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Abstract—Synthesis and simulation of hardware design can take hours before results are
available even for small changes. In contrast, software development embraced live programming
to boost productivity. This article proposes LiveHD, an open-source incremental framework for
hardware synthesis and simulation that provides feedback within seconds. Three principles for
incremental design automation are presented. LiveHD uses a unified VLSI data model, LGraph,
to support the implementation of incremental principles for synthesis and simulation. LiveHD
also employs a tree-like high-level intermediate representation to interface modern hardware
description languages. We present early results comparing with commercial and open source
tools. LiveHD can provides feedback for synthesis, placement and routing in < 30s for most
changes tested with negligible QoR impact. For the incremental simulation, LiveHD is capable of
getting any simulation cycle in under 2s for a 256 RISC-V core design.

A RESURGENCE in hardware accelerators is
thriving with the continued power and perfor-
mance scaling and the emergence of new spe-
cialized domains, such as Machine Learning. This

trend is shown in systems like Apple A13, where
CPUs, caches, and GPU represent less than half
of the die area, and the rest is composed of
accelerators like the NPU and proprietary synthe-
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sizable logic blocks. However, current hardware
development flow contrast with agile methods,
popular in software development. This issue is
crucial as application domain experts, who are not
hardware designers, turn to hardware accelerators
to make new technologies viable.

We propose a shift in paradigm to improve
the hardware design productivity based on open-
source and agile hardware development flow. In
agile methodologies, designers should implement
a feature, get feedback, and react. The sooner in
the design-time feedback is available, the easier it
will be to react to issues. Feedback should include
various design targets, including functional veri-
fication and QoR (frequency, area, and power).
Functional changes need to include the cost es-
timate, and timing/power closure changes need
to be functionally validated. Moreover, accurate
power analysis depends on toggle factors from the
simulation. Therefore, designers need both quick
simulation and synthesis. To reach that goal, we
advocate for incremental synthesis and simulation
techniques in an integrated framework to improve
productivity.

Turnaround-time of synthesis is one of the
major bottlenecks of hardware design. Synthesis
is the process of translating the description of a
circuit from HDL to gates and then to physical
design. Performing synthesis is typically slow
and tedious and is often performed on a large
design block even after small code changes. The
turnaround time for synthesis is typically around
hours to days. However, for small code changes,
incremental synthesis can prove a valuable tool
for designers to get feedback within seconds.
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Figure 1: Commercial “incremental” flows have
significant overheads even without RTL changes.

There is no open-source incremental synthe-
sis flow, and commercial FPGA flows that sup-
port incremental are not ideal. When running
two commercial FPGA “incremental” flows in

medium-sized designs with only the file time
stamp changed, the runtimes were not substan-
tially reduced (Figure 1). The lack of incremental
synthesis forces the industry to have “weekly”
synthesis reviews. More academic setups are used
to multiple hours for changes in small designs.

Another bottleneck in hardware design is sim-
ulation turnaround-time. Simulation is used to
verify and optimize the logic of a circuit. Com-
mercial flows have incremental compilation op-
tions, but even trivially small code changes have
a significant compile-time impact. In a large-scale
design like modern processors, it is common to
spend tens of minutes to recompile with the “fast
incremental option.” Existing open-source tools
are even slower. Verilator [2], the de-facto open-
source simulator, can be fast for small designs,
but does not scale well. While a small RISC-V
core can compile < 10 seconds, a design with 64
instances of it takes 40× more time to compile.

Meanwhile, agile software development relies
on fast feedback; e.g., a trivial change in a large
project like the Linux kernel recompiles in less
than one minute. Recently, Live programming
received attention in the software community.
In Live programming, developers see the output
from their code change immediately as the pro-
gram is always running. Faster feedback leads to a
more productive and less frustrating development
experience [5].

In this article, we advocate for an interactive
hardware design experience, much like live pro-
gramming, by providing feedback within a few
seconds. This is possible by applying three prin-
ciples for incremental hardware design: (1) divide
the job into partition regions or checkpoints; (2)
incrementally transform these partition regions
where code change happens; and (3) hot-reload
the partition regions into a running program with-
out restarting.

