, and that they are positioned so that each one can
communicate with its Voronoi neighbors.

In addition to the static nodes, consider a group
{R1, . . . , Rn} of n robotic sensor agents. The position of
robot i ∈ {1, . . . , n} at time t ∈ R is denoted bypi(t) ∈ D.
We assume that robots take measurements of the spatial field
at discrete instants of time inZ≥0. Between measurement
instants, each robot moves according to the discrete dynamics

pi(k + 1) = pi(k) + ui(k),

where‖ui‖ ≤ umax for someumax ∈ R>0. The communica-
tion radius of the robotic agents is alsoR. Each node will
need to be able to communicate with any robot which may
be within covariance range of the points in its Voronoi region
at the following timestep. To that end, we assume that

R ≥ max
i∈{1,...,m}

{CR(Vi(Q))} + r + umax. (9)

The robots are also assumed to have some limited capabil-
ity of sensing each other, so that a robot knows the positions
of any other robots within a distance of2umax. At discrete
timesteps, each robot communicates the measurement and
location to static nodes within communication range, along
with the locations of any other sensed robots. The nodes are
then responsible for computing an estimate of the field, and
relaying control-specific information back to those robotics
within communication range. Our implementation does not
require direct communication between robotic agents.

B. The average kriging variance as objective function

Given the communication, sensing, and motion capabilities
of the network described in Section III-A, our objective
is to design a coordination algorithm that optimizes the
estimation of the spatial fieldZ. Here, we introduce the
network objective function that we seek to optimize.

Assume that the experiment has been run forkmax ∈ Z≥0

timesteps and a sequence of measurements taken at time in-
tervals{1, . . . , kmax}, at space-time locationsh ∈ (Dn

e )kmax,
are available. With these measurements a kriging estimate at
h ∈ De has associated error variance

σ2(Z(h);h) = Var[z̄(h;h)],

where z̄(h;h) = Z(h) − ẑ(h;h) is a shorthand notation.
There are a number of ways to define optimality of a kriging
estimator. Consider a kriging estimationẑ(h;h) made onD
over the intervalT = [1, kmax]. The average error variance
of the estimator̂z(h;h) over s ∈ D and t ∈ T is given by

A =

∫

T

∫

D

σ2(Z(s, t);h) ds dt.

The question becomes how to choose the best locations to
take measurements in order to minimizeA. Since the mea-
surements are taken sequentially, and each set is restricted
to a region nearby the previous measurements, one cannot



simply optimize over(Dn
e )kmax. Additionally, if kmax may not

be known at the start of the experiment.
Consider, instead, a greedy approach in which we use

measurements taken at timesteps{1, . . . , k} to choose the
positions for the(k+1)-st set of measurements. Leth(1:k) ∈
(Dn

e )k be the vector of measurement location and time
pairs for all measurements up to timek, ordered in blocks
corresponding to timesteps, i.e.,

h(1:k) = ((p1(1), 1) , . . . , (pn(1), 1) , . . . ,

(p1(k), k) , . . . , (pn(k), k))
T

.

Let P = (p1, . . . , pn) ∈ Dn
e denote the current positions of

the robotic agents, and with a slight abuse of notation we will
use(P, k + 1) to denote the vector of space-time locations
at spatial positionsP and timek + 1. Let A(k) : Dn → R

map the next set of locations to the average error variance
of the kriging estimate built with measurements up to and
including timek + 1, i.e.,

A(k)(P ) =

∫

T

∫

D

σ2
(

Z(s, t); (h(1:k), (P, k + 1))
)

ds dt.

The objective is to choose the set of measurement locations
P at timek+1 so as to maximally decrease the value ofA(k).
Unfortunately, the gradient ofA(k) cannot be computed in a
distributed way over the communication graph of the static
nodes because of the requirement of inverting matrices which
depend on all measurement locations. Instead, we construct
an upper bound toA(k), whose gradient is distributed, and
design an algorithm to optimize it.

