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Abstract—Counting the number of RFID tags (cardinality) is a fundamental problem for large-scale RFID systems. Not only does it
satisfy some real application requirements, it also acts as an important aid for RFID identification. Due to the extremely long processing
time, slotted ALOHA-based or tree-based arbitration protocols are often impractical for many applications, because tags are usually
attached to moving objects and they may have left the reader’s interrogation region before being counted. Recently, estimation schemes
have been proposed to count the approximate number of tags. Most of them, however, suffer from two scalability problems: time
inefficiency and multiple-reading. Without resolving these problems, large-scale RFID systems cannot easily apply the estimation
scheme as well as the corresponding identification. In this paper, we present the Lottery Frame (LoF) estimation scheme, which can
achieve high accuracy, low latency, and scalability. LoF estimates the tag numbers by utilizing the collision information. We show the
significant advantages, e.g., high accuracy, short processing time and low overhead, of the proposed LoF scheme through analysis
and simulations.
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1 INTRODUCTION

RADIO Frequency Identification (RFID) technology
[1] has been widely used for many applications,

such as localization [2] [3], objects tracking [4], activity
monitoring [5], access control and security [6]. An RFID
system typically consists of three components: readers,
tags and the middleware software [7]. RFID readers with
antennas are devices used to read or write data from/to
RFID tags. RFID tags are labeled in designated objects
where each tag has a small size of memory to store its
unique serial number (ID) as well as other information.
The simple structure and cheap price offer promising
advantages for the applications of large-volume objects
in a mobile environment.

Cardinality estimation, i.e., counting the approximate
number of tags in a given region is one of the most im-
portant tasks in large-scale RFID systems. An estimation
scheme can be applied to applications in which the user
wants to know the population information of objects
having the same type of identities, e.g., an intelligent
transportation systems (ITS) [31] that tracks the popu-
lation distribution of metropolitan vehicles, an indoor
stadium system that monitors visitors or a factory that
stores one kind of product. Another example scenario
is major conferences such as COMDEX, E3 Expo, etc.
that typically attract tens of thousands of participants
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[34]. The organizers are interested in various statistics,
such as how many people visit a particular booth on
which day. It is also an important basic function that
helps to accomplish other complicated operations such
as categorization [19], key assignment and updating [24].
More important, existing works show that fast and reli-
able estimation evidently improves the efficiency of tag
identification [15] [16] [25] [26]. Estimation algorithms
can be used to adjust the contention window and set an
optimal frame size in slotted ALOHA-baed identification
(it is known that a frame with n slots is the most efficient
setting, where n is the cardinality [27]). The efficiency
and scalability (up to tens of thousand tags) of estimation
algorithms are concerned by recent studies on this topic
[16] [18] [34].

Intuitively, an RFID system can wait until all tags in
the region successfully report to it, and then compute
the cardinality by identifying them. Many identification
schemes can be used for this approach [9] [10] [11] [12]
[13], falling into two categories: Slotted ALOHA schemes
[11] and Tree-traversal or Binary Splitting schemes [12] [13].
The most significant shortcoming of identification is the
long processing latency. Hence, existing schemes based
on identifying individual tags are impractical for large-
scale RFID systems, especially when tags are attached
to mobile objects. In this case, a tag may have left
the reader’s range before being identified. Therefore,
in order to resolve the long latency issue and meet
the real-time requirement, estimation schemes without
identification are suggested [16] [17] [18].

In a simple estimation scheme, an ALOHA frame with
fixed time slots is only able to estimate tag cardinalities
within a restricted range. For example, a frame with ten
slots can estimate tens of tags. If the tag number exceeds
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100, the estimators will fail. We call such problem the lim-
ited operating range. Limited operating range will cause
the time inefficiency for estimation. Existing estimators
[16] [34] need to dynamically adjust the system load
factor (the ratio of the cardinality to the frame size) to
fit the operating range, which increases the time cost of
the estimation.

Besides the time inefficiency problem, another limita-
tion of existing estimation schemes has to be addressed.
Most of those estimations are designed for a single
reader. Due to the terrain and limited interrogation
region of readers, however, large-scale RFID deploy-
ments often need multiple readers [28], in which several
readers are placed to cover the entire region of interest.
Multi-reader RFID systems, being efficient and effective,
suffer from the so-called multiple-reading problem. That
happens when a number of tags stay in the overlapping
interrogation region and respond to multiple readers
simultaneously.

The key reason that causes these problems is RFID tag
collision. When a collision happens, the reader cannot
get any information. The resource (time and energy)
that is consumed in that collision is completely wasted.
In identification-based schemes, the reader should ask
tags to re-transmit. For estimation-based schemes, if the
tag number is much larger than the frame length (time
slot number), almost every slot is collision. In that case,
the limited operating range problem happens, and the
estimation definitely fails.

In this work, we propose the Lottery Frame (LoF)
protocol, a non-arbitration based scheme to estimate the
cardinality of tags. In LoF, we arrange the collision slots
in an ordered pattern. LoF then extracts the tag cardi-
nality information from the special pattern. Therefore in
LoF, tag collisions are no longer considered as waste of
time and energy.

LoF is a novel approach to compute tag cardinality
in a very short time. Two main advantages of LoF are
high accuracy and fast processing speed. The three prob-
lems of existing counting/estimation mentioned above,
e.g., long latency, limited operating range and multiple-
reading, are solved by LoF. Our design can be easily
implemented in current RFID systems without particular
assumptions about the number and placement of readers
and tags.

The rest of this paper is organized as follows. In
Section 2, we describe the background and motivation of
our estimation protocol. Section 3 presents our baseline
protocol, and Section 4 describes the detailed protocol
design of LoF. We propose three techniques that can
bring remarkable performance improvement to LoF in
Section 5, and then give some discussions about LoF pro-
tocol in Section 6. We present the performance evaluation
in Section 7. Finally we conclude this work in Section 8.

2 RELATED WORK AND CURRENT PROBLEMS
In this section, we list the two important performance
metrics for tag estimation: processing time and accuracy.
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Fig. 1. The efficiency of slotted ALOHA identification

We also discuss the two problems that exist in the
previous RFID tag estimation protocols [16] [17] and
will affect the two performance metrics, namely time
inefficiency and multiple-reading.

In our system model, we assume that there exists
a separate estimation phase besides the identification
phase in RFID systems. Therefore those systems can act
as a tag counter without the loss of the function of tag
identification.

