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ABSTRACT
Smart environments and security systems require automatic
detection of human behaviors including approaching to or
departing from an object. Existing human motion detec-
tion systems usually require human beings to carry special
devices, which limits their applications. In this paper, we
present a system called APID to detect arm reaching by
analyzing backscatter communication signals from a passive
RFID tag on the object. APID does not require human be-
ings to carry any device. The idea is based on the influence
of human movements to the vibration of backscattered tag
signals. APID is compatible with commodity o↵-the-shelf
devices and the EPCglobal Class-1 Generation-2 protocol.
In APID an commercial RFID reader continuously queries
tags through emitting RF signals and tags simply respond
with their IDs. A USRP monitor passively analyzes the com-
munication signals and reports the approach and departure
behaviors. We have implemented the APID system for both
single-object and multi-object scenarios in both horizontal
and vertical deployment modes. The experimental results
show that APID can achieve high detection accuracy.

Categories and Subject Descriptors
C.2.m [[Computer System Organization]]: Computer
Communications Networks

Keywords
Wireless sensing; RFID

1. INTRODUCTION
Human motion detection enables tremendous convenience

for numerous automated computing systems, including smart
control and environments, military and civil security sys-
tems, and virtual reality. In particular, detecting human
approach and departure behaviors is already an essential
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function for a wide spectrum of applications. For exam-
ple, approach detection can guide visual impaired people to
grasp the desired object, create alarms when a hand is ap-
proaching towards dangerous or fragile objects (electric out-
let, thermos, etc.), or activate a remote pneumatic switch
for a senior person in a wheelchair.

Current approach detection schemes mainly rely on tech-
nologies that use imagers, biological signals (such as elec-
tromyography (EMG), electroencephalography (EEG)), or
special sensors (for example, tactile sensors). However, ex-
isting solutions are either impractical in some circumstances
or extremely expensive. The imager based approach uses
cameras to capture a sequence of images or videos contain-
ing the user’s movements or appearance and then utilizes
pattern recognition techniques to identify the human move-
ments [16, 26]. A critical limitation of imager based ap-
proaches is that cameras usually demand good lighting con-
ditions or image quality. Moreover, privacy concern also
raise barrier for their implementation. Device-based solu-
tions, such as those using the Brain and Machine Interfer-
ence (BMI) technology [15, 25], are inconvenient and in-
flexible for users in their daily life. Another recent ad-
vance is to embed specific sensors, including magnet sensors,
micro-switches, and tactile sensors etc., in physical space to
monitor the human gestures or movements [5, 18]. These
approaches su↵er from high deployment cost. In a short
summary, above solutions all require specific devices or in-
frastructures, leading constraints to users or incurring high
overhead.

In this paper, we propose a device-free approach detec-
tion system based on backscatter communication of Ultra
High Frequency (UHF) passive Radio Frequency Identifica-
tion (RFID) tags, called APID. APID has no constraints to
users and can reuse the existing RFID infrastructure, which
is widely deployed in many smart environment systems. The
basic idea is motivated from the following observation of
our preliminary experiments. The approach or departure of
a hand towards a tag will cause evident and special varia-
tions of its backscatter signals. To collect these signals, we
introduce a monitor to APID. In practice, we deploy the
monitor over Universal Software Radio Peripheral (USRP)
[4] for passively overhearing the communication between the
reader and tags. Thus, by analyzing and estimating the sig-
nal variations, APID can detect the approach and departure
behaviors towards tags.
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We formally model and analyze the signal changes of the
tag when an individual user’s hand approaches or departs
from it. Then APID calculates the Energy Spectrum Den-
sity (ESD) of every tag’s signal, and determines the behavior
from the trends of ESD variations. We overcame a critical
challenge in APID when there are multiple tags coexisting.
The monitor needs to correlate the collected signals to their
source tags, given that there is no e↵ective and stable way to
di↵erentiate tag signals when a human body moves around.
To solve this issue, we design a decoder algorithm to accu-
rately separate di↵erent tags’ data. Then we extract Coe�-
cient of Variation (CV) feature of continuous tag signals to
determine the approach target of the user.

We have implemented a prototype of APID using a com-
mercial Impinj RFID reader model R420 and passive tags
from two manufactures (i.e., Impinj and Alien). The mon-
itor is implemented by USRP N210 with a SBX daughter-
board. In particular, APID operates in the area covered by
its monitor’s antenna. For example, if we deploy the antenna
under a table such that the surface of the table is e↵ectively
under surveillance, APID can conduct hand-approach de-
tection to the tagged objects on the whole table. Note a
monitor can have multiple antennas to cover di↵erent ar-
eas simultaneously. We conducted extensive experiments in
various scenarios. Fifteen volunteers participate in the ex-
periments. The experimental results show that APID can
achieve high estimation accuracy. For example, APID cor-
rectly detects the approach and departure behaviors with
the accuracy of about 93.3%; and in nearly 92% of our tests,
APID can identify the real target of a volunteer with up to
ten tags coexisting.

2. RELATED WORK
Prior works related to detecting approach or departure

behaviors span a wide spectrum, mainly including the cam-
era based, biological signal based, and wireless signal based
schemes.

Camera based schemas: Camera based schema is an
important part of movement detection systems. These works
often capture a sequence of images or videos through cam-
eras, and build a movement indicator utilizing image pro-
cessing and pattern recognition techniques [14, 16]. Camera
based technique usually requires good lighting conditions of
the environment. Other concerns, such as the privacy issue,
also raise barrier for its application.

