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ABSTRACT
The study on verification trends in the semiconductor industry
shows that the design complexity is increasing, fewer companies
achieve first silicon success and need more spins before production,
companies hire more verification engineers, and 53% of the whole
hardware-design-cycle is spent on the design verification [18]. The
cost of the respin is high, and more than 40% of the cases that con-
tribute to it are post-fabrication functional bug exposures [16]. The
study also shows that 65% of verification engineers’ time is spent
on debug, test creation, and simulation [17]. This paper presents a
set of tools for RISC-V processor verification engineers that help to
expose more bugs before production and increase the productiv-
ity of time spent on debugging, test creation and simulation. We
present Logic Fuzzer (LF), a novel tool that expands the verification
space exploration without the creation of additional verification
tests. The LF randomizes the states or control signals of the design-
under-test at the places that do not affect functionality. It brings the
processor execution outside its normal flow to increase the number
of microarchitectural states exercised by the tests. We also present
Dromajo, the state of the art processor verification framework for
RISC-V cores. Dromajo is an RV64GC emulator that was designed
specifically for co-simulation purposes. It can boot Linux, handle
external stimuli, such as interrupts and debug requests on the fly,
and can be integrated into existing testbench infrastructure with
minimal effort. We evaluate the effectiveness of the tools on three
RISC-V cores: CVA6, BlackParrot, and BOOM. Dromajo by itself
found a total of nine bugs. The enhancement of Dromajo with the
Logic Fuzzer increases the exposed bug count to thirteen without
creating additional verification tests.
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1 INTRODUCTION
Modern microprocessors are complex systems. The study on ver-
ification trends in the semiconductor industry shows that the de-
sign complexity is increasing, fewer companies achieve first silicon
success, companies hire more verification engineers, and 53% of
the whole hardware-design-cycle is spent on the design verifica-
tion [18].

When verifying microprocessors, the common practice is to
build a co-simulation infrastructure [27, 28]. The co-simulation
compares the design-under-test (DUT) execution against the high-
level software model of the design, also known as the “golden”
model. The underlying idea is simple: when we run the code on
the DUT and the model, the architectural state of both must be the
same at any given moment. In the case of a mismatch, reasons are
investigated, and bugs are uncovered.

To get confidence about the DUT correctness, engineers use
various proxy metrics, such as automatic code-based and circuit-
structure-based coverage, as well as manual implementation spe-
cific functional coverage [38]. Another typical metric is to track
the bugs found per week. The verification team thoroughly studies
the architecture specification and carefully designs the functional
coverage models. The plan must cover ample verification space and,
most importantly, consider the corner cases [20]. The team then
sets the goals for the above-mentioned metrics, and the DUT is in-
tensely stressed by adding numerous tests to regression, gradually
uncovering bugs and increasing the coverage until defined goals
are achieved.

https://doi.org/10.1145/1122445.1122456
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In the context of the described state-of-the art verification prac-
tices, we want to bring up two specific challenges. First, the de-
scribed infrastructure does not guarantee that the processor is
bug-free when sending the design for fabrication. The study on
verification trends shows that fewer companies achieve first sili-
con success due to increased complexity and need costly re-spins
before production. Despite the immense amount of co-simulation
and achieved high coverage, 40% of the reasons that cause a re-
spin are functional bugs that escape to silicon [18]. These bugs get
exposed only during the silicon validation or even worse at the end-
customer. The verification engineers call these bugs outlier bugs or
simulation resistant super bugs. The outlier bugs exposed neither
by random instruction streams nor by directed tests because the
sequence of events for the bug to occur is too complicated. They
can only “be exposed by exercising the design outside its normal
flow or operating parameters" [5].

The second challenge is that verification requires large amounts
of human effort and resources. It is reported that 53% of the whole
hardware-design-cycle is spent on design verification. Out of that
time, to reach the defined coverage goals, verification engineers
spend 21% of their time generating tests and running them on the
simulator. When bugs are uncovered, they spend 44% of their time
on debugging [18].

This paper’s contribution is the novel Logic Fuzzer, a technique
that brings the processor’s execution outside of its normal flow
and increases the chances of finding outlier bugs in the simulation
phase. The key in simulation-based verification is to develop the
code sequence that will bring the processor into a buggy microar-
chitectural state that results in an inconsistent architectural state
with the golden model. The Logic Fuzzer increases the microarchi-
tectural states reached without the engineering effort of developing
new code sequences, hence increasing the productivity of time
spent on the test creation. The overall idea is to randomize states or
control signals in the DUT that does not affect the correctness. For
example, the re-order buffer (ROB) may assert a full or stall signal
even when it is not full. It is also possible to change the branch pre-
dictor tables at any given moment or even insert the instructions in
the mispredicted path. The Logic Fuzzer can change the number of
cycles but does not corrupt the functionality or the program order.
Our results show that atypical microarchitectural states created by
Logic Fuzzer expose more bugs during the simulation phase.

Logic Fuzzer is not to be confused with the fuzzing of input stim-
uli [26, 30, 36]. It is the fuzzing of the actual logic. The inserted logic
stirs up the execution paths while running the code and brings the
processor outside its normal flow. It does not require a specialized
type of code and operates independently of existing verification
infrastructure.

In addition to the previous contribution, we built the state of
the art co-simulation framework for RISC-V cores. We called it
Dromajo [39], and it is open-source released. Dromajo is an RV64GC
emulator that was designed specifically for co-simulation purposes.
It can boot Linux and handle external stimuli, such as interrupts and
debug requests on the fly, and be integrated into existing testbench
infrastructure with minimal effort. Dromajo addresses the need for
productivity and shortens the debug-verify cycle. The co-simulation
framework simplifies debugging because an engineer starts the
investigation at the point closest to the divergence of the model and

the DUT. Our results show that the mere integration of Dromajo
into the testbenches of existing open-source RISC-V cores exposed
bugs and proved its effectiveness.