2.1 The Background of RFID Estimation Schemes

The essential job of an RFID system is to identify tags
in its interrogation region. Since RFID readers and tags
usually operate on a same channel, simultaneous trans-
missions lead to collisions in the link layer. Protocols for
arbitrating tag-to-tag collisions are usually categorized
to two types, namely slotted ALOHA and tree-traversal.
We describe the importance of an estimation scheme by
addressing its role in efficient identification protocols.

In the slotted ALOHA protocol, given an ALOHA
frame of fixed number of time slots, each tag randomly
picks up a slot based on a uniform probability distri-
bution and responds to the reader in that slot about
their identities. The reader then detects the idle slots
(no response), success slots (with a single response), and
collided slots (with multiple responses). Only the tags
that transmit to slots without collision can be recognized.
The reader will then send out another query, asking suc-
cessful tags to keep silent and collided tags to randomly
respond again in the next round. The process continues
until all tags are identified. Tree-traversal recursively
split tags into multiple subsets until each subset only in-
cludes one tag response. The advantage of tree-traversal
is that the process is deterministic and the latency is
predictable. Its disadvantage is, however, spending too
much time and energy cost in sending queries.

Choosing the frame length (number of time slots) for
slotted ALOHA is challenging. If the number of time
slots is much smaller than that of tags, say 10 slots versus
100 tags, the collision happens in almost very slot, which
results in success slots being very rare. If the number of
time slots is much larger than that of tags, say 10000 slots
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versus 100 tags, too many slots will be idle. Both cases
affect the efficiency of slotted ALOHA protocol. It has
been proved that a frame with n slots is the most efficient
setting where n is the tag cardinality [27]. We plot the
efficiency of slotted ALOHA varying in frame size in
Fig. 1. It is clear that the best performance happens when
the frame size is equal to n. A frame size that is close to
n can also achieve high efficiency. The control overhead
of tree-traversal can also be reduced by estimation [25]
[26]. Thus cardinality estimation acts as an important aid
for tag identification. Many existing works show that
combined estimation-identification protocols are much
faster and energy-efficient than simple slotted-ALOHA
or tree-traversal [15] [16] [38] [26]. One pioneer work
proposed by Simplot et al. [37] that employs estimation
for efficient RFID tag anti-collision scheme is imple-
mented in EPCGlobal Gen 2.

Estimation schemes can be applied directly to appli-
cations in which the user wants to know the popula-
tion information of objects that have the same type of
identities, e.g., an intelligent transportation system (ITS)
[31] that tracks the population distribution of metropoli-
tan vehicles for traffic control. Estimation is also an
important basic function which helps to accomplish
other complicated operations such as categorization [19]
and key assignment and updating [24]. Kodialam and
Nandagopal [16] proposed one of the earliest work in
RFID estimation. A follow-up work, Enhanced Zero-
based Estimator (EZB) [34] makes the estimation based
on the number of empty slots. Recently, Han et al. [21]
present a novel estimation algorithm based on the first
non-empty slot of the ALOHA frame. Sheng et al. [22]
develop efficient schemes for continuous scanning oper-
ations in both spatial and temporal domains. Li et al. [23]
study the energy efficiency problem in RFID estimation
and design several energy-efficient algorithms.

Note that although estimation can help identification,
in this work we do not consider the identification prob-
lem. We only focus on the estimation problem, i.e., how
to count the number of tags accurately and efficiently.

There are two more types of collisions in multi-reader
RFID systems other than tag-to-tag collision: reader-to-
tag, and reader-to-reader. In this paper our estimation
protocol runs on top of (thus is independent from)
the link-layer and employs the tag-to-tag collisions to
obtain a better estimation result, instead of resolving
the collision problems. Thus we make the assumption
that the underlying link-layer protocol is well designed
to avoid reader-to-reader and reader-to-tag collisions.
For example, to mitigate reader-to-reader and reader-to-
tag collisions, the system may assign readers multiple
channels and does not allow the interfering readers
transmitting at the same time [29], apply TDMA [28],
or use carrier-sensing to develop a CSMA-like protocol
[30]. We also assume that the control among multiple
readers is perfect [39]. We only focus on the computing
problem in this paper.

2.2 Time Inefficiency

Most basic RFID estimation algorithms use the frame-
slotted ALOHA model. The estimation is computed
based on the ratio of the number of idle slots and the
number of total slots. Relying on the idle ratio, this
kind of estimators suffer the limited operating range
problem. We show that the limited operating range
problem occurs when n >> l, where n is the cardinality
and l is the slot number in a frame.

Lemma 2.1: Let V0 denote the number of idle slots. If
n, l are relatively large, the expectation of V0 follows

E(V0) = le−n/l (1)

Proof: The number of replies in the k-th time slot,
F [k], will become 0 if no tag responses at that time. We
know that every tag has 1/l probability to respond at
the time slot k. Therefore,

Pr(F [k] = 0) = (1− 1
l
)n = e−n/l

Since the events are independent, we obtain,

E(V0) =
l−1∑

k=0

Pr(F [k] = 0) = le−n/l

Hence, if n = 10l,

E(V0) = le−n/l = 0.00454%× l.

Almost no slots are idle. Since the estimator relies on the
idle ratio, the estimation definitely fails. To guarantee
that at least one slot is idle, we must have,

E(V0) = le−n/l ≥ 1 ⇐⇒ n ≤ l ln l

Therefore, l ln l is the upper bound of tag number n
that can be successfully computed by the estimator using
a frame with l slots. The estimation range is restricted.
We can find that other estimators that rely on collision
ratio or readable ratio also have this problem.

Limited operating range brings two serious disadvan-
tages in time efficiency. First, if n is very large, l should
also be a large number (in most cases, l > 0.1n) to obtain
a successful estimation. The latency is still too long to
be ideal. More significant, the user of the protocols has
to know in advance approximately how many tags are
under estimation. Otherwise, the user is not able to set
the proper frame length whose operating range satisfies
the cardinality of tags. It leads the system to a dilemma,
because obtaining the approximate tag cardinality is just
the goal of estimation!

One of the earliest RFID estimation protocols was
proposed by Kodialam and Nandagopal [16]. Both PZE
[16] and its enhanced version EZB [34] use a persistent
probability p to overcome the limited range problem.
Every tag only transmits with probability p. Hence fewer
slots are collided. The value of p is computed by p =
min(1, 1.59/ρ), where ρ is the load factor defined as the
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ratio of tag cardinality to the frame size. PZE and EZB
need to dynamically adjust ρ to fit the operating range,
hence increase the time cost. Moreover, one of the most
important applications of estimation is to help frame
adjusting in identification algorithms. If the load factor ρ
has been known, we are already able to adjust the frame
size.