Biological signal based schemas: A wide corpus of re-
search has concentrated on using specific equipment, such as
the electromyography (EMG) [10, 27] or electroencephalog-
raphy (EEG) electrodes [12, 15], to estimate human behav-
iors or movements. Zhao et al. [27] collect data about the
EMG signals related with the given basic actions, and es-
tablish the correlation between them using classifiers or BP
neural network technique. In addition, Lew et al. [15] de-
tect self-paced upper limb movements from scalp electroen-
cephalograph (EEG) signals. The key limitation of biolog-
ical signal based works is that they require attaching to or
even embedding sensing devices into the human body, which
is extremely inconvenient in daily life.

Wireless signal based schemas: Some works [1, 2, 7,
11, 20, 21] have shown the feasibility of using wireless signals
(such as WiFi, Z-wave, 60G radios) for motion or activity de-
tection. Sigg et al. [22] propose to utilize RSS values of WiFi
signals to recognize four activities, including walking, lying,
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Figure 1: EPCglobal C1G2 backscatter protocol.
Signals from both endpoints are collected in our ex-
periment.

crawling, and standing. They achieved an accuracy (>80%)
in the activity recognition, and prove that RSS values can
be used for recognizing these macro-movements. However,
their work is not suitable to recognize the micro-movements
such as moving hands [3] or fine-grained approach detection
in a short range. WiTrack [1] tracks the 3D motion of a user
using specially designed radar signals, i.e., Frequency Mod-
ulated Carrier Wave (FMCW) signals. RF-IDraw [24] at-
taches a UHF passive tag to the human’s finger and leverages
two readers and eight omni-directional antennas to track
the tag trajectory, and hence infer human’s writings. These
techniques are either device-based, or requiring specially de-
signed devices and complicated signal processing techniques
before conducting the movement detection, limiting their
application scope in practice. Compared to prior works,
APID adopts new signal processing methods and schemes
that are suitable for the Commercial-o↵-the-shelf (COTS)
RFID (only several cents) transmission. It is fully compati-
ble with the commercial RFID standard and can reuse RFID
frastructures which may have already been deployed in many
environments for object tracking purpose.

3. BACKSCATTER COMMUNICATION IN
RFID SYSTEMS

In this section, we introduce the backscatter communica-
tion protocol of UHF passive RFID systems. We then take
an overview of APID.

Communication in passive RFID systems is based on backscat-
ter radio links. Passive tags carry no battery or radio trans-
mitter. Instead, they harvest power from the reader. The
EPCglobal Class-1 Generation-2 (i.e., ISO 18000-6C) pro-
tocol is the mainstream industrial standard detailing the
interaction between a UHF RFID reader and passive tags.
EPCglobal C1G2 is a reader-talks-first protocol [9]. The
reader chooses the communication parameters and controls
the process based on a slotted ALOHA mechanism. The
reader queries tags in its read zone. Each tag randomly se-
lects a slot to reply with a 16-bit random number, i.e., the
RN16. If the reader receives only one tag response and can
decode the number, it sends an ACK to acknowledge the tag.
Then the tag replies with its Electronic Product Code (EPC),
e.g., ID. Fig. 1 shows the signals from both endpoints dur-
ing the procedure captured by our monitor, which clearly
illustrates the standard communication process.

3.1 Modulation and Data Encoding
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Figure 2: RFID modulation and data encoding
schemes.

In this subsection, we briefly introduce the modulation
and data encoding methods of EPCglobal C1G2.

3.1.1 Reader-to-Tag communication
Due to the limited computing capability of passive tags,

an RFID reader uses Amplitude-Shfit Keying (ASK) modu-
lation. In ASK, digital bits are represented as variations in
the amplitude of a carrier wave. The reader uses Pulse Inter-
val Encoding (PIE) to encode data. As shown in Fig. 2(a), a
high value and a same-length low value combine to represent
a bit ‘0’. The combination of a longer high value and a short
low value represents a bit ‘1’. In addition, high values cor-
respond to transmitted continuous wave (CW), whereas low
values represent attenuated CW. Since the reader supplies
energy for passive tags through these high values, PIE en-
coding is suitable for tag’s power-harvesting property. The
design of proposed tag EPC extraction algorithm is based
on this characteristic of PIE.

3.1.2 Tag-to-Reader communication
The encoding scheme for the tag-to-reader link is deter-

mined by the reader. Optional schemes include FM0 (i.e.,
bi-phase space) and Miller-modulated subcarriers (Miller-2,
Miller-4, Miller-8). The Miller schemes are binary-phase-
shift-keyed. It provides better interference rejection than
FM0. A higher-value Miller method corresponds to slower
data transmission. In our system, we config the coding
scheme as Miller-4 for a good balance. Miller-4 means that
four cycles of the subcarrier are needed for encoding each
bit. As shown in Fig. 2(b), a bit ‘1’ of Miller-4 contains a
state transition in the middle of its four symbols, while a
bit ‘0’ does not, which is the basis of our proposed decoder
algorithm proposed.

