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Abstract—The increasing need of cloud and big data applications requires data center networks to be scalable and bandwidth-rich.
Current data center network architectures often use rigid topologies to increase network bandwidth. A major limitation is that they can
hardly support incremental network growth. Recent work has been investigating new network architecture and protocols to achieve
three important design goals of large data centers, namely, high throughput, routing and forwarding scalability, and flexibility for
incremental growth. Unfortunately, existing data center network architectures focus on one or two of the above properties and pay little
attention to the others. In this paper, we design a novel flexible data center network architecture, Space Shuffle (S2), which applies
greedy routing on multiple ring spaces to achieve high-throughput, scalability, and flexibility. The proposed greedy routing protocol of S2
effectively exploits the path diversity of densely connected topologies and enables key-based routing. Extensive experimental studies
show that S2 provides high bisectional bandwidth and throughput, near-optimal routing path lengths, extremely small forwarding state,
fairness among concurrent data flows, and resiliency to network failures.

Index Terms—Data center networks, routing protocols, cloud computing
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1 INTRODUCTION

DATA center networks, being an important computing
and communication component for cloud services and
big data processing, require high inter-server communica-
tion bandwidth and scalability [1]. Network topology and
the corresponding routing protocol are determinate factors
of application performance in a data center network. Recent
works have been investigating new topologies and routing
protocols with a goal of improving network performance in
the following aspects.

1) High performance: Many applications of current data
center networks are data-intensive and require substantial
intra-network communication, such as MapReduce [2],
Hadoop [3], and Dryad [4]. Data center networks should
have densely connected topologies which provide high
bisection bandwidth and multiple parallel paths between
any pair of servers. However, simply providing high-band-
width is not enough. Routing protocols that can effectively
exploit the network bandwidth and path diversity are essen-
tial. The routing protocol should achieve high throughput
on the network topology. In addition, the routing protocol
should result in short paths to achieve low latency.

2) Flexibility: A data center network may change after its
deployment. According to a very recent survey [5], 93 per-
cent US data center operators and 88 percent European data
center operators will definitely or probably expand their
data centers in 2013 or 2014. Therefore, a data center net-
work should support incremental growth of network size, i.e.,
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adding servers and network bandwidth incrementally to
the data center network without destroying the current
topology or replacing the current switches.

3) Routing/forwarding scalability: Routing and forwarding
in a data center network should rely on small forwarding
state of switches and be scalable to large networks. Forward-
ing table scalability is highly desired in large enterprise and
data center networks, because switches use expensive and
power-hungry memory to achieve increasingly fast line
speed [6], [7], [8]. If forwarding state is small and does not
increase with the network size, we can use relatively inex-
pensive switches to construct large data centers and do not
need switch memory upgrade when the network grows.

Unfortunately, existing data center network architectures
[71, [9], [10], [11], [12], [13], [14] focus on one or two of the
above properties and pay little attention to the others. For
example, the widely used multi-rooted tree topologies [9],
[11] provide rich bandwidth and efficient routing, but their
“firm” structures cannot deal with incremental growth of net-
work size. The recently proposed Jellyfish network [14] uses
random interconnect to support incremental growth and
near-optimal bandwidth [15]. However, Jellyfish has to use
inefficient k-shortest path routing whose forwarding state is
big and cannot be aggregated. CamCube [13] and Small
World Data Centers (SWDCs) [7] propose to use greedy rout-
ing for forwarding state scalability and efficient key-value
services. Their greedy routing protocols do not produce
shortest paths and can hardly be extended to perform multi-
path routing that can fully utilize network bandwidth.

Designing a data center network that satisfies all three
requirements seems to be challenging. The flexibility
requirement introduces irregularity of network topologies.
However, high-throughput routing protocols on irregular
topologies, such as k-shortest path, are hard to scale. In this
paper, we present a new data center network architecture,
named Space Shuffle (52), including a scalable greedy routing
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TABLE 1
Desired Properties of Data Center Network Architectures

FatTree [9] CamCube [13] SWDC [7] Jellyfish [14] S2
Network bandwidth Benchmark No Comparison > Camcube > FatTree and SWDC ~ Jellyfish
Multi-path routing v ? ? v v
Incremental growth X ? ? v v
Forwarding state per switch o( N%)) constant constant O(kNlog N) constant
Key-based routing X v v P v
Switch heterogeneity X X X v v

N: # switches, M: # links. Question mark means such property is not discussed in the paper.

protocol that achieves high-throughput and near-optimal path
lengths on flexible and bandwidth-rich networks built by ran-
dom interconnection.