To that end, we present LiveHD (Figure 2), a
new live hardware development framework. By
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Figure 2: An overview of LiveHD flow.
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“live,” we mean that for small code changes,
LiveHD provides design feedback within few
seconds. LiveHD follows the three incremental
principles; namely, only handle the sub-jobs re-
lated to the code change, then merge results into
the background program without re-running from
the beginning. It builds upon three techniques
for incremental hardware design, LiveSynth [7]
for logic synthesis, SMatch [8] for P&R for
FPGA, and LiveSim [11] for simulation. Table 1
compares LiveHD features with prior art.

Table 1: Database capability comparison between
relevant open-source and commercial tools

Sim
ulation

Synthesis
FPG

A
P&

R
A

SIC
P&

R

Live
O

pen-Source

Qflow [1] No Yes No Yes No Yes
OpenDB [3] No Yes No Yes No Yes
Yosys [14] No Yes No No No Yes
NextPnR [9] No No Yes No No Yes
Verilator Yes No No Yes No Yes
DC/ICC No Yes No Yes No No
VCS Yes No No No No No
Vivado No Yes Yes No No No
LiveHD Yes Yes Yes No Yes Yes

LiveHD is built on top of Live Graph
(LGraph) [12], a sparse intermediate representa-
tion (IR) that serves as a design database and
is carefully crafted for live hardware develop-
ment. LGraph is an LLVM-like infrastructure
of hardware design tools by allowing repre-
senting large scale designs, performing elabo-
ration, synthesis, and simulation incrementally
and leveraging multi-cores and cloud. LGraph
uses an in-house memory-mapped library for
fast netlist load/unload and supports hierarchical
cross-module traversal to run algorithms on large
designs. To allow modern HDLs, LiveHD in-
troduces Language-Neutral Abstract Syntax Tree
(LNAST) [13], which interfaces high-level HDLs
with LiveHD.

LiveHD can be coupled with different un-
derlying open-source, or commercial synthesis
flows and is 5 − 21× faster than a commercial
incremental flow. LiveSynth and SMatch finished
FPGA synthesis, and P&R in less than 30s
for most of the changes tested. For simulation,
LiveSim is faster in raw simulation speed than
Verilator. When evaluating a 16 node large Par-
titioned Global Address Space (PGAS) RISC-V

multi-core, Verilator in single-thread mode has
a speed of 51.4kHz, and LiveSim has a speed
of 93kHz. Moreover, in incremental mode and
when using checkpoints, LiveSim can get to any
simulation cycle in under 2s for a 256 RISC-V
core design.

LiveHD
This section describes LiveHD, a hardware

design framework that supports simulation, syn-
thesis, and P&R. LiveHD combines several tech-
niques built on top of common IR infrastructures.
LiveHD is in active development, but results point
to the possibility of interactive hardware design.

Live Synthesis
To perform live synthesis, LiveHD leverages

two distinct but complementary ideas: LiveSynth
and SMatch. LiveSynth is an incremental logic
synthesis flow that updates the existing post-
synthesis netlist after a code change. SMatch
structurally compares two post-synthesis netlists
to find matching gates to re-use placement and
routing, thus reducing the amount of P&R work
needed. Both techniques focus on highly optimiz-
ing a small sub-region of the design.

LiveSynth divides the design into multi-
ple regions with function invariant boundaries
(FIB) [7], i.e., regions whose boundaries’ func-
tionality has not changed during synthesis. These
regions are smaller than user-defined modules but
cross module boundaries. When a change is made
in the code, the synthesis flow finds which regions
were affected and replace them with the newly
synthesized netlist.

SMatch leverages existing P&R and only re-
places and re-routes gates as needed. It is possible
since: 1) P&R are agnostic to logic function and
only depend on netlist structure and the physical
dimensions of components, 2) in FPGAs, the
elements of a netlist are of a handful of types.
Thus there are large numbers of equal objects
in the netlist. Therefore, two structurally similar
netlists will be optimally placed and routed in
similar ways, indicating that P&R can be re-used.
SMatch could also be used in ASICs; however, it
would need to match gate size.

LiveHD’s synthesis has two phases: Setup
and Live (Figure 3). The Setup phase performs
initial synthesis and P&R of the whole design
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Figure 3: LiveSynth and SMatch operate only on
parts of a design that were changed during incre-
mental synthesis, which allows feedback within
seconds.

while identifying FIBs between elaborated and
synthesized netlists. The Live phase is triggered
at every code change and updates existing results
based on change.