To the best of our knowledge, Dromajo is the only available RISC-
V verification framework that supports checkpoints. The checkpoint
is a snapshot of the processor’s architectural state that is taken after
executing a certain amount of instructions. Dromajo can generate
such checkpoints with arbitrary RISC-V applications and resume
them with the co-simulation enabled. It addresses the productivity
of time spent on simulation. For example, the checkpointing capa-
bilities of Dromajo can allow testing of lengthy running programs,
such as SPEC benchmarks running on Linux in parallel. The way
to achieve this is to run the program on Dromajo standalone (fast)
and dump N checkpoints along the run. These checkpoints are
then spawned across N different simulations and co-simulated in
parallel.

To sum up, this paper has the following contributions:
• Propose and apply a novel Logic Fuzzer to find more bugs
during the simulation phase.

• Contribute Dromajo, the state of the art co-simulation frame-
work to RISC-V community. It is the artifact of the project
that we used to evaluate the effectiveness of Logic Fuzzer.

• Exposure of thirteen bugs in three RISC-V cores: CVA6 [46],
BlackParrot [3], and BOOM [6, 48]. Dromajo by itself found
a total of nine bugs. The enhancement of Dromajo with the
Logic Fuzzer increases the exposed bug count to thirteen
without creating additional verification tests.

We demonstrate that the presented tools are capable of exposing
hardware malfunctions and inconsistencies with ISA that could
prevent any complex software from running correctly. The paper
also provides interesting observations related to Operating Systems.
Three RISC-V cores that we used for evaluation have gone through
several tapeouts and claim to boot and run Linux. More than half
of the bugs found were OS related. Interestingly, a “well behaved"
Linux will not have excercised most of the bugs. Our results show
that being able to boot and run Linux is far from saying that the
core is verified.

The rest of the paper is organized as follows. Section 2 provides
background concepts. Section 3 describes different types of Logic
Fuzzer and implementation details. Section 4 goes over Dromajo
and its main contributions. Section 5 briefly describes the evaluation
methodology. We discuss the results in Section 6. Finally, we finish
with the related works in Section 7 and conclude in Section 8.

2 BACKGROUND
2.1 Typical Verification Setup
In simulation-based verification, the RTL model of the microproces-
sor is translated into a high-level object-oriented software class [37].
The translated high-level model is then instantiated in the testbench
along with the memory model. The memory gets prepopulated with
the verification tests. After the simulation infrastructure is set up,
we must come up with criteria to determine whether the tests that
we are simulating pass or fail. The trivial option is the correctness
checking by running directed tests. When a test completes execu-
tion, the final result is checked against a pre-calculated answer. The
test’s success or failure is determined based on the comparison of
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the test output and the pre-calculated answer. The directed tests
are heavily used in industry, but often the purpose of these tests is
to verify the basic functionality of the design or, on the contrary, to
reach a well-thought-out corner case. For more than three decades,
to test the design at a more rigorous level, designers both in in-
dustry and academia relied on the verification binaries that are
randomly generated.

2.2 Random Instruction Generators
Random Instruction Generator, also known as Test Program Gen-
erator or Instruction Stream Generator, is a utility software that
generates randomized assembly instruction streams given the set
of configurations. The tests generated by the RIG sweeps a broad
range of implemented functionality. It can create complex test cases
that are hard to come up with for an engineer [2, 44].

Stressing the design-under-test with complete random instruc-
tion streams can be thought of as testing the system in “breadth.”
Complete randomness does not provide control over the generated
tests. The probability of hitting a bug that is hidden “deep down”
under the complex interactions among different units is very low.
To close this gap, some RIGs give the ability to have control over
the generated tests through test program templates. The template is
an abstract description of the test and describes a set of constraints
that the generator should satisfy. Hence, it is giving the ability to
manage the direction and the “depth” of the generated tests [10, 41].

The next question is: how do we determine if the verification
code failed or passed? Self-checking techniques are not applicable
due to the random nature of the generated tests. We can solve this
issue by building an infrastructure that compares the execution
with the reference model.

2.3 Reference Model Comparison
The reference, or the goldenmodel, is the high-level software model
of a processor. The characteristics of such a model are that it is
fast and uncomplicated, it does not reflect any details of the im-
plementation and the changes to the architectural state happen in
instruction-level granularity.

The reference model comparison is the verification technique
that, as the name suggests, compares the execution paths of the
implementation and the model. The underlying idea is simple: when
we run the code on the DUT and the model, the architectural state
of both must be the same at any given moment. We can implement
the comparison with the reference model in different ways with
different levels of complexity.

2.3.1 End-of-simulation comparison. The end-of-simulation com-
parison is a cheap and simplistic setup. This method compares only
the architectural state once the test completes. In other words, the
same code is run both on the reference model and the RTL imple-
mentation. At the end of the simulation, we dump the register file
states and the memory of both and compare against each other. If
any of the values do not match, the reasons are investigated. This
approach’s drawback is that a buggy behavior that got reflected
in the architectural state can be overwritten and hidden by later
correct execution. Besides, even when the mismatch is detected,
another problem is that it is challenging to debug as we might be
very far from the point of divergence [25].

2.3.2 Trace comparison. Another way to implement a reference
model checking setup is through trace comparison. This method
needs both of the models to be able to dump the execution logs.
Typically, these logs contain information about program counter
flow and every single register/memory writeback. The traces are
then compared, and mismatches are flagged. This approach solves
both of the issues mentioned above.

Nevertheless, this technique fails to work when we test an ex-
ternal stimulus, such as interrupts and debug requests. Due to
their asynchronous nature, an external stimulus can fire completely
randomly during the execution. Because in the described infrastruc-
ture, both models are running standalone and comparisons happen
post factum, the single interrupt will cause execution logs to be
different [27].

2.3.3 Co-simulation. To tackle the issue described in Section 2.3.2,
an infrastructure that runs both models in parallel and supports
communication between the models must be built. The cores simul-
taneously start executing the same code and pass messages to one
another. In general, we must support two types of messages.

First, at the specified event, for example, when an instruction is
committed, the RTL model will signal the reference to commit an in-
struction and compare the states of interest. The failed comparison
immediately halts the execution, and the stimulus that caused it is
reported. This approach simplifies debugging because an engineer
starts the investigation at the point closest to the divergence.