2.3 Multiple-reading
In order to improve coverage, many RFID systems de-
ploy multiple readers with overlapping interrogation
regions [28], to guarantee that most tags are able to
access at least one reader, even when the wireless links
are unreliable and dynamically changing. Suppose there
are n tags in a certain region and m readers can fully
cover that region. The estimation results of readers are
ñ1, ñ2, ..., ñm. Obviously, we have

MAX(ñ1, ñ2, ..., ñm) ≤ n ≤ SUM(ñ1, ñ2, ..., ñm) (2)

By employing the existing estimators like USE and
UPE [16], each reader can obtain an estimation result of
the tags in its vicinity. Nevertheless, it is only possible to
compute MAX and SUM to estimate the entire cardinal-
ity. In many application, both MAX and SUM are unable
to present an accurate estimate. We name the problem
“multiple-reading” because people use SUM as the re-
sult, in which a same tag may be counted/estimated
multiple times. Those tags are called replicates.

The solution for the multiple-reading problem is part
of the preliminary of this work [18]. Most recent works
in RFID estimation also proposed techniques to estimate
overlapping tags in multi-reader situations [34] [20] [21].

2.4 Our solution
In following sections, we will introduce our efficient
estimation scheme, LoF, which eliminates the multiple-
reading by hashing and OR operation. Our LoF protocol
overcomes time inefficiency problem and is able to com-
pute the tag cardinality in a very short time. Further
more, it can quickly compute the load factor ρ and help
PZE and EZB to obtain a better performance, as we will
show in Section 7.

In the design of LoF, we assume the entire region of
interest is covered by multiple readers. We also assume
every tag in that region can access at least one reader. Be-
sides, each tag can store a number of hash values, which
will be explained in Section 5. We assume that there is no
transmission loss between tags and readers. The removal
of these assumptions has impact on the accuracy of the
result, but does not overthrow its correctness.

3 A BASELINE ALGORITHM

This section describes a baseline protocol, which includes
the technique to resolve the multiple-reading problem.
The idea of this technique was presented by Kodialam et
al. [34] as the EZB estimator, and the preliminary version

of this paper [18], as the LPE estimator. The difference is
that, tags in EZB use a seed value and a random function
to determine the slot selection, while LPE asks tags to
store hash values for slot selection. LPE requires extra
storage for hash values. EZB requires both extra storage
and computation cost to run the random function. In this
paper we use LPE to refer this technique.

Suppose each reader rj constructs an ALOHA frame
Fj with l time slots, and then broadcasts the length l
to probe tags nearby. When a tag ti receives the probe
message, it applies a particular hash function H(key)
to its ID i. The hash values of H(key) are uniformly
distributed ranging from 0 to h. After obtaining the
result H(i), ti normalizes H(i) to [0, l − 1] and denotes
the normalized value as k. Then it picks the kth slot in
the frame to respond.

Consider a reader rj keeping a bitmap BMj , where
the bit BMj [k] is corresponding to the time slot k in Fj ,
where k = 0, 1, 2.... If the reader rj hears no response
(idle) in the time slot k, it sets BMj [k] as 0. If the
reader hears one tag’s response or multiple responses
(collision), the bit BMj [k] will be set as 1. Let V0 denote
the number of bits with value 0, and V1 denote the
number of bits with value 1. In single-reader scenarios,
supposing the tag number is n and the frame length is
l, similar with Lemma 2.1 we have,

Lemma 3.1: If n, l are relatively large, the expectation
of V0 and V1 follow

E(V0) = le−n/l

E(V1) = l(1− e−n/l) (3)

The proof can be found in the conference version of
this paper [18]. Replacing n and E(V0) by their repre-
sentations in terms of observed variables ñ and V0, we
get the estimator of LPE,
Estimator 1 (LPE). ñ is an estimator of the tag number
n, where

ñ = −l ln(V0/l) (4)

The property of hashing is suitable for eliminating
the multi-reading, since the datum with the same value
will have the same hash value. Applying this estimator
to multi-reader RFID systems, each of the readers does
not compute V0, V1 individually. Instead, every reader
reports its bitmap to the central server. After receiving
bitmaps from all readers, the server applies logical OR
to those bitmaps and obtain a merged bitmap. Then the
server calculates the estimator ñ referring to the merged
bitmap.

Figure 2(a) gives an example of Estimator 1 in single-
reader scenarios (to the ease of understanding and draw-
ing, we do not use very large values of n and l). An ex-
ample of LPE in multi-reader RFID systems is illustrated
in Fig. 2(b). Comparing with Fig. 2(a), all readers in Fig.
2(b) cooperate together like a “super reader” that can
cover the entire region without generating replicates.

Lemma 3.2: Suppose tag sets S1, S2, ..., Sm are in the
vicinities of m readers r1, r2, ..., rm respectively. They
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Fig. 2. Examples of LPE

share common members. The estimator ñ of the merged
bitmap equals to the estimation result of tag set S1∪S2∪
... ∪ Sm.

Thus we obtain,

Theorem 3.3: Estimator 1 (LPE) is a replicate-insensitive
estimation, which eliminates the multiple reading, in
multi-reader scenarios.

The proofs are quite straightforward and can be found
in the preliminary version of this paper [18]. Note that
the estimator definitely contains error, but the error is not
brought by multiple-reading. For example, if all read-
ers have a same bit pattern, say 11101101, the merged
bitmap is also 11101101. This is a bad estimation result,
as each reader’s result is equal to that of taking them
together. However, this result is still replicate-insensitive.
Even if there was a “Super reader” which can cover the
entire region, the resulting bitmap is still 11101101. The
error is produced by the particular estimation algorithm,
not replications.

LPE has two obvious disadvantages. First, the latency
is still too long to be ideal. Table 1 provides the frame
length l needed for LPE versus the number of tags. More-
over, it still has a limited operating range as analyzed
in Section 2.2. In other words, if we do not know the
tag cardinality, how could we set the frame length by
referring Table 1? Thus we only use LPE (and EZB) as
baseline algorithms. Further techniques are needed to
improve it.

TABLE 1
Frame length needed for LPE

N 100 500 1000 5000 10000 50000
Frame Length 80 172 268 948 1709 6909

0

slot 1

0 0 1 0 1 1

slot 2slot 3slot 5 slot 4slot 6slot 7

HASHING

Suffix of OnesFringePrefix of Zeros

1

slot 0

Fig. 3. An example of LoF estimation

4 THE DESIGN OF LOF PROTOCOL

In this section, we present our estimation protocol Lottery
Frame (LoF), which combines LPE with geometric distri-
bution, thus providing the scalability while saving the
processing time and communication overhead compared
with USE, UPE and LPE.