3.2 System Overview
APID consists of three main components, a commercial

RFID reader (Impinj Reader R420), a number of objects
(each of them attached with a tag), and a monitor (a USRP
N210 with a SBX daughterboard). The reader queries tags
by transmitting commands and CWs. The role of the mon-
itor is to passively monitor the communication between the
commercial o↵-the-shelf reader and tags, analyzing the backscat-
tered signals from tags, and di↵erentiating the human hand
behaviors. In the prototype APID, we implement the mon-
itor using a USRP model N210, which o↵ers a solution for
prototyping RF applications and supports physical layer sig-
nal processing [17].

APID works in two scenarios. 1) Single-object sce-
nario. When a human hand is moving towards or depart-
ing from an object attached with a tag, APID should detect

this movement. 2) Multi-object scenario. When the hu-
man hand is moving towards an object among multiple ob-
jects, APID is able to recognize which object s/he intends
to touch.

4. MODEL AND INSIGHT
In this section, we develop a theoretical model of the im-

pact of human approach behaviors to backscatter signals,
which will then be utilized by APID for approach detection.

Due to the multipath e↵ect, in real environments the RF
wave emitted from a reader to query a tag usually inter-
acts with many other objects around the tag. Hence the
integrated waves consist of the ones along direct path be-
tween the reader and tag, and those that are reflected. For
backscatter communication, the most important and ubiq-
uitous reflectors are the floors and walls. In many buildings,
floors and walls are constructed by concrete, which has a re-
fractive index around 2.5 and can act as an e↵ective reflector
[8]. Let us consider a stable RFID system, the integrated
signal received by the tag can be formulated as:

S cos(wt) =s
d

cos(wt) + s
f

cos(wt+ ✓
f

) + s
w

cos(wt+ ✓
w

)
(1)

where s
d

, s
f

, and s
w

represent the signal of direct path, the
signal reflected by floors and walls respectively. ✓

f

and ✓
w

are the phase di↵erences between the reflected waves and
the wave along the direct path. The values of ✓ depend
on the relative length of the path that each wave travels.
Since the ambient factors are stable, we can conclude that
S cos(wt) will remain nearly time invariant with no human
interference. For simplicity, we rewrite Equation 1 as:

S cos(wt) = s
c

cos(wt+ ✓
c

) (2)

Similarly, when there is a part of human body (i.e., the
hand) moving towards the tag, another reflected wave will
be introduced. In this case, we can describe the newly inte-
grated signal by the following equation:

S
0
cos(wt) = s

c

cos(wt+ ✓
c

)
| {z }

constant

+ s
h

cos(wt+ ✓
h

)
| {z }

variation

(3)

where s
h

denotes the signal induced by the hand. As in-
dicated by Equation 3, the new signal is composed of two
parts, the constant part and the variation part. It indicates
that the reflected signal caused by the hand is of counter-
intuitively importance. When the hand is moving, the trav-
eling path of RF signals between the constant part and the
hand-reflected part changes. In theory, a change of 8cm (a
quarter of the wavelength) along that path produces a 90�

phase shift, resulting in a change of the signal from a max-
imum value (or minimum value) to zero. This means that
continuous integrated signals will repeatedly oscillate as the
hand is approaching the tag or moving away from it.

We further consider the amplitude of the oscillation. As
illustrated in Fig. 3, the reader antenna is mounted on the
ceiling, tracking the tags within its reading region. A hand
is getting closer to a tagged cup. We model the signal trans-
mission path as a triangle, where A represents the antenna,
T represents the tag, and H

i

represents the moving hand.
Let L

i

denotes the path length of A ! H
i

! T . When H
is approaching T , we can derive that:

(
L

j

< L
i

0  i < j  n
(4)
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Figure 3: The model of RF signal transmission with
approaching behaviors. The monitor is hidden un-
der the table or behind the shelf.

It is known that a shorter path incurs lower attenuation to
the signal, resulting in larger amplitude. Thus, according
to Equation 4, we can infer that when H is getting closer
to T , the amplitude of the oscillation will become larger.
Conversely, the amplitude will decrease when H is moving
away from T .

Thus, we have the following insight about the change on
RF signals corresponding to the hand movement.

Insight: The continuous RF signals oscillate with the
hand movement and can be utilized to di↵erentiate approach-
ing from departure based on the variation tendency of the
oscillation.

5. IDENTIFYING APPROACH AND DEPAR-
TURE BEHAVIORS

In this section, we present the method to analyze backscat-
ter signal variations in practical RFID systems and validate
the theoretical results.

5.1 System Setup
We set up the experiment scenario as shown in Fig. 12.

Like most RFID applications, the reader antenna is mounted
on the ceiling in APID. We invite a volunteer to slowly move
his hand to the tagged cup and then move away from it.
This test is repeated several times. Our initial attempt was
to collect the radio signal strength (RSS) and phase values
from the commodity o↵-the-shelf (COTS) reader during the
test. Unfortunately, the results did not show any regular
patterns. We conjecture the reasons as follows. First, the
granularity or resolution of RSS values reported by the com-
mercial reader is not high. RSS values have been proved
e↵ective for identifying some macro-movements, including
walking, lying, crawling, and the like [22]. However, since
RSS values only provide coarse-grained information about
the channel variations. They are not suitable to recognize
micro-movements in the device-free scenario [3], resulting
in discontinuous or insignificant RSS fluctuations with hand
movements. Second, the phase is a periodic function of 2⇡,
and its value highly depends on the location of the tag, which
cannot well reflect the approach or departure behaviors. The
failure of the above attempt implies that the COTS reader
cannot a↵ord the distinction on the approach behavior to-
wards a specific target. Thus, we design a monitor, which
sits near the tagged object and passively listens to, records,

Com. Descriptor Bit
Query 1000 22
QueryRep 00 4
QueryAdjust 1001 9
ACK 01 18

Table 1: Reader Commands and Parameters

and analyzes the RF communication between the COTS
reader and tags.