IV. V ORONOI CONTRACTION FOR COLLISION AVOIDANCE

We begin by specifying the region of allowed movement
for the robotic agents. As noted in Section III-A, each robot’s
motion is restricted by a maximum velocity at each timestep,
as well as the requirement that it must stay within the phys-
ical regionD. Here we provide an additional requirement
which ensures that robots do not collide. Beyond the benefit
of damage avoidance, this restriction ensures that even under
the assumption of zero sensor error, the kriging error function
is well-defined over the space of possible configurations.

Let ω ∈ R≥0 be a desired buffer width. We assume
that ω is small compared to the size ofD. One might use
the diameter of the physical robotic agents as a basis for
this width, adding space for robustness. To ensure that the
distance between two robots is never smaller thanω, we
introduce a contraction of the Voronoi diagram.

Consider the locationsP = (p1, . . . , pn) of the n robotic
agents at thekth timestep. Let(Vi(P ))ω/2 denote theω

2 -

contraction ofVi(P ). Let Ω
(k)
i ⊂ D such that

Ω
(k)
i = (Vi(P ))ω/2 ∩B(pi, umax).

For eachj 6= i ∈ {1, . . . , n}, we haved(Ω
(k)
i ,Ω

(k)
j ) ≥ ω.

Between timestepsk and k + 1, we will restrict Ri to the
regionΩ

(k)
i . Figure 1 shows an example inR2 of this set.

Let Ω(k) =
∏n

i=1 Ω
(k)
i ⊂ (Rd)n denote the region of

allowed movement of all robotic agents at timestepk ∈ Z≥0.
Note that Ω(k) is closed, bounded, and convex. Next we

ω

2
Ω1

p1

p2

p3

Fig. 1. Comparison of the regions{Ω(k)
i }n

i=1 (dashed) with the Voronoi
partition (solid).

present some results regardingΩ(k). The following lemma
describes some useful results concerningΩ(k).

Lemma IV.1 For the network described in Section III-A, let
the initial condition satisfy‖pi(0) − pj(0)‖ ≥ ω for all i 6=
j ∈ {1, . . . , n}, and assume thatP (k+1) ∈ Ω(k), for all
k ∈ Z≥0 throughout the evolution. Then the following holds:

(i) ‖pi(k) − pj(k)‖ ≥ ω for all i 6= j ∈ {1, . . . , n} and
all k ∈ Z≥0,

(ii) for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, we have
that d(pi(k + 1), Vj(Q)) ≤ r =⇒ ‖pi(k)− qj‖ ≤ R.

Proof: Fact (i) follows directly from the definition of
ω as the minimum separation distance between any two sets
Ω

(k)
i andΩ

(k)
j . To show fact (ii), we write

d(pi(k + 1), Vj(Q)) ≤ r

=⇒ d(pi(k), Vj(Q)) ≤ r + umax

=⇒ ‖pi(k) − qj‖ ≤ CR(Vj(Q)) + r + umax

=⇒ ‖pi(k) − qj‖ ≤ R.

In the second implication, we have used the fact that
CR(Vj(Q)) is the maximum distance fromqj to any point
in Vj(Q). The final implication is a direct consequence of
assumption (9).

V. L OCAL APPROXIMATION OF THE AVERAGE KRIGING

VARIANCE

In this section, we compute an upper bound on the average
kriging variance. The idea is to construct an approximation
of the error variance at each location, using only nearby
measurements. We begin by providing a useful result that
isolates the effect of a subset of measurements on the
kriging variance. Before presenting it, we introduce the
following notation: givenh1 ∈ Dl

e and h2 ∈ Dm
e , with

iF(h1)∩ iF(h2) = ∅, let

ŷ(h2;h1) = [ŷ(h21;h1), . . . , ŷ(h2m;h1)]
T ,

ȳ(h2;h1) = y(h2) − ŷ(h2;h1).

We are now ready to present an upper bound on the kriging
variance at any point.