4.1 The General Protocol
Our estimation protocol LoF is developed based on
the probabilistic bitmap counting techniques proposed
for database processing [33] [35]. We are inspired by
these techniques and use ALOHA frames as bitmaps
for estimation. We adapt a spatial concept (bitmap) to
a temporal one (time slots) in system design.

Every RFID tag can be considered as a lottery ticket,
and the ticket number is the tag ID. To determine which
kind of prize the ticket wins, the tag ID is hashed by
a geometric distributed hash function H() to a ALOHA
slot, i.e., an ID has 1/2t probability to be in the (t− 1)th
slot (the slots start from the right and ranks from 0).
The class of prize is determined by the order number of
slots. Hence the higher the class of prize is, the harder
a tag can get it. Imagine the whole ALOHA frame as a
bitmap. After hashing all tag IDs, we can point out three
parts: the suffix of ones, the prefix of zeros and the fringe
consists zeros and ones, like Fig. 3. Statistically, more tags
reply, more left the fringe will be. The cardinality of tags
can be estimated based on the position of fringe.

4.1.1 Tag
When probed by a reader in the estimation process, the
tag applies the hash function to its ID and responds in
a time slot according to the result. The simplest hash
function with geometric distribution is,

H(ID) =the position of least-significant (right-most)
bit of zero in binary representation of ID

For example, H(010100)=0 and H(001011)=2. Appar-
ently, 50% of the IDs are hashed to slot 0, because the
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INPUT 

the number of hashed value num

OUTPUT 

The selected slot number k

PROCEDURE 

while TRUE 

wait_for_messages();

if there is a probe message from a 

reader 

transmit a short message in time 

slot k = Hnum(ID); 

end if 

end while

INPUT 

The number of hash functions m

OUTPUT 

The set of bitmaps BM1, BM2, …, BMm.

PROCEDURE 

wait_for_message_from_server(); 

for j =1 to m 

   broadcast a request to tags;

for i = 0 to l-1

wait_for_responses();

if there are no responses in time solt i

set BMj[i] = 0; 

else  

  set BMj[i] = 1; 

end if 

   end for 

end for 

report BM1, BM2, …, BMm to the server;

(a) the algorithm running on tags (b) the algorithm running on readers

Fig. 4. Pseudocode of LoF algorithm

least-significant bit (bit 0) has 50% probability to be zero.
Also 1/2t of the IDs are hashed to the slot t−1. Here we
just use this geometric distributed hash as an example,
in real applications we may choose other geometric
distributed hash functions as explained in Section 5.1. All
geometric distributed hashes share the similar property
and can be employed in LoF.

To make the implementation convenient, we just write
the value H(ID) onto tags during production. LoF only
requires tags storing hash values, instead of hash functions.
The penalty is only a little extra memory to store H(ID)
as the string of H(ID) is much shorter than that of ID.
Since LoF may use multiple hash functions to increase
the accuracy as we will discuss in the next part, a tag
using LoF has to attach multiple values in its memory,
and selects one of them upon the request of the reader.
Tags respond readers by a short message without any
identifiable information.

Here we only use the least-significant bit of zero on the
tag ID as an example for the geometric distributed hash
functions. In reality, tags within an area might not be
randomly and uniformly distributed. Hence in Section
5.1 we propose an advanced method to compute hash values
that is independent from particular tag ID distributions.

The distributed LoF algorithm for tags is formally
described in Fig. 4(a).

4.1.2 Reader
In LoF, readers use a slotted ALOHA model. Each reader
also generates a bitmap at each round of communication.
The positions of the bitmap correspond to time slots
of the ALOHA frame. After hearing the tag responses,
every reader should report its bitmap to a specific server.
We illustrate our distributed algorithm for readers in Fig.
4(b), where the parameter m is used in case we need do
multiple estimations as in Section 5.1. For this step we
can let m = 1.

4.1.3 Server
We should expect, if there are n tags, approximately
1/2t of the responses are in time slot t − 1. Thus, by
merging the bitmaps by OR operation, the kth bit in

bitmap BM [k] will be zero if k À log2n, or be one if
k ¿ log2n. The fringe consists zeros and ones for the k
whose value is near log2n.

In theory, the relationship between the geometric hash-
ing result and the cardinality n is given by [33] and [35].
Based on their results, we have the following Lemma,

Lemma 4.1: Suppose R is the position of the right-most
zero in BM , i.e. R = min{i|BM [i] = 0}. The expected
value of R satisfies

E(R) = log2(ϕn) + P (log2 n) + o(1) (5)

where the constant ϕ = 0.775351... and P (u) is a peri-
odic and continuous functions of u with period 1 and
amplitude bounded by 10−5.

Lemma 4.1 was proven in [33]. Omitting the term
P (log2 n) + o(1), and replacing n and E(R) by their
representations in terms of observed variables ñ and R,
we obtain,
Estimator 2. ñ is an estimator of the tag number n, where

ñ = 1/ϕ× 2R = 1.2897× 2R (6)

The following theorem shows that using geometric
distribution hash functions, LoF has the advantage of
fixed and short frame length.

Theorem 4.2: A frame with log2 N slots is sufficient
for the estimation protocol using geometric distribution
hash functions, where N is the number of all the same
series tags in production.

Proof: Clearly, the number of tags currently under
estimation follows n < N . We know that 1/2t of the n
tags response to the time slot t − 1. Let t = log2 N . We
have,

n× 1
2log2 N

< n× 1
2log2 n

= 1

which implies the time slot log2 N − 1 has no responses,
and those slots for which t > log2 N are also empty.
Therefore, log2 N slots are sufficient for LoF estimation.

Suppose there are 50000 tags produced in total. Ac-
cording to Theorem 4.2, we only have to fix the length
of ALOHA frames as log2 50000 = 15.60. LoF evidently
saves the processing time. Moreover, there is no con-
straint of operation range for LoF. Using frames with
fixed length of 32, LoF can estimate the number of
tags up to 232. Hence, LoF is highly scalable and time-
efficient.

LoF sacrifices some space on tag memory for storing
special hash functions.

4.2 LoF in Multi-reader RFID Systems
Similar to LPE, LoF can also eliminate the replica-
tions by merging bitmaps from readers. Since tags use
hash function to select time slots for responding, the
LoF protocol is also replicate-insensitive in multi-reader
RFID systems. Suppose tag sets S1, S2, ..., Sm are in the
vicinities of m readers r1, r2, ..., rm respectively. They
share common members. The estimator ñ of the merged
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0 1 0 0 1 1 1 1

0 0 0 1 0 1 1 1

0 0 0 0 1 1 1 1
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Fig. 5. An Example of LoF for Multiple Readers

LoF bitmap equals to the estimation result of tag set
S1 ∪ S2 ∪ ... ∪ Sm. In other words, there is no difference
between using multiple distributed readers and using a
“super reader” that covers the entire region.