5.2 Signal Preprocessing
In UHF passive RFID systems, a commercial reader can

query a tag and receive its replies for hundreds of times per
second. The monitor device can record the signals of each
complete inventory on a specific tag, as shown in Fig. 1. To
verify the aforementioned theoretical analysis and further
identify gestures, we need to extract the backscatter signals
from the collected mixed signals.

In a common backscatter communication process, two types
of messages are sent by a tag, i.e., RN16 and EPC. We
choose to use the EPC signals as the source for subsequent
analysis. EPC is the unique identifier of a tag, and we can
extract the tag’s ID from the EPC message. We develop the
EPC Filter module in the monitor. It allows the monitor to
accurately retrieve the EPC message from communication
signals. The EPC filter has two procedures: coarse-grained
segmentation and fine-grained localization.

5.2.1 Coarse-grained Segmentation
Coarse-grained segmentation module aims to di↵erentiate

between reader commands and tag replies. After this mod-
ule, we can derive the coarse EPC sequence. The strategy
is detailed in the following.

According to the EPCglobal C1G2 protocol, tag replies
EPC after receiving an ACK command from the reader.
Based on this fact, we can derive the coarse-grained EPC
segment between the ACK and a subsequent reader com-
mand. The reason why we utilize reader commands to seek
for EPC is that: the reader’s signal has higher SNR and
larger amplitude, which makes it easier to be located and
decoded. Table 1 shows the reader’s commands and their
parameters specified by the protocol. We can see that every
command has its unique descriptor. It inspires us to locate
an ACK easily by decoding its descriptor. As Fig. 4 shows,
starting with a frame-sync (composed of a fixed-length start
delimiter, a data-0, and an R)T calibration (RTcal)), ACK
has two parts: a 2-bit descriptor and a 16-bit RN16. We can
choose a low threshold (Fig. 1) to locate reader commands
and then decode a command by comparing every pulse width
with Table 2. These parameters are the basic components of
every reader command, and the lengths of them are specified
by the protocol, among which Tari is in the range of 6.25µs
to 25µs, and the choice of Tari shall in accordance with local
radio regulations (Tari = 25µs in our implementation). For
better fault-tolerance, we extends the length by ±20%.

5.2.2 Fine-grained Localization
We get the coarse-grained EPC segment between the end

of ACK and the begin of the next command; nevertheless,
this EPC segment includes many carrier samples, such as the
first 500 samples shown in Fig. 6(a). Falsely including these

170

UBICOMP '16, SEPTEMBER 12–16, 2016, HEIDELBERG, GERMANY



0 1000 2000 3000 4000 5000 6000 7000
0

0.1

0.2

0.3

Sample Index

A
m

pl
itu

de

 

 

Signal from monitor
Theshold line

0 1

Rtcal RN160

Figure 4: ACK command under PIE encoding col-
lected by the monitor.

Com. Time duration Length Range
RTcal [2.5Tari,3.5Tari] 600 480⇠720
TRcal [1.1RTcal,3.0RTcal] 700 560⇠864
Data-0 1 Trai 220 176⇠264
Data-1 [1.5Tari,2.0Tari] 360 288⇠432

Table 2: Reader Command Components and Pa-
rameters

samples may a↵ect the subsequent signal energy estimation.
Therefore, we need to further find the start point of the EPC
segment from the raw signal samples. We term this process
as fine-grained EPC localization.

In our experiments, we observe that the signals of di↵er-
ent tags may locate in di↵erent positions. Sometimes a tag
signal is higher than the carrier but in some other cases it
is lower than the carrier. As a result, we cannot determine
a certain threshold to find the start point. To solve this
problem, we apply the Absolute Forward Di↵erence (AFD)
method to accurately localize the start point of EPC.

Given an EPC sequence E = (e1, e2, ..., eK), the AFD
value is calculated by:

4E = |e
k+1 � e

k

|, k = 1, 2, ...,K � 1. (5)

The AFD result of the EPC signal in Fig. 6(a) is shown
in Fig. 6(b). Utilizing the obvious amplitude di↵erence of
carrier signals and real EPC signals, we can now employ a
simple threshold method to quickly find the first sample of
E, as the red circle outlined in the two subfigures. In fact,
AFD is with good compatibility and resilient to the impact
from the tag heterogeneity and environmental factors.

5.3 Identifying Approach and Departure Be-
haviors

In this subsection, we verify the theoretical results afore-
mentioned and utilize the EPC variation trend to identify
approach and departure behaviors.