Lemma V.1 (Upper bound on kriging variance) Let h =
(h1,h2) denote a full set of distinct measurement locations,
with h1 = (h1, . . . , hl) ∈ Dl

e and h2 = (hl+1, . . . , hn) ∈
Dm

e , with l + m = n. Then,



σ2(Z(h);h) = σ2(Z(h);h1) − Cov[z̄(h;h1), ȳ(h2;h1)]·

· Var[ȳ(h2;h1)]
−1 Cov[ȳ(h2;h1), z̄(h;h1)]

≤ σ2(Z(h);h1),

with equality ifCov[Z(h), y(h2)] and Cov[y(h1), y(h2)].

This result can be proven using [16, Proposition 8.2.4]
to conveniently decompose the inverse covariance matrix.
Note thatσ2(Z(h);h1) corresponds to the error variance of
a predictor computed with the information at locationsh1.

The following result provides a method to calculate an
upper bound on the average error variance in a distributed
way over the communication graph of the static nodes.

Proposition V.2 (Spatial approximation for distributed
implementation) Define CS(≤k+1) : Z≥0×Dn → F(De) by

CS(≤k+1)(j, P ) =
{

(s, t) ∈ iF

(

h(1:k), (P, k + 1)
)

| d(s, Vj(Q)) ≤ r
}

,

i.e., the subset of measurement locations up to timek + 1
which are correlated in space to the Voronoi cell of the static
nodej. Let Ã(k)

j : Dn → R be defined by

Ã
(k)
j (P ) =

∫

T

∫

Vj(Q)

σ2
(

Z(s, t); CS(≤k+1)(j, P )
)

ds dt.

Then the sum,̃A(k) =
∑m

j=1 Ã
(k)
j satisfies

A(k)(P ) ≤ Ã(k)(P ).

In addition, if, for all j ∈ {1, . . . ,m}, the points in
CS(≤k+1)(j, P ) are not correlated to other measurement
locations outside it, then equality holds.

Proof: Using the Voronoi partition, the overall average
error variance can be decomposed as

A(k)(P )=

m
∑

j=1

∫

T

∫

Vj(Q)

σ2
(

Z(s, t);
(

h(1:k), (P, k + 1)
))

ds dt.

Since CS(≤k+1)(j, P ) ⊂ iF

(

h(1:k), (P, k + 1)
)

, we may use
Lemma V.1 to show the upper bound,

m
∑

j=1

∫

T

∫

Vj(Q)

σ2
(

Z(s, t);
(

h(1:k), (P, k + 1)
))

ds dt ≤

m
∑

j=1

∫

T

∫

Vj(Q)

σ2
(

Z(s, t); CS(≤k+1)(j, P )
)

ds dt.

The condition of equality also follows directly from the
statement of Lemma V.1.

Remark V.3 (Ã(k)
j may be calculated with local infor-

mation only) Note that the locationpi contributes only
to Ã(k)(P ) in those Voronoi regionsVj(Q) for which
d(pi, Vj(Q)) ≤ r. Thus the requirement (9) ensures thatSj

can calculateÃ(k)
j . As with σ2, without loss of precision we

will evaluateÃ(k)
j at a set, rather than a tuple. •

Remark V.4 (Universal kriging with too few measure-
ments) It should be noted here that in the universal kriging

case the functioñA(k)
j (P ) is only well-defined if the number

of measurement locations available to each node is greater
than or equal to the number of basis functions. In this paper
we assume that this holds at all times. •

Our next step is to characterize the smoothness properties of
the functionÃ(k). Let us start by introducing some useful
notation. For eachi ∈ {1, . . . , n}, let

CS(≤k+1)
−i (j, P ) = CS(≤k+1)(j, P ) \ {(pi, k + 1)}.