Theorem 4.3: LoF is a replicate-insensitive estimation
in multi-reader scenarios.

The proof is same as that of Theorem 3.3.
All bitmaps before merging have a similar pattern, i.e.,

0s in the one side and 1s in the other. However, since
the estimation result is determined by the position of
the right-most 0, bitmaps with a similar pattern might
have highly different results. For instance, the estimate
of 00010111 is 1.2897×23 ≈ 10, but those of 00001111 and
01001111 are 1.2897×24 ≈ 21. Merging them together to
be 01011111, the result is 1.2897× 25 ≈ 41 as in Fig. 5.

5 PERFORMANCE IMPROVEMENT

Since LoF is only estimation rather than a precise count-
ing protocol, its result must have some errors from the
exact tag cardinality. If we employ the estimator as an aid
to make identification protocols efficient, the estimation
error might not be a big problem. Nevertheless, there are
some applications that require obtaining the cardinality
of objects as accurate as possible in a very short time,
for which identification runs too slow. For instance,
an airport or a stadium has large amounts of moving
objects, and the statistical process should be fast enough
to make the data valuable. In those systems we may
want to trade some processing time for more accurate
results, as long as the time is allowed.

In this section, we introduce three important tech-
niques that can remarkably improve the estimation ac-
curacy or reduce the latency of LoF, namely Multi-hash,
Multi-splitting, and Sudden Victory.

5.1 Multiple Hash Functions
In [33], the authors derived the standard deviation of
the geometric hashing result R. Modifying the theorem
in [33] into our context, we have,

Theorem 5.1: Suppose R is the position of the right
most zero in BM . The standard deviation of R satisfies

σ2
n = σ2

∞ + Q(log2 n) + o(1) (7)

where the constant σ∞ = 1.1213... and Q(u) is a periodic
functions of u with mean value 0, period 1 and ampli-
tude bounded by 10−5.

Luckily, the estimator used in LoF protocol is proved
to be asymptotically unbiased [33] [35]. In that sense, if
we make several independent estimations and compute
the average result, the standard deviation will be signif-
icantly reduced. In LoF protocol, we can employ a set
of m independent hash functions. The readers should
generate m bitmaps by all of the hash functions. Then
LoF has m bitmaps and compute m positions of the right
most zero R1, R2, ..., Rm. Consider the average value

R̄ = (R1 + R2 + ... + Rm)/m

The variable R̄ has the expectation and standard devia-
tion that satisfy

E(R̄) ≈ log2(ϕn), σ(R̄) ≈ σ∞/
√

m

Therefore, the improved estimator is

ñ = 1.2897× 2R̄ = 1.2897× 2
P

i Ri/m (8)

Figure 6 plots the standard error (defined in Sec-
tion 7.1) in terms of the number of independent hash
functions. We show both theoretical and empirical (in
estimating 500, 5000 and 50000 tags) results.

Also, from Theorem 4.3 we know that there is no
difference between using multiple distributed readers
and using a “super reader” that covers the entire region.
The estimation error of multiple hashes does not increase
in multi-reader environments. We will show the fact by
experiments.

Let α be the error probability and β be the error bound
(also called confidence interval). We say LoF achieves the
accuracy requirement if Pr[|ñ−n| ≤ βn] ≥ 1−α. We show
that,

Theorem 5.2: Given α and β, LoF achieves the accuracy
requirement if m ≥ max{[ −σ∞c

log2(1−β) ]
2, [ σ∞c

log2(1+β) ]
2}, where

c is obtained by solving 1 − α = erf( c√
2
), erf is the

Gaussian error function.
Proof: Let µ = E(R̄) = log2(ϕn) and σ = σ(R̄) =

σ∞/
√

m. From the central limit theorem, we have,

X =
R̄− µ

σ
∼ N (0, 1)

i.e., X is a Gaussian with mean 0 and variance 1. Hence
the cumulative distribution function is

Φ(x) =
1√
2π

∫ x

−∞
e−

u2
2 du

Let a constant c satisfies,

1− α = Pr[−c ≤ X ≤ c] = erf(
c√
2
)

where erf is the Gaussian error function. For any value
of α, we may get a corresponding c by solving the above
equation.
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Fig. 6. Standard Error for Multiple Hash Functions

Also,

Pr[|ñ− n| ≤ βn] = Pr[(1− β)n ≤ ñ ≤ (1 + β)n]

= Pr[(1− β)n ≤ 1
ϕ

2R̄ ≤ (1 + β)n]

= Pr[log2((1− β)ϕn) ≤ R̄ ≤ log2((1 + β)ϕn)]

Hence, if log2((1−β)ϕn)−µ
σ ≤ −c and log2((1+β)ϕn)−µ

σ ≥ c,
Pr[|ñ − n| ≤ βn] ≥ 1 − α is satisfied, i.e., LoF achieves
the accuracy requirement.

Solving the inequalities, we get

m ≥ max{[ −σ∞c

log2(1− β)
]2, [

σ∞c

log2(1 + β)
]2}

There are several approaches to find multiple
geometric distributed hashes. One easy way is provided
as following. In Section 4.1.1 we suggest a simple
geometric distributed hash function: the position of
least-significant bit of zero in binary representation of
tag ID. Let us denote this hash as H ′. Then we also
employ a group of uniformly distributed hash functions,
e.g., Message-Digest algorithm 5 (MD5) or Secure Hash
Algorithm (SHA-1), denoted by H1,H2,H3, ..., Hk.
For any Hi ∈ H1,H2,H3, ..., Hk, Hi hashes the ID
to another binary representation, which can also
be considered as a type of “ID”. It is obvious that
H ′(H1(ID)),H ′(H2(ID)),H ′(H3(ID)), ..., H ′(Hk(ID))
are all geometric distributed hash functions, because
Hi(ID)’s rightmost zero also has a probability of 1/2t

to be in bit t − 1. Note that the hash values of MD5
are 128-bit, but it is not difficult converting them to the
length we want.