EPC is encoded in a pulse-like way, implying the energy in
the signal. The energy of a signal x(t) is usually represented
as:

Z 1

�1
|x(t)|2dt (6)

In our implementation, we use Energy Spectrum Density
(ESD) [19] to characterize the energy. ESD can tell how
the energy of a signal is distributed with frequency. Pulse-
like signals usually have finite amount of energy. Parseval’s
Theory [23] provides another expression of the energy of a

signal in terms of its Fourier transform, that is,

x̂(f) =

Z 1

�1
e�2⇡iftx(t)dt (7)

Thus, we have the following equation,
Z 1

�1
|x(t)|2dt =

Z 1

�1
|x̂(f)|2df (8)

Here f is the frequency measured in Hz. ESD is so called
because the integrand |x̂(f)|2 can be regarded as a density
function, which describes the energy per frequency unit of
the signal. In this case, we estimate the ESD of a signal x(t)
as [23]:

S
xx

(f) = |x̂(f)|2 (9)

To evaluate the e↵ectiveness of our method, we invite a
volunteer to participate in our experiments. He moves his
hand approaching to the tagged cup, then moves away from
it. The monitor records the signals during the procedure.
The data independence should be guaranteed when conduct-
ing signal analysis. To this end, we adopt the P1 part of
the EPC preamble as the source signal in this module since
the waveform of this part is constant for various tags (re-
fer to Fig. 2). The first 50 points of one P1’s ESD values
are shown inFig. 5(a). We find that most of the ESD val-
ues are concentrated in its first 10 points. Therefore we
choose to include the first 10 values into consideration in
APID. We normalize their values and consider the mean as
the ESD of one EPC. Fig. 5 (b) and (c) show ESD varia-
tions of approach and departure behaviors, respectively. We
observe that they validate our insight from the theoretical
model. Human hand movements incur energy oscillations
to the replies (e.g., EPCs) of tags, and the movement di-
rection (approach or departure) can be deduced from the
vibration increase or decrease. Inspired by this observation,
to distinguish the two gestures, we adopt Dynamic Time
Warping (DTW) technique to compute the similarity be-
tween an unknown movement and the template of approach
or departure movement. The benefit is that DTW can au-
tomatically compress or stretch a sequence to focus on the
shape similarity of two sequences. This can handle the prob-
lem of the disagreement on duration or amplitude of di↵erent
users’ movements. Detailed description of this algorithm is
skipped due to space limit. In addition, we also investigate
the ambient interference for comparison. We show the ESD
variations when a person walks 20cm, 1m, and 1.5m away
from the tag in Fig. 5(d). The results suggest that the in-
curred noise can be easily filtered by the preprocessing (i.e.,
comparing the DTW distance with a predefined threshold),
since the signal variation tendency is irregular and inconsis-
tent with either the approach or departure behavior.

6. MULTI-OBJECT SCENARIOS
In the previous section, we solve the problem of identifying

whether a user is approaching an object in a single-object
scenario. However, in real circumstances, like a table or a
shelf, there could be more than one object, each of which
carries a passive tag. In this section, we present the solution
to find the true approach target of the human hand in multi-
object scenarios.

6.1 Challenges
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raw EPC segment. (b) The AFD of the raw EPC
samples.

According to the specifications in EPCglobal C1G2, multi-
ple tags can reply their EPCs to the reader in random orders
in one inventory round using the slotted ALOHA protocol.
The monitor can capture EPC messages but it cannot de-
code those messages, i.e., extracting the IDs of these tags
like a COTS reader to distinguish them. Therefore, APID
needs to resolve two main problems. First, it should di↵er-
entiate tag signals based on their sources. Second, it should
find the tag whose signal has the most prominent change,
which indicates the target of an approach behavior.

To begin with, we attempt to pursue proper features in the
signal level to solve the first problem. We put two tags on
a table with a 30cm distance in between. Then a volunteer
moves his hand to one of them. We try mainstream features
used by prior works in fingerprinting wireless signals, includ-
ing Entropy, Power Spectral Density (PSD), Pulse Ampli-
tude, Mean Square Error (MSE), Mean, and Variance, etc..
Unfortunately, during the movement of user’s hand, the tag
signal varies with time, and we could not find appropriate
features which can uniquely and stably represent a specific
tag. We present the attempt of using two representative
features as following.

Amplitude. Fig. 7 plots the amplitude of these two tags’
EPC signals. We see that they almost overlap with each
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other. The reason behind may be that tags’ signals are all
modulated based on the reader transmitted carrier waves,
so all tag signals shall change consistently as the carrier.

HL-interval. In addition, due to the hardware hetero-
geneity [6], when modulating a same logic data ‘0’ or ‘1’,
tags yield di↵erent intervals between the high level and low
level values. We denote such an interval as a HL-interval.
We plot an example of HL-interval in Fig. 6(a). As shown in
Fig. 8, the HL-interval of a tag is distinct and stable for the
first 50 points. It seems that HL-interval is a good choice for
di↵erentiating tags. What disappoints us is that when the
hand is moving (starting from the time of near 50th point),
both tags’ signals are influenced. Their HL-interval values
cross with each other at about 110th point and become in-
distinguishable.

In summary, an approach behavior has complex impact
on the tag signal, and it is di�cult to find a unique feature
to distinguish signals from di↵erent tags.

6.2 Differentiating tag signals
In this subsection we solve the first problem: di↵erentiat-

ing signals from di↵erent tags. Leveraging the architecture
of EPC memory and characteristics of Miller-4 encoding (re-
fer to Section 3.1.2), we implement an EPC decoder module,
which includes a recoder algorithm and a decoder algo-
rithm.