Define the mapsCi : {1, . . . ,m} × Dn × D × T → R and
Vi : {1, . . . ,m} × D → R by

Ci(j, P, s, t) = Cov[ȳ((pi, k + 1), CS(≤k+1)
−i (j, P )),

z̄((s, t), CS(≤k+1)
−i (j, P ))],

Vi(j, P ) = Var[ȳ((pi, k + 1), CS(≤k+1)
−i (j, P ))],

where ȳ(h;h) = Y (h) − ŷ(h;h) is a convenient shorthand
notation. Fors ∈ D and t ∈ T , let ∇iCi(j, P, s, t) and
∇iVi(j, P ) denote the partial derivative ofCi and Vi with
respect topi. We are now ready to state our result on the
gradient ofÃ(k).

Proposition V.5 Assume that the covariance ofZ is C1

with respect to the spatial position of its arguments. In the
universal kriging scenario, further assume that the mean
basis functionsf1, . . . , fp are C1 with respect to the spatial
position of their arguments. TheñA(k) is C1 on Ω(k) and
the ith component of its gradient is of the form

∇iÃ
(k)(P ) =

m
∑

j=1

∇iÃ
(k)
j (P ),

where

∇iÃ
(k)
j (P ) =

∫

T

∫

Vj(Q)
Ci(j, P, s, t)2 ds dt∇iVi(j, P )

Vi(j, P )2
−

−

∫

T

∫

Vj(Q)
Ci(j, P, s, t)∇iCi(j, P, s, t) ds dt

Vi(j, P )
.

Note that for eachi ∈ {1, . . . , n}, ∇iÃj(P ) may be
computed by nodej, and thus∇iÃ

(k)(P ) may be computed
in a manner distributed across the network of nodes.

Existence of the gradient is only part of the picture. In
order to satisfy the convergence criteria for the projected
gradient algorithm, the gradient must be globally Lipschitz.
This is what the next result states.

Proposition V.6 Under the assumptions of Proposition V.5,
make the following additional assumptions,

• ∇i Cov[Z(pi, k +1), Z(s2, t2)] is globally Lipschitz on
Ω

(k)
i for eachi ∈ {1, . . . , n};

• in the universal kriging case, further assume that the
partial derivatives ∂

∂sfj are globally Lipschitz onΩ(k)
i .

Then the gradient,∇Ã(k) is globally Lipschitz onΩ(k), i.e.,
there existsL ∈ R≥0 such that

‖∇Ã(k)(P1) −∇Ã(k)(P2)‖ ≤ L‖P1 − P2‖, ∀P1, P2 ∈ Ω(k).



VI. OPTIMIZING INFORMATION RETRIEVAL VIA

GRADIENT DESCENT

In this section, we design a coordination algorithm to
follow the gradient ofÃ(k). Under the network model of
Section III-A, we consider a system in which each static
node is responsible for calculating control vectors for the
robotic agents within the region of influence. We use the
formulation of the approximate average error presented in
Proposition V.2, and follow a projected gradient descent
building on Section II. The current timestep,k, is held fixed
through the section and, therefore, to reduce notation, we
leave off the superindex which indicates timestep where
unnecessary. We use the notationP = (p1, . . . , pn) for the
current positions of the robots.

A. Distributed optimization of the approximate average krig-
ing variance

Ideally, at thekth timestep, we would like the robots to
move to the minimum of the mapP 7→ Ã(P ) over the
region Ω. Finding such a minimum over the whole region
is a difficult problem. Instead, we use a distributed version
of the projected gradient descent algorithm, which is at least
guaranteed to converge to a stationary point. Since each node
is working with a reduced set of robot positions, we define
the following notation for use in the algorithm. LetP ′

j :
R×Dn → F(D) map a stepsize and the current configuration
to the set of next locations as calculated bySj , i.e.,

P ′
j(α, P ) =

{

projΩi

(

pi + α∇iÃ(P )
)

,

foreachi s.t. d (pi, Vj(Q)) ≤ r + umax + ω
}

.

Let dj : R × Dn → R≥0 denote the total distance traveled
by robots enteringVj(Q), i.e.,

dj (α, P ) =
∑

i∈{1,...,n} such that
proj

Ωi
(pi+α∇iÃ(P ))∈Vj(Q)

‖projΩi

(

pi + α∇iÃ(P )
)

− pi‖
2.