For tag IDs with a special distribution instead of
the uniformly random, using “the position of least-
significant bit of zero”, i.e., H ′, may affect the accuracy of
LoF. However, by applying the above technique, tag IDs
with any distributions will be re-distributed to uniform
by MD5 or SHA-1. We show an empirical result in Fig. 7.
There are 10000 tags whose original ID distribution is
far from uniform. Hence by applying H ′, the result is
not geometric distributed (marked by circles). However,
using both MD5 and H ′, the result is very close to a
perfect geometric distribution (marked by crosses).
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Fig. 7. The influence of a special ID distribution will be
eliminated by MD5

Each hash value is within the range [0, log2 N − 1].
The storage cost for each hash value is the bit-length
of the maximum value log2 N−1, i.e., log2(log2 N−1). If
each tag stores m hash values, the cost is m log2(log2 N−
1). Note that even the tag ID requires at least log2 N
storage. Storing extra hash values does not increase the
cost significantly.

Multi-hash is a tradeoff between time/energy effi-
ciency and estimation accuracy. Nevertheless, as LoF
reduces the resource cost from O(n) to around O(log n),
Multi-hash is still much more efficient than UPE and
identification-based schemes.

5.2 Multi-splitting

Multi-splitting repeats the estimation in another way.
Using LoF, the whole tag set is split into multiple sub-
sets. Each subset contains tags that reply to the same
collision slot. We also have a estimation value ñ. If more
accurate result is needed. We further split those subsets
by recursively applying LoF. Let ñ20, ñ21, ñ22, ... be the
estimated cardinality for subset 0, 1, 2, ... in the second-
time splitting respectively. We then obtain a two-splitting
estimation result by

ñ2 = NumReadableSlot +
∑

ñ2i (9)

The recursively calling of LoF stops when |ñi− ˜ni−1| <
T , where T is an accuracy requirement threshold given
by the user. T could be either a constant number, or a
percentage value that represents the difference between
ñi and ˜ni−1.

In the example of Fig. 8, slot 0, 1 and 2 are collisions
slots. Each of them corresponds to one tag subset. Slot
5 only has one response and therefore the tag in slot
5 can be successfully counted. The other slots are idle.
Tag subsets in slot 0, 1 and 2 will be further processed,
which is called level-2 splitting. The reader can obtain
the knowledge of an approximated size ñ of each subset.
By Estimator 2, we have
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Estimator 3. If the ith slot is a collision slot, the
estimated cardinality of tags that reply in this slot, i.e.,
the cardinality of si, is

ñ(i) = 1.2897× 2R−i (10)

Based on these values, the further splitting will be
processed with shorter ALOHA frames. Multi-splitting
continues until the condition |ñi− ˜ni−1| < T is satisfied.
As the example in Fig. 8, the splitting stops at the third
time. Finally, the sum of these subsets derives the total
number of tags in the original set, ñ3.

We will compare the performance of Multi-hash and
Multi-splitting in the evaluation section. We will find
that the performance of Multi-splitting is not as good
as that of Multi-hash. However, Multi-splitting has
its unique importance. If we recursively apply Multi-
splitting until every slot only contains one tag response,
the protocol is actually an identification protocol as every
tag is identified. Therefore Multi-splitting is a unified
protocol that can be used for all of estimation, precise
counting and identification, by just controlling the recur-
sion level. Moreover, since the approximate cardinality of
every collided slot is known, such identification is much
more efficient than simple slotted ALOHA [25]. Other
estimators like UPE, EZB and LoF with Multi-hash do
not have this feature. They all set the estimation as an
independent phase from the identification.

Similar to Multi-hash, Multi-splitting also increases
the storage cost on each tag. The hash values used on
different levels should be different. Since no tags belong
to more than one subset on a same level, all subsets
on a same level can use the hash values produced by
a same hash function. Each tag select a hash value from
its memory by the current splitting level L specified in
the reader query. Therefore, the maximum hash values
stored in each tag is just the maximum value of L.
We analyze the approximate maximum value of L as
follows. Suppose the maximum tag number is N . In the
level-1 splitting, the largest subset contains about N/2
tags. Hence in about log2 N -th level, the largest subset
includes only 1 tag. The number of hash values stored
by each tag is thus log2 N . In fact, there is no need to do

the splitting until the subset only contains 1 tag. Practical
RFID system may control the deepest splitting level by
a constant K, e.g., K = 16. In this case, each tag only
need to store 16 hash values. Similar to the analysis in
Section 5.1, the extra storage cost for Multi-splitting is
K log2(log2 N − 1).

Detailed analysis for the time and energy efficiency of
Multi-splitting can be found in [25].

5.3 Sudden Victory
According to the Sudden Victory Rule in soccer and golf
games, a game may end as soon as one player is ahead of
the others under some circumstances, e.g., in extra time.
In LoF protocol, since the estimator only depends on R,
the position of the right-most zero in the bitmap. The
reader listens to the slots from right to left. It can stop
listening as soon as it hears an idle slot, which represents
the rightmost zero in the bitmap. Then it broadcasts a
query to tell other tags to stop replying. Therefore, most
ALOHA frames are not necessarily to be completed.
Another alternative to implement this scheme is simply
let the reader shut down the electromagnetic field with-
out sending any messages. Such Sudden Victory Rule can
potentially shorten the processing time. No matter how
long the frame is initially set, the listening always stops
around the log2 n-th time slot, where n is the current
cardinality of tags under estimating. Sudden Victory rule
reduces the processing time of each estimation from
log2 N (as proved in Theorem 4.2) to around log2 n.

Applying Sudden Victory rule, the readers need to
pay more cost to probe the “Stop” message. For Multi-
hash scheme, however, a reader can combine the “Stop”
message and the “Start” message of the next indepen-
dent estimation, so that the extra cost can be reduced
to minimum. The time and energy cost for the “Stop”
signal is different for various RFID systems. It is possible
that the “Stop” signal takes significantly longer time than
each time slot. In such case, the RFID system should not
apply the Sudden Victory.

Multi-hash and Multi-splitting are exclusive. Never-
theless, Sudden Victory rule is orthogonal to both of
them. In this paper, we use Multi-hash plus Sudden
Victory as our main strategy.

6 DISCUSSION

The key reason that causes the long latency and limited
operating range problems is RFID tag collision. When
multiple tags respond a reader simultaneously (or within
a very short time interval), a collision happens. Since
the reader cannot recognize any data from those tags,
no information can be extracted. Therefore the resource
(time and energy) that is consumed in the collision is
completely wasted.

LoF compresses the number of collision slots to log n
size. By employing geometric distributed hash function,
the first several slots include the most tags. If t > log2 N ,
slot t is definitely idle. This compression allows the
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estimation processing to finish in a very short time
period so that LoF can satisfy the real-time requirements
for most RFID applications. Secondly, LoF arranges the
collision slots by their tag numbers in a descending
order from right to left. Each time the tag number
approximately decreases by half. When detecting an idle
slot, LoF can estimate that the slot on its right hand may
not have too many tag responses, probably 2-4. In this
way, the approximate number of tags in each collision
can be obtained. LoF then extracts the tag cardinality
information from these collisions and the position of
right-most zero. Therefore in LoF, tag collisions are no
longer considered as waste of time and energy.