Second, to support asynchronous interrupts, the setup must
support the messaging that overwrites the emulator’s execution
path. When the RTL flags an interrupt, it must be able to inform
the emulator to follow its execution path [1].

2.4 Formal Verification
Formal verification techniques have shown promising results [24]
and are getting more popular [9, 43]. This type of verification ex-
haustively examines all possible execution paths. It rigorously tries
to prove or disprove the correctness of a formal model of a de-
sign. Nevertheless, due to scalability issues, formal methods are
applicable only on a modular level or on the designs of a moderate
size and complexity [21]. To gain confidence in the system’s cor-
rectness with high complexity, such as a modern microprocessor,
industry still heavily relies on the dynamic verification techniques
or simulation-based verification.

The simulation-based approach, on the other hand, is scalable
but deals only with the finite set of execution paths. It can verify
the system’s correctness on the finite number of states based on
the stimuli that get fed into the system. For the microprocessors,
this stimuli is a verification code-base that usually consists of the
following three: (1) simple directed unit-tests, (2) real applications,
and (3) randomly generated instructions.

3 LOGIC FUZZER
Logic Fuzzer (LF) inserts small pieces of logic into the RTL imple-
mentation that does not break the microprocessor’s functionality.
We can fuzz any logic that does not affect the functionality to reach
a broader range of processor microarchitectural states. Next, we
discuss fuzzable logic that is typical to the modern microprocessors,
but the concept can be generalized to an arbitrary digital design.
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3.1 Congestors: A Case for Fuzzing
The simplest type of LF is a congestor. As shown in Figure 1, a
simple example of a congestor is an or-gate inserted at the full signal
of a FIFO module. The full signal gets activated even though the
condition for it to become full has not been satisfied. The congestor
is then randomly activated, which results in artificial backpressure.
We could also locate the congestor at busy signals and ready-valid
handshake signals.

(a) Original Design

FIFO
J

K

Q

Q

Data

full

(b) Design After Congestor Insertion

FIFO
J

K

Q

Q

Congest

Data

full

Figure 1: Congestor Logic Fuzzer placed at the FIFO’s full
signal

We claim that the inserted logic stirs up the execution while
running the code. We can prove this by showing that after inserting
the congestor logic and running the same tests, the design is expe-
riencing different behavior, and we can observe the new activity.
We can observe this by measuring the Toggle Coverage. The signal
is said to be toggled if its value switched 0→ 1 and 1→ 0 at least
once while executing the test. Toggle coverage is one of the proxy
metrics that is used both in industry [38] and academia [26] to gain
confidence about the correctness of the design-under-test.

For example, in the case of BOOM, we inserted a congestor at
the ready signal of the Reorder Buffer. We then randomly pulled the
ready signal low at the moments when the ROB was, in fact, ready.
As a result, 12 additional signals toggled in the frontend module, 40
signals toggled in the core module, and 32 signals toggled in the
load-store-unit.

For instance, according to the comments in the RTL, the signal
that got activated in the load-store-unit (execute_ignore) “ignores
the next response that comes from memory and replays it.” An-
other example is edge_inst signal in the fetchcontroller, which gets
activated when “first instruction in the bundle is PC-2.”

We demonstrated that single congestor can activate logic pieces
that had not been touched when running over 200 tests. Note that
for this simplistic example, the usage of toggle coverage was suf-
ficient to capture and prove that Logic Fuzzer creates additional
activity. We discuss some drawbacks of the coverage metrics in 6.5.

3.2 Table Mutatators
Table mutators allow RTL memories to be mutated. For example,
the tables of branch predictors can be freely fuzzed at any given
moment as they must not affect the correctness of the running
program. Other examples are the random invalidation of the cache
or TLB entries or the value fuzzing of already invalid entries.

W0 W1 W2 W3 W4 W5 W6 W7

(a
)

(b
)

(c)

1000 2000 3000

Figure 2: CVA6’s L1 cache way/bank utilization without (a)
tag array mutation and (b)(c) with tag array mutation

Taking an example from the application to CVA6, Figure 2 illus-
trates L1 cache way/bank utilization (stores only) when running
over 50 random tests that were generated with Google’s riscv-dv
tool[15]. We run this set of tests three times. The first run, row (a),
shows the regular run with the table mutation off. As can be seen,
given the memory locations that program requests, CVA6’s way
selection logic gives preference to way 0. In the verification phase,
an engineer may notice this fact and might decide to stress under-
utilized ways. Traditionally, the engineer would have to regenerate
the binaries by configuring the random instruction generator to
provide the memory requests in a specific manner. The problem
with this approach is that this may be a time-consuming process
and will require delving into the cache replacement policies’ details.
Besides, the tool may not even support constraining the address
generation.

The second and the third run, rows (b) and (c), illustrate that we
can mutate the tag arrays and the valid bits to stir all the cache
accesses to the bank of interest with the minimum amount of effort.
To be specific, we edited five lines of code on the RTL side to replace
tag arrays with the wrappers that access Table Mutators through
DPI and the simplistic twelve-line method implementation in Table
Mutator class that mutates the entries to stress the cache bank of
interest.

3.3 Stressing mispredicted path
The branch predictor is a significant part of the design that has a
significant effect onmodern processors’ performance. The advances
in the branch prediction research have reached levels of accuracy
exceeding 95%. However, from the verification standpoint, this
means that the mispredicted path may be overlooked.