It is worth to briefly introduce the composition of the EPC
memory. As the ID or identifier of each tag, the EPC mem-
ory contains PC, EPC and CRC-16, which are stored in the
order of the most significant bit first (MSB). In particular,
PC is 16-bit long, and its first 5 bits (denoted as PC5) define
the EPC length. For example, PC5 = 00110 means the EPC
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Figure 9: An example of the recoder.

is 6-word long. In addition, the maximum length of EPC is
6 words (e.g., 96 bits) specified by EPCglobal C1G2. For
simplicity, we use a part of the EPC signal collected from a
96-bits long tag to illustrate the following algorithms.

6.2.1 Recoder
For passive RFID systems when tag EPC is encoded in

Miller-4, it means that a bit contains 4 subcarrier cycles, as
illustrated in Fig. 2. Under a 10M/s sampling rate, the num-
ber of samples of a subcarrier cycle is constant, i.e., about
30 in total, while 15 are for high level values, other 15 are
for low levels. We recode such a subcarrier cycle (with same
length of high level and low level) as symbol ‘0’. Our recoder
detects the last point of the low state for every subcarrier, as
the red points shown in Fig. 9. Hence, the recoded symbols
‘0’ and ‘1’ can be di↵erentiated by comparing the interval
(�I) of adjacent red points. If �I > M , we get a sym-
bol ‘1’ (M = 40 in our implementation). Otherwise, we get
a symbol ‘0’. Fig. 9 illustrates a part of Miller-4 encoded
EPC, composed by P2 of preamble (e.g., 010111, refer to
Fig. 2(c)) and PC5 (e.g., 00110). The recoded sequence is
marked in grey boxes, which is the input of the following
decoder algorithm.

Algorithm 1: EPC Decoder

Input: Symbol sequence: S = (s1, s2, ...sn)
Initial b : K
The number of bits need to be decoded: L

Output: Bit sequence: B = (b1, b2, ..., bL)
1: i 0, b K, e K + 3
2: while i < L do
3: t S(b : e)
4: if t(2) == 1 then
5: B(i) = 1, b e+ 1, e b+ 3
6: else if t(3) == 1 then
7: B(i) = 1, b e, e b+ 3
8: else
9: B(i) = 0
10: if t(1) == 1 then
11: b e+ 1, e b+ 3
12: else
13: b e, e b+ 3
14: end if
15: end if
16: i i+ 1
17: end while
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Figure 10: Illustration of the EPC decoder algo-
rithm.

6.2.2 Decoder
The decoder algorithm is designed by leveraging the char-

acteristics of Miller-4 encoding. That is, every four subcar-
rier cycles construct one bit, and bit 1 has an state transition
in the middle. We translate every continuous 4 symbols into
one bit, and determine the value of the bit by checking the
position of the symbol ‘1’. If symbol ‘1’ locates in the mid-
dle of 4 symbols (the 2nd or 3st position), we translate such
4 symbols as a bit 1. Otherwise, we get a bit 0. Moreover,
the begin index and end index of the current 4 symbols are
determined by the former 4 symbols. The detail of the de-
coder algorithm is elaborated in Algorithm 1, in which b and
e denote the begin index and end index respectively.

As an example, we execute the algorithm on the sym-
bol sequence in Fig. 9. In this example, the input S =
‘000000100000100100100000100001000100001’, L = 11, K =
1. The dotted boxes in Fig. 10 illustrate the procedure
of our algorithm. For example, we get a bit 1 from the
4 symbols ‘0100’ in box A. Based on the position of sym-
bol ‘1’ (i.e., 3st position), we get the next 4 symbols ‘0000’
and the translated bit 0, as shown in box B. Ultimately,
the output bit sequence B = 01011100110, implying that
P2 = 010111 and PC5 = 00110. This well matches the
corresponding part in the real EPC. The result proves that
our decoder is able to distinguish di↵erent EPCs e↵ectively.
Note that above methods can be easily extended to other en-
code/decode mechanisms adopted by existing COTS passive
RFID systems, such as Miller-2 and Miller-8, etc..

6.3 Identifying the Approach Target
Using the unique EPC code, we can separate signals of

di↵erent tags. We then aim at figuring out the true target
of the approach behavior among multiple objects. In APID,
our objective is to extract a feature from the replied EPC
signals, which can well profile the most prominent influence
corresponding to a human hand movement.

In real implementation, tags are di↵erent in their H-L in-
tervals. We observe that the signal variation of a tag with
high H-L interval is almost always more obvious than that
of a tag with low H-L interval. This may cause false alarms
when identifying the real target if the user is approaching to
the tag with low H-L interval. We show the ESD trends of
two tags in Fig. 11 (a) and (b). From the results we see that
no matter the volunteer approaches to Tag1 or Tag2, Tag1
(with higher HL-interval) always has larger ESD variation.
To address this problem, we propose to utilize the metric of
coe�cient of variation (CV).

We calculate the coe�cient of variation (CV) of P1 (guar-
anteeing the data independence) to reflect the influence. CV
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Figure 11: ESD and CV variations of EPC se-
quences.

is a standardized measure on the dispersion of a probability
distribution, defined as:

CV = �/µ (10)

where � is the standard deviation and µ is the mean. It
shows the extent of variability in relation to the mean. CV
is a dimensionless number, and the actual value of CV is
independent of the unit of the measurement. Hence it is
suitable for comparison among the data with di↵erent means
and H-L intervals.