As collisions also provide cardinality information, tags
are not required to re-transmit even though they are
in collisions. Thus LoF further reduces the time and
energy cost. In Section 5, however, we introduce some
techniques that may ask tags to re-transmit to improve
the estimation accuracy. We will show that with those
techniques, the processing speed of LoF is still much
faster than existing schemes.

One limitation of LoF is that it requires additional
memory storage and a customized production or pre-
processing process. They might bring extra cost to to-
day’s RFID applications. However, we expect two po-
tential ways to overcome this problem and help LoF
to be widely applied. First is that the production of
customized RFID chips becomes simple enough. Second
is that the computing on RFID tags becomes powerful
enough to support geometric distributed hash functions
or use sequential Bernoulli trials to simulate the geomet-
ric distribution. By [36], current RFID tags are already
capable to run efficient Bernoulli trials.

7 PERFORMANCE EVALUATION

In this section, LoF is evaluated through comprehensive
simulations. First we describe the simulation setup, and
address the schemes and performance metrics we eval-
uate. We then provide the simulation results for both
single-reader and multi-reader scenarios.

7.1 Simulation Methodologies and Performance
Metrics
We built a packet-level simulator, where tags are mobile
and can move out of readers’ interrogation range. The
interrogation range of each reader is set to be circu-
lar with the same radius. We assume that there is no
transmission loss between tags and readers. Readers are
capable to detect if it is idle, a single reply or collision
in any frame slot. In case there are multiple readers, at
most one reader is operating at any time to avoid reader-
reader collision. Each tag is engineered to have globally
unique IDs and a set of pre-computed 20-bit hash values,
because we assume the maximum tag number is 220. The
cost of LoF does not depend on the ID length. In our
simulation setting, LoF can support any ID length equal
to or smaller than 20 bits. The geometric distributed

hash functions can map IDs with any length to one of
the 20 ALOHA slots. Note that the actual cost of each
estimation is usually much less than 20 slots because
of the Sudden Victory rule. We assume that there is no
information about the system load factor (the ratio of
the tag number to the ALOHA frame size), or the tag
population range.

TABLE 2
Simulation Setup

Single-reader Multi-reader

Schemes evaluated LoF and EZB LoF, UPE and EZB
Metrics accuracy and latency accuracy and latency
Tag size 128 - 65536 128 - 65536

Number of readers 1 4
Terrain N/A 100 x 150 rectangular

Interrogation range infinite 50-80
Repeating times 100 100

We compare the estimation schemes in two scenarios:
single-reader and multi-reader environments. For the
single-reader environment, we contrast LoF with EZB
[34] and UPE [16]. Unlike UPE, EZB supports estimation
in multi-reader environments. Also EZB is asymptoti-
cally unbiased, i.e., with more independent experiments
the accuracy can be improved. We also evaluate LoF and
EZB for different number of independent experiments in
both scenarios. Finally we will compare the performance
of Multi-hash and Multi-splitting. Table 2 shows the
setup of our simulator. The simulation takes 100 runs
with the same parameters, and we report the average.

We test the a wide range of RFID cardinalities (128-
65536) to evaluate the scalability of our algorithm. In ad-
dition, we want to be consistent to the experiments in the
EZB paper [34]. In the EZB paper, the simulation scenario
is a major conference such as COMDEX, E3 Expo, etc.
that typically attract tens of thousands of participants.
The cardinality range used by by its simulation is from
about 100 to 50392.

The estimation accuracy is illustrated in terms of the
standard deviation σ and standard error e. Suppose the
actual cardinality is n and the estimated value is ñ.
The standard deviation σ, commonly used in statistics, is
defined as,

σ =
√

E[|ñ− n|2]

where the operator E denotes the average or expected
value. To the convenience of the comparison, we addi-
tionally define standard error e that scales the value of σ
into a small range:

e =
σ

n

Note that this error metric is stricter than the one used
in the preliminary version [18], i.e., the average absolute
difference over the cardinality. Ideally, the error should
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Fig. 14. Time cost comparison: LoF
and LoF-aided EZB

be 0. The closer the error to 0, the better the estimation
is.

Another metric in our concern is the time cost. Tag car-
dinality estimation requires several transmission rounds
among readers and tags. For each round, readers take
a number of time slots according to frame length. For
convenience, we assume the time cost of one reader
query is equal to four times of that of a time slot. The
exact time cost for real RFID systems depends on the
particular system setting. We abstract the estimation time as
the total number of frame slots plus four times the number of
reader queries during the whole process. In the figures, we will
use “the number of slots” to represent the time cost, although
it actually includes the cost for queries. The reader queries
include the starting query of the ALOHA frame and the
”Stop” query of the sudden victory rule.

7.2 Single-reader Scenario
We plot the estimation accuracy of LoF and EZB in terms
of the standard error in Figure 9. Both of them are tested
with 2, 16, 64 independent estimates. With more hash
functions used in LoF, the error reduces. Employing 16
hash functions, the error is down to less than 0.2. The
change of actual tag number has no significant effect to

LoF. In other words, the 20-slot frame is suitable for a
wide range of tag numbers. The standard error for EZB
decreases when the number of experiments is increased,
because EZB is also asymptotically unbiased. However,
the standard error is relatively high for large number of
tags. On the other hand, LoF curves are relatively flat.

Figure 10 shows the standard deviation of estimation
accuracy of LoF. When more hash functions are used in
the estimation, the standard deviation of the estimation
drops.

Figure 11 presents the time costs of LoF and EZB, in
terms of the number of total time slots and queries. LoF
employs Sudden Victory rule. Since the time requirement
of LoF is only increased on a logarithmic scale, the total
cost rises slowly. On the other hand, EZB’s time cost
increases linearly with the tag cardinality. We show the
time cost with tag numbers varying from 128 to 65536 in
logarithmic scale. It is clear that when the tag number is
over 256, LoF with 16 hashes performs better than other
techniques. When the number is over 1000, LoF with 64
hashes also outperforms EZB.

As defined in Section 5.1, let the error probability
α = 1% and the error bound β = 5%. We compare
the time cost of LoF, UPE and EZB in Fig. 12. LoF
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Fig. 17. Simulation environment
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requires the least time among all protocols. Since UPE
is not asymptotically unbiased, and cannot be run many
times independently to achieve high accuracy, we do
not compare UPE in Fig. 9-11. Note that UPE needs to
recognize whether a slot is an idle, success or collision.
However, LoF and EZB only need to distinguish an idle
slot from a non-idle one, therefore the time duration of
every slot of LoF and EZB is much shorter than that of
UPE [21].