It is important to test all of the instructions in the mispredicted
path as some may have side effects. Figure 3 shows the instruction
coverage in the mispredicted path. The y-axis of the plot represents
the number of unique RISC-V instructions that were speculatively
allowed into the pipeline and eventually flushed due to the correct
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branch resolution. After running over 200 tests on CVA6, we see
that the coverage does not reach even a 60% level. The reason is
that the instruction sequence in the program exhibit nonrandom
behavior and the same instructions get into the mispredicted path
repeatedly. With the fuzzing, we can insert any instruction into the
mispredicted path regardless of the binary. Not only can we test
100% of the instructions, but we also can reach that coverage level
earlier.
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Figure 3: The coverage of instructions that were in CVA6’s
mispredicted path

Another interesting question to answer is: what will happen if
speculative execution mechanisms will start generating instruction
addresses that are atypical. Figure 4 is a scatter plot where each
data point represents a Branch Target Buffer’s (BTB) prediction of
the PC address in a given test. The red marks are the PC predictions
from when no fuzzing was enabled. We can see that the predicted
addresses are within a narrow range. On the one hand, by design,
the BTB is supposed to provide predictions based on the history
of resolved branch target addresses. Hence, it is constrained to
the address range that is encoded in the .text section of the elf
file. On the other hand, the processor must be robust enough to
handle non-typical cases. The data points illustrated in blue circles
are the BTB’s predictions when running the same tests with the
fuzzing enabled. It is possible to fuzz BTB entries and provide falsely
predicted addresses to a broader range or even provide random
addresses at runtime. These scenarios can potentially create an
iTLB page faults on the mispredicted path. The same technique can
be applied to Return Address Stack.

3.4 Can the LF’s states ever happen in the real
world?

Logic Fuzzer could create amicroarchitectural state that no program
could ever reach. Nevertheless, the co-simulation failures exposed
by fuzzing are potential bugs. They serve as a red flag for the
engineer and must be proved or disproved to be a bug. The bugs
presented in this paper were all confirmed by the designers.

3.5 Logic Fuzzer Implementation
The Logic Fuzzer as a concept can be implemented directly in the
RTL code. However, to make the Logic Fuzzer integration clean,
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Figure 4: Instruction address ranges retrieved from Branch
Target Buffer while executing random instructions.

systematic, and configurable, we embedded the LF into the existing
Dromajo infrastructure. We extended the base set of APIs to provide
access to the fuzzers from the RTL through the DPI calls. The fuzzers
are configured by Dromajo’s JSON configuration file.

Mutate	tables

access_table()

OpenCosim
with	FuzzerRISC-V	RTL

step()

access_table()

step()

Access	branch
predictor	table

Commit
instruction

Figure 5: RTL-Fuzzer interaction flow

Figure 5 illustrates the interaction between the RTL and the
fuzzers. The diagram demonstrates how the RTL implementation is
accessing the table mutator of the processor’s branch predictor. The
fuzzer object in the Dromajo is configured to allocate the table that
has the same size as the branch predictor. On the implementation
side, instead of accessing the RTL memory model, it accesses the
table from the fuzzer through the DPI. As the simulation is running,
the tables are fuzzed randomly or with specific patterns.

For the congestors, the verification engineer first needs to iden-
tify all of the design’s congestible points. The identification of these
points can be consulted with the designer. After we have the list
of congestible signals, the fuzzer object is configured to create the
same number of congestor objects. Each congestor’s period and
random seeds are configured in the JSON file.

To address the productivity issue, we implemented a proof-of-
concept automatic insertion of congestors into BOOM core. It al-
lowed us to insert congestors by merely annotating the signals in
RTL (one line of code per congestor). We achieved this by using
Chiffre by Eldridge et al [12] that automatically instruments hard-
ware systems written in Chisel [4]. Their work leverages FIRRTL
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compiler that allows traversal and transformation over the inter-
mediate representation(IR) of the digital circuit with passes [22]. It
automatically breaks the annotated signal and inserts the congestor
in between. Because Chiffre can only work with hardware descrip-
tions written in Chisel, this experiment was limited to BOOM core.
We are currently applying the described concept using tools capable
of transforming IRs generated from Verilog [42].

To insert random instructions into the mispredicted path, we
make use of the table mutators. We replace the instruction cache
tag and data arrays with the table mutators. The tables are written
and read by the instruction cache logic through the DPI in the same
manner as shown in Figure 5. We then force the Branch History
Table to provide a taken prediction, and we force the Branch Target
Buffer to provide the address with a specific tag. The fuzzer tables
are then programmed to provide a random instruction stream when
it sees that specific tag.

4 DROMAJO
Dromajo is an emulator designed for co-simulationwith RTL proces-
sors that implement the RISC-V RV64GC instruction-set. Dromajo
provides a simple set of APIs that allow for flexible integration for
a variety of RTL processor implementations.

Dromajo enables executing applications, such as benchmarks
running on Linux, under fast software simulation (17 MIPS). It can
generate checkpoints after a given number of cycles, and resuming
such checkpoints for HW/SW co-simulation. The results prove this
to be a compelling way to capture bugs, especially in combination
with randomized tests.

4.1 Checkpoint Definition
Dromajo checkpoints include the processor architectural state (reg-
isters, CSRs), thememory, but also reprogram interrupts (PLIC/CLINT),
and performance counters such as the cycle and instructions exe-
cuted. This is achieved by creating a small valid bootrom. Check-
points in Dromajo consist of two parts: (a) memory image and (b)
bootrom image. The created bootrom is a valid RISC-V program. It
leverages the RISC-V debug spec that allows changing many super-
visor registers. Since most RV64 CPUs support the RISC-V debug
spec, the checkpoints created by Dromajo can be shared across dif-
ferent CPUs without requiring changes in the initialization beyond
loading a different memory and bootrom.

Checkpoint based co-simulation allows to create portable stimu-
lus and increases productivity without the need to recompile vari-
ous benchmarks. A common use is to split the Linux boot sequence
in several checkpoints to speed up verification. Other advantages
of using checkpoints include: (a) apply concepts of phase analysis
and simulation points to capture important phases in a portable
format; and (b) allows a long-running program to be checkpointed
and run in parallel which reduces the simulation costs.

We could leverage the concept of Phase Analysis [35] and check-
point the benchmarks at the simulation points [34]. We then can
co-simulate, for example, SPEC benchmarks in a fast manner by
loading the simulation points that represent different phases of the
program.