In APID, we can treat the samples of P1 as a random
source, and calculate CV for every P1 of continuous tag sig-
nals. To evaluate the e↵ectiveness of CV, we conduct a
group of experiments. We put two tagged objects on the
table (among which Tag1 has higher HL-interval), and ask
the volunteer to move his/her hand to them, one at a time.
Fig. 11 (c) and (d) show the results. When the hand ap-
proaches Tag1, its CV variation is larger than that of Tag2.
On the contrary, when the hand approaches Tag2, the vari-
ation change is opposite. Thus, we propose to regard the
tag which has the maximum CV variation as the target that
the user actually moves his/her hand to.

7. IMPLEMENTATION AND EVALUATION
In this section, we present the implementation and evalu-

ation of APID.

7.1 Experimental Setup
We build APID using a COTS Impinj Reader R420, 20

passive tags of four tag models from two manufacturers (i.e.,
Alien 9640, Alien 9662, Impinj E41B, and Impinj H47, each
of them costs 5-10 cents). We use a USRP N210 with a SBX
daughter board as the monitor [4] to record the physical
layer signals transmitting between the reader and tags. The
antennas (model Laird A9028R30NF) used by the reader
and monitor are both directional. The size of antenna is
25.4cm ⇥ 25.4cm ⇥ 3.8cm and with 8dBi gain.
The reader antenna is mounted on the ceiling, about 3m

apart to the tags. We attach tags to various objects, such
as bottles, books, cartons, etc., to verify the e↵ectiveness of

APID across di↵erent types of dielectric material. Tagged
objects are placed following two common display modes,
horizontal mode (i.e., simulating a table) and vertical mode
(i.e., simulating a shelf). The monitor antenna is deployed
under the table or on the back of the shelf. The principle
of positioning the monitor is to make sure that the moni-
tor can receive the RF signals backscattered from the tags,
while the line-of-sight transmissions between the monitor’s
antenna and tags are not always blocked. To meet above
requirements, it is better that the monitor antenna is closer
to tags (say within 50cm).

7.2 Accuracy of Single Tag Scenario
We evaluate APID’s accuracy of recognizing approach and

departure gestures under di↵erent conditions.

7.2.1 Distance between the hand and the tag
We first study the e↵ect of distances between the hand

and the tag on the detection accuracy. Fifteen volunteers
participate in this experiment. Each volunteer performs the
approach and departure behaviors for 30 times in each dis-
tance, without blocking the tag. Note that the distance here
represents the nearest distance during the hand movement,
and the volunteer moves at least one arm long. We iden-
tify the behavior through the trend of continuous EPC ESD
values. The results are shown in Fig. 13. The bar in this
figure shows the probability that the ESD trend follows our
deduction, i.e., APID correctly determines the gesture. The
‘Other’ bar expresses the percentage of gestures which can-
not be identified by APID based on the ESD trends. The
results show that when the distance increases, the detection
accuracy decreases. When the distance enlarges to 60cm,
more than half of the gestures become unidentifiable. The
reason is that when the hand moves farther away from the
tag, the influence of the hand reflection to tag signals be-
comes smaller, resulting in more inapparent oscillations. On
the other hand, the detection accuracy remains high when
the distance is smaller than 20cm. It means that the data
collected when the hand is 20cm away from the object is
enough for APID to di↵erentiate the gestures. In common
cases, such a distance is reasonable for arm-reachable appli-
cations.

7.2.2 Tag diversity
Then we evaluate if APID is compatible with di↵erent

kinds of tags. We invite volunteers to participate in 500
experiments using four kinds of passive tags from two man-
ufacturers. This group of experiments are conducted in hori-
zontal mode. During each experiment, a volunteer was asked
to move his/her hand towards a specific tag, or away from
it. The result is shown in Fig. 14. It indicates that our ap-
proach detection method is applicable for di↵erent kinds of
tags. And the detection accuracy of Alien tags is higher than
that of Impinj tags, which exceeds 96% for both approach
and departure behaviors. The reason is the tag model may
have certain impact on the backscattered signal as well as the
detection performance, due to the di↵erent antenna and IC
designs. Based on above experiment results, we recommend
to use Alien tags for real system deployment and conduct
following experiments based on this type of tags.

7.2.3 Human diversity
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In this part, we investigate the e↵ect of human diversity
on the detection accuracy. We invite fifteen volunteers (age
23 - 30) to conduct this experiment, 50 times for each. Their
heights vary from 160cm to 180cm. The result is shown in
Fig. 15. The overall accuracy for the fifteen volunteers main-
tains in a high level, say, 94.3%. Specifically, the minimum
accuracy can still reach 85% for volunteer 4’s departure be-
haviors. This indicates that APID works well across di↵er-
ent users.

7.2.4 Approaching angle
This group of experiments is to investigate the impact

of the hand approaching from di↵erent angles. We test 5
typical angles, i.e., -90�, -45�, 0�, 45�, and 90� from the
line-of-sight between the reader and tag respectively, under
the same experimental setups as shown in Fig. 12. Fig. 16
shows the average accuracy of 30 approach motions at each
angle. We find that APID shows consistent accuracy for
di↵erent angles, and the median accuracy is above 90%. The
results reveal that varying the direction that a human hand
approaches to the tagged object has little a↵ection to the
detection accuracy.