The LiveSynth portion of the Live phase con-
sists of three steps. The Incremental Elaboration
re-elaborates only the changed source files. Then
the Netlist diff algorithm [7] finds which portions
of the netlist have been logically changed and
require synthesis. Netlist diff traverses the newly
elaborated netlist, starting at each FIB and going
backward until a new FIB is found. In the third
step, ∆Logic Synthesis, only the marked regions
are synthesized incrementally and being merged
back through the algorithm of Netlist stitch [7].

After a synthesized netlist is generated, the
SMatch algorithm [8] identifies nodes where the
newly synthesized netlist is structurally equiva-
lent to the original synthesized netlist. In FPGA
netlists, it is plausible to change the logic imple-
mented by a LUT without the need to re-place
and re-route it, as long as the connections with
adjacent LUTs are unchanged. For unmatched or
newly added LUTs, SMatch performs a Delta
P&R, where most of the design is kept fixed.

Live Simulation
LiveHD uses LiveSim (Figure 4) as its live

simulation framework, it focuses on RTL simula-
tion, but gate-level simulation could also lever-
age LiveSim. LiveSim’s goal is to drastically

reduce the latency between a code change and
the availability of results. LiveSim also relies on
incrementally parsing the modified design and
updating a partitioned internal representation to
regenerate output only for the code changed sub-
regions. After that, LiveSim hot reloads the mod-
ified sub-region while the simulation is running.

To reduce compile time, LiveSim avoids du-
plicating instantiations, which generally leads
to slow compilation. If multiple instances of a
module use different parameters, LiveSim passes
parameters as runtime inputs instead of creating
an object. Our experiments show that this helps
both in compilation time but also simulation
performance because of the reduced instruction
footprint.
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Figure 4: LiveSim uses incremental plus hot-
reload to deliver simulation results within sec-
onds. Traditionally, designers wait minutes to
hours to reach the point of failure or point where
the code must be debugged.

LiveSim has two operation modes. The Base-
line mode, where compilation and simulation are
run regularly for the full code since cycle 0,
and the Hot-Reload mode for incremental com-
pilation and simulation. In the Baseline mode,
checkpoints are regularly created in every 10K
cycles to be used during the Hot-Reload mode
(Figure 5).

LiveSim creates multiple dynamic shared li-
braries instead of a statically linked binary, which
allows designers to load/unload modified modules
at run time. The checkpoints save the state from
all the registers and memories to disk and can be
reloaded as simulation start points, as opposed
to simulating from the start. When a new state
is added to the design being simulated, a default
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Figure 5: In Baseline mode, checkpoints are reg-
ularly created. Then, in Hot-Reload mode, the
code changes are recompiled, hot reloaded, a
checkpoint is selected, loaded and the execution
continues until the cycle before the code change
was inserted.

value for new registers is used. This allows for
rapid exploration, and the designer may choose
to go back to the start of the simulation in cases
where this does not work.

Deep functional bugs of complex systems can
occur millions of cycles into the simulation, e.g.,
after booting an operating system and loading an
application. Checkpoints are essential to debug
these cases. Hot-reload adds on top of check-
pointing as a way to further reduce the feedback
loop to interactive levels. Loading a large binary
for simulation can take several minutes, and hot-
reloading specific modules can cut that down to a
few seconds. Moreover, checkpoint convergence
can be checked in parallel to guarantee that the
checkpointed state is still valid. This shifts the
traditional paradigm of designers changing the
code and having to wait a few days until a valida-
tion engineer tests the changes in long simulation
runs.

LGraph and LNAST Infrastructure
The lack of a unified database/IR is a chal-

lenge to integrate open-source EDA tools for
ASIC design. LiveHD overcomes this obstacle by
proposing LGraph and LNAST as the standard
IRs, and actively integrates third-party tools and
HDLs. LGraph is an SSA and graph-like rep-
resentation, mostly used by passes in LiveHD.
LNAST is a tree-like control flow representation,
mostly used to interface between the external

HDLs and LiveHD.
LGraph is optimized to support typical syn-

thesis and simulation development from elabora-
tion to layout. LGraph is implemented in C++17
and exposed to developers as an API to manip-
ulate the data structure. The LGraph role of the
common data model avoids re-parsing netlist and
libraries files between design steps. It is espe-
cially meaningful when the project goes into the
debug or optimization phase, where the changes
applied in multiple flow iterations are small, but
designers have to wait for the same re-parsing
time repeatedly.