Despite the above-mentioned benefits, one disadvantage of co-
simulation with checkpoints is that the branch predictor tables,

caches, TLBs, and other memory elements will start the execution
from the reset state. It is problematic because we lose microarchi-
tectural states from which the bug could potentially be manifested.
We believe that Logic Fuzzer’s Table Mutators can partially close
this gap as we can pre-populate or randomize all the tables.

4.2 Verification Flow with Dromajo
Figure 6 illustrates one possible way to implement a RISC-V core
verification flow using Dromajo in five steps. The whole flow can
be broken down into two main parts: checkpoint generation (Steps
1, 2, 3) and co-simulation (Steps 4, 5).

1

RIG tests

Linux

Unit tests

3OpenCosim
2

Testbench

OpenCosim
instance

4

Checkpoints

DPI calls RISC-V core RTL
implementation

5 Memory

Figure 6: Verification flow with Dromajo

4.2.1 Checkpoint Generation. First, Dromajo accepts an arbitrary
RISC-V ELF binary (Step 1). The flow has been productive when
using randomly generated tests. We then run Dromajo stand-alone
(Step 2) for a certain amount of time and dump the model’s whole
architectural state to a checkpoint (Step 3).

4.2.2 Step and Compare. As shown in Figure 6, Dromajo gets in-
stantiated and encapsulated in the RTL as a submodule. When the
simulation starts, we load the checkpoint into both models’ main
memories (Step 4). Dromajo instance is provided with the path to
the checkpoint location. At the same time, the RTL model has to
populate the main memory and initialize the content through Ver-
ilog function like readhex. Once the boot code completes running,
both cores will have identical architectural states.

4.3 Dromajo Integration
Dromajo is compiled into a shared library. We then link this library
to a simulator and interact with Dromajo through DPI calls from
the Verilog. The implementation of DPI functions is trivial. Mainly,
they serve the role of wrappers for Dromajo’s set of API functions.
Below, we explain the only three functions that we need to call to
integrate Dromajo into the verification flow.

Figure 7 depicts the interactions that happen between RTL and
Dromajo during the simulation. TheDPIwrapper-function cosim_init()
is invoked within an initial Verilog block. In turn, the cosim_init
invokes Dromajo’s initialization API function. It passes a path to
the configuration file as an argument and initializes Dromajo. The
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Figure 7: RTL-Dromajo interaction flow

function returns a pointer to the initialized Dromajo RISC-V refer-
ence model. The configuration file contains the path to a checkpoint
and the core-specific information, such as a memory map.

The DPI wrapper-function step() communicates program counter,
instruction and store-data to Dromajo. This function should be
called whenever a valid instruction is committed (Step 5). For exam-
ple, when integrating Dromajo into BOOM infrastructure, the DPI
can be called by implementing simple monitor logic in the Reorder
Buffer module. If the instruction at the head of the buffer is valid and
ready to be committed, we call the DPI. Upon invocation, Dromajo
commits one instruction on its side and conducts a comparison of
communicated data. The function returns a non-zero code in case
of a mismatch, and we abort the execution.

Co-simulation is a synchronous process, but interrupts are not.
Hence, we need a way to log that a core took an interrupt and force
the control-flow inside Dromajo to do the same. It allows us to
co-simulate the interrupt trap handler routines. The DPI wrapper-
function raise_interrupt() does that. It communicates the cause and
sets the trap vector in Dromajo.

4.4 Deterministic RISC-V co-simulation
One of the prerequisites of the co-simulation is a deterministic
simulation infrastructure. A common RISC-V verification infras-
tructure tends to use Debug Transport Module (DTM) [7] to load
the test binaries to RTL and generate artificial system calls.

Interestingly, our experiments show that usage of DTM brings
the core into a nondeterministic architectural state which led to
false-positive co-simulation mismatches. The interaction with the
host device through the memory-mapped DTM is sensitive to the
characteristics and utilization of the machine running the simulator.
As a result, the simulation is sometimes not deterministic. Since
DTM is so common, Dromajo also supports it. However, Dromajo
allows creating memory and bootram checkpoints which makes
usage of DTM unnecessary. Also, avoidance of DTM usage speeds
up simulation as we no longer spend time uploading the binary

during the simulation. We instead prepopulate the memories before
the simulation start.

By using Dromajo checkpointed infrastructure, we had a fully
deterministic architectural state in the evaluated cores. Independent
of this work, it may be interesting work to explore a DTM 2.0 where
blocking CSR operations are implemented instead of non-blocking
memory accessed to bring up binaries or model fake system calls.

5 EVALUATION METHODOLOGY
5.1 RISC-V Cores
The proposed verification tools, i.e., Dromajo co-simulation en-
hanced with Logic Fuzzer, were evaluated on three open-source
RISC-V processors. The details about each tested core are listed
below and summarized in the Table 1.

5.1.1 CVA6. Previously known as Ariane and developed in ETH
Zurich. The development and maintenance has been transferred to
OpenHW Group. It is written in SystemVerilog. CVA6 is a 6-stage,
single issue, in-order core which implements the 64-bit RISC-V
instruction set. It is capable of booting Linux and was taped out in
22nm technology [46].

5.1.2 BlackParrot. Joint work of the University of Washington and
Boston University. It is written in SystemVerilog. The BlackParrot
is a single issue, in-order core which implements the 64-bit RISC-
V instruction set. BlackParrot was written in SystemVerilog. It is
capable of booting linux and 4-core configuration of BlackParrot
was taped out in 12nm technology [3].

5.1.3 BOOM. Developed and maintained at UC Berkeley’s Berke-
ley Architecture Research group. It is written in Chisel hardware
construction language. It is a generator that can be configured to
generate verilog BOOM designs with various levels of complexity.
The generated cores implement the 64-bit RISC-V instruction set.
We used defaultMediumBoomConfig which is a 2-wide, out-of-order
core [48]. One of the more complex configurations of the BOOM
was taped out in 28nm technology.