Globally, let P ′ : R ×Dn → Dn be defined asP ′(α, P ) =
projΩ(P + α∇Ã(P )).

Table II describes a distributed version of theL INE SEARCH

ALGORITHM, assuming a starting position ofP ∈ Ω. The
line search starts with a scaling factorαmax which scales the
smallest nonzero partial toumax, ensuring that all robots with
nonzero partial derivatives have the opportunity to move the
maximum distance. In other words, we write

αmax =
umax

mini∈{1,...,n}
δ(i) 6=0

{δ(i)}
, where (10a)

δ(i) =
∥

∥

∥
∇iÃ(P )

∥

∥

∥
. (10b)

Lemma VI.1 The DISTRIBUTED L INE SEARCH ALGORITHM

is equivalent to theL INE SEARCH ALGORITHM with x = P ,
and F = Ã.

Proof: By identifying terms, we can see that the
Armijo conditions in the two algorithms match. Under the
assumption that the network of nodes is connected, the

Name: DISTRIBUTED L INE SEARCH ALGORITHM

Goal: Compute step size for gradient descent ofÃ
Input: Configuration,P = (p1, . . . , pn) ∈ Dn

Assumes: (i) Connected network of static nodes
(ii) Sj knows pi, ∇iÃ and Ωi for each robot
within communication range
(iii) Step sizeτ and toleranceθ ∈ (0, 1) known a
priori by all static nodes

Output: Step size,α ∈ R≥0

Initialization
1: Via a consensus algorithm,S1, . . . , Sm calculate αmax as

defined in Equations (10).

For j ∈ {1, . . . , m}, nodeSj executes concurrently

1: α = αmax

2: repeat
3: calculatesÃj

`

P ′
j(α, P )

´

− Ãj(P )

4: calculatesdj (α, P )2

5: execute consensus algorithm to get the following:

Ã(P ′(α, P )) − Ã(P ) =

m
X

j=1

Ãj

`

P
′
j(α, P )

´

− Ãj(P )

‚

‚P − P
′(α, P )

‚

‚

2
=

m
X

j=1

dj (α, P )2

6: ν = θ
α
‖P − P ′(α, P )‖ + Ã(P ′(α, P )) − Ã(P )

7: if ν > 0 then
8: α = ατ
9: end if

10: until ν ≤ 0

TABLE II

DISTRIBUTED L INE SEARCH ALGORITHM.

summations in step5 may be calculated via consensus. Thus
it suffices to show the following equalities

‖P ′(α, P ) − P‖2 =

m
∑

j=1

dj (α, P )
2
, (11a)

= Ã (P ′(α, P ))

m
∑

j=1

Ãj

(

P ′
j(α, P )

)

, (11b)

Ã(P ) =

m
∑

j=1

Ãj(P ). (11c)

We may decompose the squared norm in the following way

‖P ′(α, P ) − P‖2 =
n

∑

i=1

‖projΩi

(

pi + α∇iÃ(P )
)

− pi‖
2

=

m
∑

j=1

dj (α, P )
2
.

Here the first equality stems from the definition ofΩ as
the product ofΩi’s. The second equality is a result of the
fact thatV(Q) is a partition ofD, anddj depends only on
those elements ofP ′(α, P ) which lie in Vj(Q). This proves
Equation (11a). Equation (11b) follows from Remark V.3,
while Equation (11c) is a result of the definition of̃A.