S2 networks are constructed by interconnecting an arbi-
trary number of commodity ToR switches. Switches main-
tain coordinates in multiple virtual spaces. We also design a
novel greedy routing protocol called greediest routing.
Greedy routing guarantees to find multiple paths to any
destination on an S2 topology. Unlike the existing greedy
routing protocols [16], [17], which use only one single space,
greediest routing makes decisions by considering the coor-
dinates of the switches in multiple spaces. The routing path
lengths are close to shortest path lengths. In addition, coor-
dinates in multiple spaces enable efficient and high-
throughput multi-path routing of S2. S2 also effectively sup-
ports key-based routing, which is able to fit many current
data center applications using key-value stores [13].

Table 1 compares S2 and four other recent data center
networks qualitatively in six desired properties, namely
high bandwidth, multi-path routing, flexibility for incre-
mental growth, small forwarding state, key-based routing,
and support of switch heterogeneity. S2 achieves almost all
desired properties while every other design has a few
disadvantages.

We use extensive simulation results to demonstrate S2’s
performance in different dimensions, including routing
path length, bisection bandwidth, throughput of single-
path and multi-path routing, fairness among flows, for-
warding table size, and resiliency to network failures. Com-
pared to two recently proposed data center networks [7],
[14], S2 provides significant advantages in some perfor-
mance dimensions and is equally good in other dimensions.

Compared to the earlier version of this paper published
in the Proceedings of ICNP 2014, this version includes the
following differences and improvements: 1) We present the
workflow of the S2 network to introduce the general struc-
ture of the proposed topology and protocols. 2) We intro-
duce key-based routing, a unique and powerful function
that the S2 network is able to provide compared to other
data center network design. We also add the performance
evaluation of key-based routing. 3) We present a failure
recovery method, shortcut discovery. 52 is able to find an
alternative path when the original path fails to delivery
packets. We also show its experimental results. 4) We detail
the experimental comparison of S2 and FatTree [9] by add-
ing more simulation results in forwarding state, through-
put, and routing path length. 5) We add more discussion of
S2 including the wiring difficulties, an example of cabling
plan, server multi-homing, and possible implementation

approaches using Click [18] and Intel Data Plane Develop-
ment Kit [19].

The rest of this paper is organized as follows. We present
related work in Section 2. We describe the S2 topology and
its construction in Section 3. In Section 4, we present
the routing protocols and design considerations. We discuss
the failure recovery mechanism in Section 5. We evaluate
the performance of S2 in Section 6. We discuss a number of
practical issues in Section 7 and finally conclude this work
in Section 8.

2 RELATED WORK

Recent studies have proposed a number of new network
topologies to improve data center performance such as bisec-
tion bandwidth, flexibility, and failure resilience. Al-Fares
et al. [9] propose a multi-rooted tree structure called FatTree
that provides multiple equal paths between any pair of serv-
ers and can be built with commodity switches. VL2 [10] is a
data center network that uses flat addresses and provides
layer-2 semantics. Its topology is a Clos network which is
also a multi-rooted tree [20]. Some data center network
designs use direct server-to-server connection in regular
topologies to achieve high bisection bandwidth, including
DCell [12], BCube [21], CamCube [13], and Small-World data
centers [7]. However, none of these designs have considered
the requirement of incremental growth of data centers.

A number of solutions have been proposed to provide
network flexibility and support incremental growth. Scafida
[22] uses randomness to build an asymmetric data center
network that can be scaled in smaller increments. In LEGUP
[23], free ports are preserved for future expansion of Clos
networks. REWRITE [24] is a framework that uses local
search to find a network topology that maximizes bisection
bandwidth whiling minimizing latency with a give cost
budget. None of these three [22], [23], [24] have explicit
routing design to utilize the network bandwidth of the
irregular topologies. Jellyfish [14] is a recently proposed
data center network architecture that applies random con-
nections to allow arbitrary network size and incremental
growth. Jellyfish can be built with any number of switches
and servers and can incorporate additional devices by
slightly changing the current network. Using k-shortest
path routing, Jellyfish achieves higher network throughput
compared to FatTree [9] and supports more servers than a
FatTree using the same number of switches. However, to
support k-shortest path routing on a random interconnect,
forwarding state in Jellyfish switches is big and cannot be
aggregated. Using the MPLS implementation of k-shortest
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path as suggested in [14], the expected number of forward-
ing entries per switch is proportional to kNlog N, where N
is the number of switches in the network. In addition,
k-shortest path algorithm is extremely time consuming. Its
complexity is O(kN(M + NlogN)) for a single source (M is
the number of links) [25]. This may result in slow conver-
gence under network dynamics. Hence, Jellyfish may suffer
from both data plane and control plane scalability problems.
PAST [26] provides another multi-path solution for Jellyfish,
but the throughput of Jellyfish may be degraded. A very
recent study [15] discusses the near-optimal-throughput
topology design for both homogeneous and heterogeneous
networks. However, it does not provide routing protocols
that achieves the throughput in practice.