Features CVA6 BlackParrot BOOM
Execution in-order in-order out-of-order
Issue width 1 1 2 (MedConfig)
Extenstions RV64GC RV64G RV64GC
Priv. modes M, S, U M, S, U M, S, U
Virt. memory SV39 SV39 SV39

Table 1: Summary of the cores used for evaluation

5.2 Evaluation Metrics
To evaluate the proposed tools and methodology we use a simple,
yet powerful metric — a precise number of bugs found. We first
run a set of binaries on the base setup, i.e. testbench infrastructure
with only Dromajo enabled. We then run the same set of binaries
with enabled Logic Fuzzers, which expose additional bugs.
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5.3 Test Binaries
We used verification binaries from two available resources: RISC-
V ISA tests [14] and random instruction streams generated with
Google’s riscv-dv tool [15]. Table 2 summarizes the simulated test
binaries that we run to get the presented results.

Core No. of ISA tests No. of random tests
CVA6 228 120
BlackParrot 215 150
BOOM 228 120

Table 2: Summary of the simulated tests

6 EVALUATION
6.1 Main Results
We evaluate the effectiveness of the tools on three RISC-V cores:
CVA6, BlackParrot, and BOOM. We summarize our findings in Ta-
ble 3. Dromajo by itself found a total of nine bugs. The enhancement
of Dromajo with the Logic Fuzzer increases the exposed bug count
to thirteen. Note that we did not create additional tests when en-
abling Logic Fuzzer. It used the same set of tests listed in Table 2 to
expose additional bugs.

We demonstrated that the presented tools are capable of exposing
hardware malfunctions that could prevent any complex software
from running correctly. The paper also provides interesting obser-
vations related to Operating Systems (OS). Three RISC-V cores that
we used for evaluation claim to boot and run Linux. More than half
of the bugs found were OS related. Interestingly, a “well behaved"
Linux will not have excercised most of the bugs. Our results show
that being able to boot and run Linux is far from saying that the
core is verified.

To gain insights on how Dromajo and Fuzzer works, we next
describe the bugs found.

6.2 Bugs found by Dromajo+Logic Fuzzer
6.2.1 Bug ID B5. This bug surfaces out when we mutate the ITLB
entries. The random mutation made the instruction TLB entry valid
but the corresponding translation was mutated to a non-existent
memory region. As a result, both Dromajo and CVA6 threw an
exception and steered the execution flow to the exception handler.
Dromajo halted the execution when reading an mcause register
within the handler due to the mismatch. When trapping, Dromajo
correctly sets the mcause value to 1 which indicates the exception
cause Instruction Access Fault. CVA6, on the other hand, incorrectly
set the value to 12 which indicates Instruction Page Fault. Accord-
ing to the designer, this is because CVA6 implementation aliases
the access and page faults in the instruction front-end and treats
everything as instruction page faults.

6.2.2 Bug ID B6. This bug is exposed when we create artificial
backpressure at the FIFO’s full signal in the cache subsystem and
results in the complete hang of the system. The purpose of this
FIFO is to queue memory requests that are coming from the icache.
The full signal, in turn, is used to form a request logic for the arbiter,

which performs arbitration between icache and dcache requests.
The randomized backpressure stirs up the arbiter’s states and locks
the grant signal indefinitely at 0, not allowing any of the requests
to go down.

6.2.3 Bug ID B11. The Black-Parrot microarchitecture defines a
FIFO queue between the frontend and the backend of the core. The
purpose of this FIFO is to enqueue specific commands, such as PC
redirect and state reset, from the backend to the frontend. This
bug is exposed when we insert the congestor at the FIFO’s ready
signal. We create artificial backpressure by randomly pulling this
FIFO’s ready signal low. When we run the tests with the inserted
congestor, Dromajo catches the mismatch as BlackParrot starts com-
mitting instructions with the wrong PC. According to the designer,
BlackParrot’s backend cannot handle the backpressure. Because
the microarchitecture has no stalling points past the decode stage,
some backend commands will be lost if the queue is not ready.

6.2.4 Bug ID B12. This bug is exposed when we generate irregular
addresses from BlackParrot’s Branch Target Buffer (BTB). The BTB
fuzzing generated the address that maps to off-chip memory. This
scenario resulted in the complete freeze of the system. According to
the designer, addresses that are routed to a tile must be responded
to. However, BlackParrot decoded the address and routed it to a
specific device on the tile, such as cfg or clint. In the case when no
device matched, it hanged.

6.3 Bugs found by Dromajo
6.3.1 Bug ID B1. This bug is the result of incorrect update logic
implementation of debug control status register and was exposed
by Dromajo. The execution divergence occurs right after dret which
should jump to the PC indicated by dpc CSR and in the privileged
mode that is indicated by prv bits in dcsr CSR. Dromajo starts exe-
cution in the user-mode while CVA6 starts executes the following
instruction in machine-mode. According to the designer, the confu-
sion came from the fact that the core should update prv bits to the
current running privileged level when entering debug mode.

6.3.2 Bug ID B2. This bug is in CVA6’s integer divide unit. The unit
fails to properly handle some corner case divide (div) and remainder
(rem) instructions; Dromajo caught the mismatch when cores were
executing division of -1/1. Dromajo committed a correct result by
assigning -1 to the destination register, while CVA6 committed 0.

6.3.3 Bug ID B3. According to RISC-V ISA, stval CSR is written
exception-specific information when the processor traps into a
supervisor-mode. The ISA explicitly specifies when and which
information must be written to the register. Dromajo catches a
mismatch inside the exception handler when reading the value of
stval due to incorrect setting.

6.3.4 Bug ID B4. This bug brings about similar implementation
inconsistancy within the ISA specification that is described in Bug
ID B3 (6.3.3). The difference here is thatmtval control status register
is written incorrect value.