We are now ready to present our technique for a greedy
optimization algorithm. At timestepk, the nodes follow a



gradient descent algorithm to define a sequence of configu-
rations,{P †

γ}, γ ∈ N, such that

P
†
1 = P (k)

P
†
γ+1 = projΩ

(

P †
γ − α∇Ã(P †

γ )
)

, α ∈ R≥0,

where α is chosen via theDISTRIBUTED L INE SEARCH AL-
GORITHM. When |Ã(P †

γ+1) − Ã(P †
γ )| = 0, the algorithm

terminates, and the nodes setP (k+1) = P
†
γ+1. By the end

of this calculation, each node knows the identity of robotic
agents that belong to its Voronoi cell at timestepk+1. Node
Sj transmitspi(k + 1) to Ri. Each robot then moves to
pi(k + 1) between timesteps. The overall gradient descent
algorithm is summarized in Table III, where we have returned
to the superscript notation to avoid confusion.

Proposition VI.2 Under the assumptions of Proposition V.6,
if the network follows theDISTRIBUTED PROJECTEDGRADI-
ENT DESCENTALGORITHM, then the following holds:

• the algorithm is distributed over the network described
in Section III-A,

• the robots will not collide,
• at each timestep after the first, measurements will be

taken at configurations which are stationary points of
the mapP 7→ Ã(k)(P ) over Ω(k).

Proof: The first statement follows by construction: each
robotic agent and each static node uses only information
acquired by itself or communicated by its neighbors, as
described in the model of Section III-A. The second state-
ment is a direct result of the construction ofΩ. Between
the kth and k + 1st timesteps,Ri moves withinΩi, with
Ωi ∩Ωj = ∅, ∀i 6= j ∈ {1, . . . , n}. Therefore the robots will
not collide. The third statement is a result of [14, Proposition
1]. By Proposition V.6,∇Ã(k) is globally Lipschitz onΩ.
By Lemma VI.1, the step size calculation matches that in the
L INE SEARCH ALGORITHM. Thus at each timestep, the nodes
generate a sequence of configurations,P †

γ , which converges
in the limit asγ → ∞ to stationary points ofÃ on Ω.

Remark VI.3 (Robustness to failure) One benefit to this
algorithm over trajectories determined a priori is that it is
robust to agent failures. If an agent stops sending position
information to the nodes, it will cease to receive new control
vectors, remaining in place. Meanwhile the network will
naturally fill in the gaps. •

B. Simulation results

We performed simulations with the following parameters:
m = 5 static nodes,n = 10 robotic agents, and the domain
D = {(0, .1), (2.5, .1), (3.45, 1.6), (3.5, 1.7), (3.45, 1.8),
(2.7, 2.2), (1, 2.4), (0.2, 1.3)}. We used the separable co-
variance function defined byCov[Z(s1, t1), Z(s2, t2)] =
Ctap(‖s1 − s2‖, 0.4)Ctap(|t1 − t2|, 9.5), where

Ctap(δ, r) =

{

e−
δ
r

(

1 − 3δ
2r + δ3

2r3

)

if δ ≤ r,

0 otherwise.

This is a tapered exponential function belonging to the class
of covariance functions suggested in [4].

We compared the performance of our algorithm against
two naive strategies. The first strategy was a static configura-
tion in which the robots remained motionless in an incenter
Voronoi configuration, i.e., a configuration such that each
robot is located at the incenter of its own Voronoi cell. The
second strategy was a lawnmower-type approach, in which
we divided the environment vertically among the robots, and
had them march back and forth along horizontal trajectories,
avoiding the boundary of the region. Finally, we ran theDIS-
TRIBUTED PROJECTEDGRADIENT DESCENT ALGORITHM from
the same starting position as the lawnmower-type approach.
Each experiment ran forkmax = 20 steps. AgentR2 stopped
transmitting measurements at timek = 3, while R7 stopped
at k = 5. Figure 2 shows the trajectory traveled by the
gradient descent algorithm. Note that the two agents which

Fig. 2. Trajectory traced by the projected gradient descentalgorithm. The
squares represent the (static) positions of the nodes,Q, with the region
partitioned according toV(Q). The triangles represent the locations at
which measurements were taken, the circles represent measurements lost
(not incorporated into the calculations).

stopped sending measurements ceased to move. The other
agents avoided colliding with them, but filled in around them
due to the gradient. LetA(k)

S ,A
(k)
L ,A

(k)
G ∈ R≥0 denote the

average error as calculated at thekth step of the static,
lawnmower, and gradient descent algorithms respectively.
Figure 3 shows a plot of these errors ask in creases from
1 to kmax. It can be seen that the gradient descent algorithm

5 10 15 20

92

94

96

98

100

Fig. 3. Average errors,A(k)
S

(triangle),A(k)
L

(diamond), andA(k)
G

(star)
ask increases.

has smaller error than either the static configuration or the
lawnmower-type approach.