Compared with UPE and EZB, LoF provides likewise
good estimation accuracy with less expense on time cost.
In addition, users have no need to change the frame
length in LoF.

7.2.1 LoF-aided EZB

The standard error of EZB in Fig. 9 is high when the
cardinality is large. Our LoF estimator can help EZB to
quickly predict the load factor ρ. We conduct a series
of experiments as follows: the reader first uses LoF to
estimate the cardinality, and then uses the estimate to
compute the load factor ρ for EZB. As suggested by [34],
the persistence probability p is computed by

p = min(1, 1.59/ρ)

The accuracy of such LoF-aided EZB method is shown in
Fig. 13. With more reliable load factors, LoF-aided EZB
performs much better than simple EZB. Further more,
the curves of LoF-aided EZB are more flat than EZB’s,
which indicates that LoF-adied EZB is also scalable.

Figures 14 presents the time cost comparison for LoF
and LoF-aided EZB. We may conclude that for small tag
cardinality (around 100), LoF-aided EZB has less time
cost and similar accuracy. For large tag set (> 1000),
multi-hashed LoF is more desirable.

7.2.2 Best Effort
Here we evaluate the capability of these estimators
in such a manner: given a fixed budget of time slots
(1000 and 1500), we wish to estimate the tag cardinality
(ranging from 2000-20000) as accurate as each estimator
can do.

LoF tries multiple hashes until the budget is used
up. For example, if each estimation takes about 20 slots
(including the reader queries), then LoF will try about
50 different hashes for the 1000-slot budget. It then
computes the result by (8). EZB is executed multiple
times, until the budget runs over. LoF-aided EZB first
employs LoF to estimate the load factor, then determines
the time to run EZB.
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The results are plotted in Fig. 15 and 16. When the tag
number is close to the budget, all of the three methods
have good accuracy. After the cardinality growing out of
the operating range of EZB, the error of EZB rises very
quickly. The error of LoF-aided EZB has a slight growth
when the cardinality becomes large. On the other hand,
the performance of LoF almost keeps still. Comparing
the two figures, the operating range of EZB depends on
the time budget, but those of LoF and LoF-aided EZB
depend less. The performance of LoF is stable.

7.3 Multi-reader scenario

We then consider multiple readers that have overlapping
interrogation regions. Different number of tags is ran-
domly distributed in a 100 units x 150 units rectangular
terrain. The terrain is covered by four readers, which are
located near the corners. The reading range is varying
between 50 and 70 units. The simulation model is shown
in Fig. 17.

Figure 18 provides the accuracy of LoF, MAX, SUM,
EZB and LoF-aided EZB in multi-reader environment,
where each reading in MAX and SUM is generated by
UPE. It indicates that MAX and SUM estimators perform
poorly in cardinality estimation. These estimations are
affected by multiple factors including but not limited
to the number of readers, the interrogation range and
reader deployment. Estimations by MAX are usually
well-below the actual cardinality while those by SUM
are always multiple times of the actual number of tags.
As shown in Fig. 18, when the interrogation range grows,
the error of MAX becomes lower and SUM goes further
beyond accurate, because longer interrogation range will
cause more overlapping areas. The cardinality estimation
from merged bitmaps of every LoF reader provides the
highest accuracy. EZB supports multi-reader environ-
ments. It does not perform well in Fig. 18 only because
of the same reason in Fig. 9, i.e., no information about
the tag number. With the help of LoF, EZB can obtain
very accurate results in multi-reader context.

Figure 19 shows the frame slot requirements for these
estimators for multiple readers. To compute the overall
time costs, we may assume that when a reader sends
out its query, other readers will keep silent until the
probing reader finishes listening. This is the simplest
TDMA scheduling for the MAC layer of RFID readers.
Thus we sum up the LoF frame length from each of the
four readers. In real world environment, the process-
ing latency can be further reduced by some advanced
techniques [28] [30]. Again LoF achieves the best time
efficiency.

7.4 Multiple-hashing vs. Multiple-splitting

This subsection evaluates the performance of Multi-
hash and Multi-splitting schemes. As stated in previous
section, Multi-hash and Multi-splitting can be viewed as

horizontal and vertical iterative LoF processes respec-
tively. In Multi-splitting, the splitting process is contin-
ued until the condition |ñi − ˜ni−1| < T is satisfied. The
threshold T is an application parameter which affects
the performance metrics – error and latency. The smaller
the value of the threshold T , the more the iteration
is. A smaller threshold results in less error but longer
latency. The threshold can be defined as number of
tags or fraction of tags depending on the application
requirements. In our simulation, we have chosen the
later definition.

Figure 20 shows the performance of Multi-hash and
Multi-splitting by varying the number of hashes (for
Multi-hash) and threshold (for Multi-splitting) for dif-
ferent number of tags in the terrain. In Multi-splitting,
the reader requires more slots for larger estimation tag
set in order to achieving the same level of accuracy. The
probability of satisfying the condition |ñi − ˜ni−1| < T
decreases with the increasing number of the tags in the
estimation set. This leads to more iteration to trim down
the size of the estimation set and hence increases the
number of slots for cardinality estimation.

Multi-hash always achieves better performance than
Multi-splitting does. Multi-hash also has the advan-
tage of better performance predictability over Multiple-
splitting. For a predefined performance requirement,
choosing the suitable number of hashes is easier than
selecting the proper threshold T .

8 CONCLUSION

Counting the number of tags is a crucial task in large-
scale RFID systems. In this work, we propose LoF, an
accurate and efficent estimation protocol that can resolve
the time inefficiency and multiple-reading problems.
Hence it can be applied for large-scale RFID systems.
It estimates the tag cardinality by extracting informa-
tion from the collisions. Our theoretical analysis and
simulation results show that LoF can achieve accurate
estimation in both single-reader and multi-reader envi-
ronments, and significantly reduce the time cost.

We are also planning to explore more issues that are
practical in multi-reader RFID systems, such as object
tracking and tag authentication. Recent study on finding
popular tag categories uses cardinality estimation as a
basic tool [19]. With our method, the efficiency and
accuracy of such algorithms can definitely be highly
improved. We will also study how LoF cooperate with
the identification and precise counting protocols [25].
Indeed, LoF design can be easily applied to any network
protocol that runs on top of an ALOHA-based link
layer. It can also benefit other fields, e.g., wireless sensor
networks, cellular networks and vehicular networks.
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