6.3.5 Bug ID B7. This bug is in the BlackParrot’s integer divide
unit. The co-simulation failed when the BlackParrot commited divw
insruction, which is the 32-bit integer division. The bug manifests
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Bug ID Core Dr* Dr+LF** Short description Reported Fixed
B1 CVA6 ✓ incorrect update of prv bits in dcsr register ✓ ✓
B2 CVA6 ✓ incorrect integer division ✓
B3 CVA6 ✓ stval CSR is written on ecall ✓
B4 CVA6 ✓ mtval CSR is written on ecall ✓
B5 CVA6 ✓ incorrect trap cause ✓
B6 CVA6 ✓ arbiter locks with gnt 0 ✓
B7 BlackParrot ✓ integer divide, incorrect handling of sign-extension ✓ ✓
B8 BlackParrot ✓ no exception handling on some illegal instructions ✓ ✓
B9 BlackParrot ✓ least-significant-bit not cleared on jalr instruction ✓ ✓
B10 BlackParrot ✓ speculative long latency instructions commit ✓ ✓
B11 BlackParrot ✓ core hangs on access to irregular memory region ✓ ✓
B12 BlackParrot ✓ backend backpressure breaks instruction ordering ✓ ✓
B13 BOOM ✓ incorrect mtval CSR value on traps ✓ ✓

Table 3: Summary of the bugs exposed in three RISC-V cores. *Dr column refers to bugs found with Dromajo. **Dr+LF refers
Dromajo with Logic Fuzzer

on the remw instruction as well. The divw and remw are signed
instruction. The proper implementation should divide the lower
32-bits source registers by treating them as signed numbers, but
BlackParrot’s integer divide unit implementation was treating the
operands as if they were unsigned.

6.3.6 Bug ID B8. This bug is in the BlackParrot’s instruction de-
coder. The decoder did not trap an invalid instruction, but passed
it down the pipeline. The machine code that BlackParrot decided
not to mark as an illegal was the the binary word similar to the en-
coding of jalr instruction. The only difference was that sub-opcode
func3 was not equal to zero. The ISA defines jalr instruction with
the subopcode of zero. The decoder had not perform any checks on
func3 bits at the time of the bug detection. Although the mismatch
was detected for the case of jalr, in general, all instructions with
invalid subopcodes should trigger an illegal instruction exception.

6.3.7 Bug ID B9. The bug is related to the calculation of the target
address of the control flow instructions. The RISC-V ISA explicitly
requires that the least significant bit of the calculated address by jalr
instruction is cleared. The clearing of the bit was not implemented
in the BlackParrot. Hence, Dromajo flagged the PC mismatch af-
ter the execution of jalr instructions. According to the designer,
the confusion came from the fact the jalr instruction is encoded
differently than jal and branch instructions.

6.3.8 Bug ID B10. This bug is the result of an incorrect poison
bit setting. Dromajo flagged a mismatch on the load instruction.
Dromajo trace analysis proved that there was only a single store-
instruction to writing to the memory address. However, the follow-
ing load-instruction brought a different value from what had been
written. According to the designer, the values were overwritten by
long latency instructions that were marked for flushing. The bug
would manifest when the pipeline flushed on exceptions. Then at
some point, the long latency instruction completed and allowed
write-back due to the invalid poison bit.

6.3.9 Bug ID B13. This bug gets exposed when running a random
instruction stream and Dromajo flags a mismatch when reading
mtval CSR. The cores start running the binary in an M-privileged
mode to execute the setup instructions, such as a series of CSR

writes. Including the write to the CSRmepc, which gets set to 0x196.
The last instruction of the setup code is mret, whose execution sup-
posed to change the privileged mode and revert the program flow
to the instruction memory address pointed by mepc. Nevertheless,
mret throws an exception because of the instruction page fault. Ac-
cording to ISA, this fault must set the mtval value to the address of
the instruction that caused the exception. However, when we read
the value of this CSR in the exception handler, they are different.
The value that is set by BOOM is off by 2. According to the designer,
the bug is due to the handling of compressed RISC-V instructions
(RVC). Specifically, handling of exceptions on misaligned instruc-
tions appeared to be broken. The bug disappears in later commits
of the BOOM.

6.4 Bug Hunting with LF and False Positives
The co-simulation mismatch is what tells if the bug was manifested
or not. We start debugging only if the activity created by LF propa-
gates to the architectural state and gets flagged by Dromajo. The
process of proving or disproving if the mismatch is an actual bug
is no different from regular RTL debugging. We then discuss the
debugging results with the designer who confirms or rejects the
validity of the finding.

Logic Fuzzer had two false bugs (not presented in the paper) –
one in CVA6 and one in BOOM. Let us mention that traditional
verification practices have the same issue of false positives. The
fact that we find bugs in an automatic way does not qualitatively
affect this issue, only quantitatively.

6.5 Toggle Coverage
The signal is said to be toggled if its value switched 0 → 1 and
1 → 0 at least once while executing the test. Toggle coverage is
one of the proxy metrics that is used both in industry [23, 38]
and academia [26] to gain confidence about the correctness of the
design-under-test.

Figure 8 illustrates how the toggle coverage increases as we run
the verification binaries. Logic Fuzzer increased the toggle coverage
on average by 1%.
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Figure 8: Coverage increase when running verification bina-
ries

Although increased coverage is a beneficial side-effect of fuzzing,
wewant to emphasize that increasing coverage in and of itself
is NOT the purpose of the Logic Fuzzer. The purpose is to
create an irregular execution flow, which, most of the time, is
not captured by the coverage metrics. Toggle and similar types
of code coverage are not full indicators that the system is verified.
They are just proxy metrics.

For example, from the bugs found by the Logic Fuzzer, only one
(B12) is directly correlated to the toggle coverage. The remaining
three bugs do not correlate with toggle coverage. The bugs were
detected because of the randomized events created by LF. It was
a combination of signals and states that even with a 100% toggle
coverage may not have been detected.

7 RELATEDWORK
7.1 Dromajo Related Work
Imperas Software Ltd. is a commercial company that develops vir-
tual platforms supporting a range of ISAs, including RISC-V [29].
They claim to support step-and-compare simulation capability [28].
Imperas provide the RISC-V core models under the Apache 2.0. li-
cense. However the model is attached to the simulator, which they
licensed under OVP Fixed Platform Kit. The difference of Dromajo
with the Imperas’ solution is the ability to handle checkpoints. An-
other difference is that the whole Dromajo is licensed under Apache
2.0.

lowRISC created a verification flow for their 32-bit RISC-V core
Ibex [27]. The infrastructure that they set up executes the binary of
interest both on the RTL implementation and the respective golden
model. The models are completely decoupled and run the binary
independently. The correctness checking happens post-completion
by comparing the execution traces. In this setup, the golden model
is completely oblivious to the activities happening on the RTL side.
An external stimulus, such as interrupts and debug requests, will
cause the traces to diverge. Therefore, this flow cannot support

the instruction-by-instruction comparison in the presence of an
external stimulus.