7.2.5 Display mode
We also examine the performance of detection under two

display modes, horizontal and vertical mode. We find that
APID performs well in both modes and the accuracy is
94.3% and 92.2% respectively. The results demonstrate that
APID can achieve a high estimation accuracy in average,
i.e., 93.3%.

7.3 Accuracy of Multi-object Scenario
We then exam the detection accuracy of APID in multi-

object scenario. Experiments in this section focus on an-
swering three questions. First, when multiple tags exist in
the picking area, can APID successfully di↵erentiate their
signals? Second, when the distance between objects changes,
can APID still yield good performance? Third, with mul-
tiple objects displaying in di↵erent modes, how e↵ective is
APID?

7.3.1 Accuracy of EPC Decoding
To detect the real approach target of the user, the first

step is to correctly separate EPC signals of di↵erent tags.
In this part, we evaluate the e↵ectiveness of our EPC de-
coder module. As mentioned in Section 6.1, when there is
no variation around the tags, the HL-interval of each tag
is stable and distinguishable. Thus, we collect signals from
5 Alien tags in a stable environment and distinguish them
using their HL-intervals. We treat the labels deduced by HL-
invervals as the ground truth, and compare them with the
output of our decoder. We plot 300 results of HL-intervals
for each tag in Fig. 17(a), the values in di↵erent colors are
labeled by the results derived from our decoder. From the
results, we can obviously determine that there are only 4 er-
rors (for Tag 4) among the overall 1500 tests. The accuracy
of our EPC decoder is 98.7%+, as shown in Fig. 17(b).

7.3.2 Accuracy vs Distance
It is known that when the tags are closer, the influence

from an approach gesture to them is more similar. Thus, we
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investigate the impact of the distance between tags on the
detection accuracy. We put two tagged objects on the table,
and invite the volunteers to approach them respectively, 30
times for each. Fig. 18 shows the accuracy with varying
tag-to-tag distance from 5cm to 30cm. We observe that
at the distance of 5cm, the minimum accuracy, i.e., 90%,
is achieved when the hand approaches Tag 1. If enlarging
the distance, the detection accuracy increases gradually and
reaches 100% at 30cm. In practice, we believe 5cm is a
reasonable short distance between tags attached on objects.
In this case, APID can still achieve 90% accuracy (3 errors
among 30 trials). Thus, if the distance between tags is no
less than 5cm, its impact to the APID’s detection accuracy
will be slight.

7.3.3 Accuracy vs Multiple tags
Under each deploy modes, we conduct two types of ex-

periments to verify the approach target detection accuracy
among multiple tags. We deploy ten tags in a line with
10cm in between or scatter them at random locations while
the minimum distance between any two tags is 5cm. The 15
volunteers are invited to approach to each tagged object 30
times, and we test if APID can correctly verify the target
tag. The detection results are shown in Fig. 19. We can see
that the accuracy of most detections are above 90%. The
maximum number of errors occurs when the volunteer moves
his hand to Tag #9 under horizontal mode with tags scatter-
ing at the table. In this case, APID considers it approaching
to the adjacent tag (Tag #8). Overall, the average accuracy
is about 91%. Note that potential options of further improv-
ing the accuracy include employing multiple minitors, using
customized readers or tags with higher communication fre-
quency, and other solutions that can increase the detection
resolution. However, those options might be cost-ine�cient.

8. DISCUSSION AND LIMITATION
In this section we discuss the limitations and practical

deployment issues of APID.
Object material: Current UHF RFID systems are de-

signed to operate around the frequency of 900MHz, with
which the tags function well on the surface of most common
materials, including wood, glass, paper, etc. However, RF
transmission can be significantly a↵ected by certain materi-
als, such as metal and water, either completely reflecting an
incident wave or absorbing it. Thus, APID may not work
well for those materials.
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Figure 19: Approach target detection accuracy in
multi-object scenario under four deploy modes.

Hand moving speed: The hand moving speed has little
impacts to the detection accuracy of APID. Since a commod-
ity UHF reader, e.g., Impinj R420, is capable to read more
than 1000+ tags per second [13]. Such a high rate allows
the reader to collect a large number of responses from the
tag attached to the object. The su�cient samples extracted
from those responses guarantee a fine-grained monitoring on
the hand approach or departure movement regardless of the
hand moving speed.

Signal analysis API of commercial readers: We im-
plement the prototype of APID over a USRP based mon-
itor for collecting and analyzing the signals backscattered
by tags. If the RFID manufactures enable the correspond-
ing signal analysis functions in their commercial readers and
APIs, USRP based monitor is not necessary.

Unauthorized access: So far, APID only focuses on the
behavior recognition. Thus, it cannot di↵erentiate unautho-
rized users or behaviors for some specific applications, such
as intrusion detection and access control systems. This is
out of the scope of this paper, and we will leave it for future
study.

9. CONCLUSION
In this paper, we design and implement APID for near-

proximity detection for hand approaching, without carrying
special devices. APID is developed based on the observa-
tions of the influences of human movements to the vibration
of backscattered tag signals, from both experiments and the-
oretical analysis. APID uses the energy changes of backscat-
ter signals as the feature to identify approach and departure
behaviors. The experiments show that APID achieves high
detection accuracy. Our future works include enlarging the
monitoring range, extending the implementation scope, and
enabling a fine-grained body motion detection.
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