VII. C ONCLUSIONS AND FUTURE WORK

We have considered a network composed of robotic sen-
sors and static nodes performing spatial estimation tasks.We



Name: DISTRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM

Goal: Find a local minimum ofÃ(k) within Ω(k).

Assumes: (i) Connected network of static computing nodes and mobile robotic sensingagents
(ii) Static nodes deployed overD such thatR ≥ maxi∈{1,...,m} {CR(Vi(Q))} + r + umax

(iii) Step sizeτ and tolerance valueθ ∈ (0, 1) known a priori by all nodes (iv) Some termination marker known to all
nodes and robots which may be sent to mark the end of a gradient descent loop.

Uses: (i) Each node uses the temporary vectorsPcur, respectivelyPnext to hold the configuration at the current, respectively
next step of the gradient projection algorithm. For ease of exposition, weuse global notation althoughSj only calculates
and uses the parts of these vectors which correspond to agents currently within communication range.

At time k ∈ Z≥0, nodeSj executes:
1: setsRcov(j) = {Ri | d(pi(k), Vj(Q)) ≤ r}
2: collects measurements and locations from all robots inRcov(j)
3: setsPnext = P (k)

4: repeat
5: setsPcur = Pnext(j)

6: calculates−∇Ã
(k)
j (Pcur)

7: transmits vector∇iÃ
(k)
j (Pcur) to all robots inRcov(j)

8: collects sum∇iÃ
(k)(Pcur) from all robots inRcov(j)

9: executes the DISTRIBUTED L INE SEARCH ALGORITHM at
Pcur to calculateα

10: setsPnext = Pcur + α∇Ã(k)(Pcur)
11: calculates|Ã(Pnext) − Ã(Pcur)| via consensus
12: until |Ã(Pnext) − Ã(Pcur)| = 0
13: setsP (k+1) = Pnext

14: sends a termination marker to all robots currently inVj(Q)
15: conveyspi(k + 1) to robots that currently belong toVj(Q)

At time k ∈ Z≥0, robotRi executes:
1: setsScov(i) = {Sj | d(pi(k), Vj(Q)) ≤ r}
2: takes measurement atpi(k)
3: sends measurement and position to all nodes inScov(i)
4: repeat
5: receives vectors∇iÃ

(k)
j (P (k)) from all nodes in

Scov(i)
6: calculates sum∇iÃ

(k)(P (k))
7: sends∇iÃ

(k)(P (k)) to all nodes inScov(i)
8: until receives termination marker from any node
9: receives next locationpi(k + 1)

10: moves topi(k + 1).

TABLE III

DISTRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM.

have focused on the problem of optimizing data acquisition
in order to better estimate a spatiotemporal random field.
We have used the average error variance of the kriging
estimator as a metric for the design of optimal measurement
trajectories of the robots. In our approach, mobile robots
take measurements of the environment and static nodes are
responsible for collecting the measurements and computing
locally optimal configurations for estimation. The design
of the overall coordination algorithm combines Voronoi
partitions, distributed projected gradient descent, and kriging
interpolation technique to design. We have compared in
simulations the performance of our approach against a static
network configuration and a lawnmower-based approach.

Future work will focus on the investigation of theoretical
guarantees on the performance and robustness to failure of
the proposed coordination algorithm, the development of
statistically-sound techniques for the case when, in universal
kriging, any particular robot only has a small number of
measurements available to it, and the quantification of the
communication requirements of the proposed approach.
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