The tool proposed by Herdt et al. [19] have the co-simulation
component in their flow. The novelty of their approach is that
the instruction stream generator and co-simulation come in one
package. They present a testbench infrastructure where instructions
are generated at run-time and co-simulated endlessly. Like Ibex
Core Verification flow this flow does not support the handling of
the asynchronous stimuli.

Whisper [11] is the instruction set simulator developed by West-
ern Digital. It can also be used in the co-simulation environment.
The difference with Open-Cosim is that it supports only RV32, it
doesn’t handle interrupts, and has no support for checkpoints.

There are several general resources available for verification of a
RISC-V processors. The GitHub repository developed in UC Berke-
ley has the set of unit tests that sweeps through the base instructions
defined in ISA [14]. The RISC-V International Association has also
established a Compliance Task Group [13]. Similar to [14], they
only check for the basic functionality, but it is an attempt to formal-
ize the compliance process. Currently only the RV32I ISA subset
is completed. In addition, there are several open-source random
instruction generators available [10, 15, 31, 33].

Finally, there is a set of works that use the term “co-simulation"
in the context of heterogeneous simulation frameworks [8, 45]. In
these settings, the software model is a part of a testbench and is
used to drive stimuli to a design-under-test. These should not be
confused with the co-simulation concept presented in this paper as
we are describing it in the context of comparison with the golden
model.

7.2 Logic Fuzzer Related Work
7.2.1 Input-stimuli fuzzing. Inspired by software verification tech-
niques, several works adapted the methods for hardware verifi-
cation. RFUZZ transferred the concept of American Fuzzy Lop
to hardware [26]. Trippel et al. [40], on the contrary, explore the
methods to transfer the design to the software model and apply
well-established software fuzzing techniques in software domain.
The technique in the PyMTL infrastructure adapted Hypothesis
Testing [36]. It is property-based testing that requires to construct
assertions that must always hold. The technique then tries to find
the minimal possible example that breaks the assertion. Similar
method presented in [30]. These techniques should not be asso-
ciated with Logic Fuzzer as all of them stress the DUT externally
having an “outside-in” approach. The LF proposes an “inside-out”
approach, meaning the actual RTL logic is fuzzed wherever possible.

7.2.2 Fault Injection. On a surface level a parallel can be drawn
between the concepts of Logic Fuzzer and Fault-Injections [12]. A
fault is a physical defect or a flaw that may occur in a hardware
system. As the name suggests, Fault-Injection is a simulation-based
procedurewhen the fault is injected into the system on purpose. The
simulation is then run with the fault and the behavior is observed.
The idea is to prevent the system from complete failure, even in
the presence of faults. The overlapping concept with the LF is
the purposeful injection of logic into the system that changes the
behavior.
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Nevertheless, the fundamental difference is that LF makes sure
that the inserted logic does not have any side effects on functionality.
On the one hand, system failures detected by fault-injection are
analyzed. As a result, preventive or corrective actions are proposed.
On the other hand, system failures detected by Logic Fuzzer are
flagged as potential functional bugs.

8 CONCLUSION AND FUTUREWORK
In this paper, we presented Logic Fuzzer, a methodology that brings
the processor execution outside its normal flow by randomizing the
microarchitectural state at the places that do not affect functionality.
We presented several Logic Fuzzer variants and showed that it could
uncover additional bugs in the simulation phase by creating atyp-
ical scenarios without the generation of additional tests. Besides,
we presented Dromajo, a state of the art verification framework
for RISC-V cores which addresses simulation productivity issue
through checkpointing.

We illustrated the effectiveness of Dromajo by exposing nine
bugs in CVA6, BlackParrot, and BOOM. The enhancement of Dro-
majo with Logic Fuzzer exposes additional two bugs in CVA6 and
two bugs in BlackParrot. LogicFuzzer was not able to find additional
bugs in BOOM. However, we demonstrated the applicability and
effortless integration of the tools into existing testbench environ-
ments. Logic Fuzzer found difficult bugs. In three cases, the bugs
were not directly correlated with toggle coverage, which means
that the tests exercised the associated logic. The bugs were still
there because a combination of events was needed to reach the bug
condition. Logic Fuzzer exposes these bugs.

We are currently investigating several ways of improving the
effectiveness of Logic Fuzzer. The items that we are working on
include the identification and testing of other fuzzable logics in the
microprocessor, such as reordering of outstandingmemory requests
and randomization of fixed priority muxes and arbiters. We are also
looking into training a machine learning model to orchestrate the
inserted Logic Fuzzers in the system.

We believe that Dromajo and Logic Fuzzer are great tools to help
the RISC-V ecosystem have amore robust infrastructure. Besides the
presented contributions, this work opens up new research oppor-
tunities and could be extended further in new areas. To mention a
few, (1) Logic Fuzzer can be integrated with tools like Coppelia [47].
Coppelia uses symbolic execution techniques to generate exploits
that will bring the processor into a vulnerable state. Although this
work is proposed in the context of hardware security, we believe
it can be extended towards functional verification. We could po-
tentially provide Coppelia with the failing case exposed by the
Logic Fuzzer and let it try to generate the code. The successful
generation of the exploit will prove the presence of the real bug.
(2) Integrating Logic Fuzzer in the fully elastic systems [32] could
expose even more bugs than in non-elastic designs. (3) The RISC-V
checkpoints created by Dromajo could also be leveraged for works
that do statistical sampling for performance and power.

To conclude, we expect the developed infrastructure to enhance
the quality of existing RISC-V cores, and Logic Fuzzer techniques
to be applied beyond RISC-V.
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