Modern designs usually contain hundreds of
millions to billions of gates. To quickly load/store
such large netlists, LGraph memory maps the
objects for persistence. Memory mapping maps
a disk file directly to virtual memory and thus
reduces buffer copy operations and manipulating
text files. It has the speed advantage for large file
processing [12]. We implement a fast memory-
mapped library with basic data structures such
as vector, hash map, bi-directional hash map,
set, and tree. These fundamental containers form
the skeleton of LGraph’s codebase. They are
used extensively for constructing graph networks
and attributes. As the program gets completed,
LGraph’s database is automatically synchronized
to the disk by the OS.

Performing optimization and transformation
hierarchically is vital for efficiency. Nonetheless,
many open-source tools lack hierarchical design
support. Designers must flatten the hierarchy
before using these tools, which increases run-
time. LGraph supports hierarchical traversal for
integrated tools; each submodule instantiation is
represented as a sub-graph node in the parent
module. When an iterator encounters a sub-graph
instance, it will traverse the subgraph recursively.
This cross-module traversal treats the hierarchi-
cal netlist just like a flattened design. Besides,
as a module instantiation could have different
attributes at the different hierarchy, the LGraph
designs an attribute structure for developers to
annotate both non-hierarchical and hierarchical
characteristics.

LNAST is the higher-level representation of
a design than LGraph. LGraph and LNAST rep-
resentations can be seamlessly converted to each
other. As a high-level IR, LNAST can capture
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Figure 6: LiveHD performs incremental FPGA logic synthesis and P&R in under 30s for most changes
in the Anubis benchmark suite.

high-level semantics from different HDLs in the
common tree structure. This enables HDLs to
leverage the live synthesis and simulation frame-
work in LiveHD. Another critical motivation for
designing LNAST is the generation of human-
readable C++, Verilog, and other HDLs, which
will be an essential infrastructure in LiveHD for
fast verification and simulation.

EVALUATION
In this section, we discuss the benefits of

LiveHD for synthesis and simulation.

Setup
LiveSynth and SMatch were implemented

upon LGraph in C++17, compiled with CLANG
5.0.0. Synthesis was performed with YOSYS ver-
sion 0.7+312, targeting Xilinx FPGAs. P&R were
done using Xilinx Vivado 2017.2. QoR results
are reported after routing. Anubis benchmark [6]
was used, including five designs (DLX, ALPHA,
FPU, MOR1KX, OR1200) and real code changes.
We compared QoR between incremental and full
synthesis independently for each change. The
experiments were run on 2 Intel(R) Xeon(R) E5-
2689 CPUs at 2.60GHz, with 64GB memory,
ArchLinux 4.3.3-3 server.

LiveSim was prototyped in Ruby and is being
ported to LGraph. We used a partitioned global
address space (PGAS) of RISC-V cores, 1x1,
2x2, 4x4, 8x8, and 16x16 meshes. Each PGAS
node is a 5-stage RISC-V RV64i core with 32K
internal memory. We coded PGAS in Pyrope [10],
an HDL that maps well to LNAST. Both LiveSim

and Verilator (version 4.018) generate C++, com-
piled with g++ 7.3 using the same O2 opti-
mization flag. Experiments were performed in an
Intel I7-6700K Linux server with 32GB memory.
Verilator was shown to outperform commercial
simulation tools [4].

Synthesis Results
LiveHD, using LiveSynth plus SMatch, had

a runtime of under 30 seconds for logic synthe-
sis and P&R, for most changes in the Anubis
benchmark suite, making it 5 − 21× faster than
the incremental commercial FPGA flow. Figure 6
reports the runtime for each flow (a) and runtime
percentage for LiveHD (b), for each benchmark,
averaged across all changes. From the results, it
seems the commercial flow only performs incre-
mental P&R (not incremental synthesis), which
would explain the large portion of synthesis for
the commercial flow runtime results. Even though
the proposed flows minimize the amount of P&R
needed, they still rely on Vivado’s placer and
router, which, even in incremental mode, is meant
to maximize QoR at all costs.

The LiveHD speedup comes from two differ-
ent places. First, LiveSynth reduces the amount of
work during logic synthesis. Then, only changed
blocks enter SMatch flow. SMatch further reduces
the number of gates for P&R by identifying
structural matches in the synthesized netlist.

Simulation Results
Figure 7 demonstrates the accumulated ben-

efits of improved compile times and simulation
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Figure 7: LiveSim has a faster compile and simulation time than Verilator for large designs.When
restarting from checkpoints, the advantages is even greater

Table 2: For LiveSim (L) and Verilator (V), simulation rate (normalized per simulated core) and
microarchitectural measurements of the host processor as the number of simulated cores is increased.
Verilator’s performance degrades with a larger design (more simulated cores). Verilator is unable to
compile the largest design within a day.

1 core 4 cores 16 cores 64 cores 256 cores
L V L V L V L V L V

Simulation Rate (kHz/core) 1974 2378 1957 2351 1492 823 1223 718 1172 N/A
IPC 2.50 2.86 2.47 2.71 1.94 0.96 1.62 0.80 1.24 N/A
Inst. Cache MPKI 0.25 0.01 0.02 8.45 0.01 20.57 0.01 24.37 0.01 N/A
Data Cache MPKI 0.96 0.01 10.78 0.01 36.42 84.04 39.09 42.99 48.08 N/A
Branch MPKI 1.54 0.01 1.33 0.01 2.83 0.01 3.62 0.29 4.27 N/A

rates in LiveSim. For a given simulation length
(x-axis), the difference between the lines for
the same design (y-axis) shows the reduction
in wall-clock time to complete the compilation
and simulation. In the best case for LiveSim,
incremental simulation and hot-reload are used,
and the simulation starts from a checkpoint. In
this case, the compilation and simulation time is
≈ 2s from code change to reach virtually any
simulation cycle count.

Table 3: Compilation time for LiveSim and Veri-
lator. Hot-Reload can swap a module in under 2
seconds. Even full compilation with LiveSim is
faster than with Verilator.

1x1 2x2 4x4 8x8 16x16

LiveSim Hot-Reload 1.5 1.5 1.5 1.6 2
LiveSim Full 4.9 4.7 4.8 15.6 176
Verilator 8 14 63 327 NA

Even the baseline compilation of LiveSim
is faster than Verilator (Table 3). LiveSim full
recompilation time ranges from 4.9s to 176s de-
pending on the design, and LiveSim Hot-Reload
is always achieved in less than 2 seconds, even

for 256 core design. Verilator was 1.5× to 20×
slower and was not able to compile the 256 core
design in 24h regardless of optimization options.
The reason is that LiveSim reduces code size
by avoiding code replication. The result shows
that we can recompile incrementally large designs
orders of magnitude faster than Verilator.

LiveSim’s simulation has a faster raw simu-
lation speed. Performance counter analysis (Ta-
ble 2) reveals a significant increase in miss rates
for caches and branch predictor as the number
of simulated cores increase in Verilator. LiveSim
simply reuses the same object files for the re-
peated cores, reducing instruction cache miss rate.
By reducing the performance detriments from in-
struction cache misses, LiveSim is more scalable
than Verilator, in particular for designs with a
large number of instances of the same module.

CONCLUSION
Hardware development has been plagued by

notoriously long synthesis and simulation times,
which forms a bottleneck to productivity as de-
velopers spend much of their time waiting for
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feedback. We believe it is time for hardware
design to achieve the same level of productivity
that exists in software design. This article ad-
vocates for agile hardware design through incre-
mental design, based on three principles: (1) job
partitioning (2) incremental transformation, and
(3) hot-reloading. LiveHD is an embodiment of
these principles and the first incremental hard-
ware design framework aiming to provide live
feedback for small changes for both synthesis and
simulation.

The three principles prevent restarting syn-
thesis and simulation from the beginning ev-
ery time the designer makes trivial changes.
Moreover, the use of a common representa-
tion, LNAST/LGraph, reduces code replication
among EDA steps and various open-source tools,
while maintaining high-level semantics of modern
HDLs. All this work is available with an open-
source BSD-3 license. LiveHD opens research
opportunities in many areas, particularly in agile
hardware design.
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