As a scalable solution, greedy routing has been applied
to enterprise and data center networks [7], [8], [13]. Cam-
Cube [13] employs greedy routing on a 3D torus topology.
It provides an API for applications to implement their own
routing protocols to satisfy specific requirements, called
symbiotic routing. The network topologies of Small-World
data centers are built with directly connected servers in
three types: ring, 2D Torus, and 3D Hex Torus. ROME [8] is
a network architecture to allow greedy routing on arbitrary
network topologies and provide layer-2 semantics. For all
three network architectures [7], [8], [13], multi-path routing
is not explicitly provided.

SWDC, Jellyfish, and S2 all employ randomness to
build physical topologies. However, they demonstrate
substantially different performance because of their dif-
ferent logical organizations and routing protocols. SWDC
applies scalable greedy routing on regularly assigned
coordinates in a single space and supports key-based
routing. Jellyfish provides higher throughput using
k-shortest path routing, but it sacrifices forwarding table
scalability. S2 gets the best of both worlds: it uses greedy
routing on randomly assigned coordinates in multiple
spaces to achieve both high-throughput routing and small
forwarding state.

3 SPACE SHUFFLE DATA CENTER TOPOLOGY

3.1 Workflow of the system

The Space Shuffle topology is an interconnect of commod-
ity top-of-rack (ToR) switches. In S2, all switches play an
equal role and execute the same protocol. We assume
there is no server multi-homing, i.e., a server only con-
nects with one switch.

During the construction of S2, the switches and hosts
are assigned with virtual coordinates as presented in
Section 3.2. Using these coordinates, the operation per-
sonnel is able to compute a corresponding wiring plan
and connect the switches and hosts accordingly following
the steps in Section 3.3. 52 supports incremental deploy-
ment. When adding a new switch into the network, a set
of virtual coordinates is assigned for the additional
switch, and the topology is accordingly changed. The net-
work operation personnel then disconnects some existing
connections in the network and wires the new switch fol-
lowing the steps in Section 3.3.

When the topology construction is finished, 52 switches
use greedy routing presented in Section 4 to forward data

3353

packets. The destination coordinates are encapsulated as
the routable address in each packet. Upon receiving a
packet, the switch finds out the next hop of the packet using
the proposed greedy routing method. Such computation
only involves basic arithmetic operations and is executed by
the switch.

An S2 switch also includes a module that detects and
deals with network failures, as described in Section 5. When
it detects failure events, the failure recovery method,
namely shortcut discovery, will be executed to route a
packet to its destination.

3.2 Virtual Coordinates and Spaces

Each switch s is assigned a set of virtual coordinates repre-
sented by a L-dimensional vector (zi,zs,...,zr), where
each element z; is a randomly generated real number
0 < x; < 1'. There are L virtual ring spaces. In the ith space,
a switch is virtually placed on a ring based on the value of its
ith coordinate z;. Coordinates in each space are circular,
and 0 and 1 are superposed. Coordinates are distinct in a
single space. In each space, a switch is physically connected
with the two adjacent switches on its left and right sides.
Two physically connected switches are called neighbors.
For a network built with w-port switches,? it is required that
2L < w. Each switch has at most 2L ports to connect other
switches, called inter-switch ports. The rest ports can be
used to connect servers. A neighbor of a switch s may hap-
pen to be adjacent to s in multiple spaces. In such a case, s
needs less than 2L ports to connect adjacent switches in all
L spaces. Switches with free inter-switch ports can then be
connected randomly.

Fig. 1 shows an 52 network with 9 switches and 18 hosts
in two spaces. As shown in Fig. 1a, each switch is connected
with two hosts and four other switches. Fig. 1b shows coor-
dinates of each switch in the two spaces. Figs. 1c and 1d are
the two virtual spaces, where coordinate 0 is at top and
coordinates increase clockwisely. As an example, switch B
is connected to switches A, C, I, and G, because A and C
are adjacent to B in space 1 and F' and G are adjacent to B
in space 2. A only uses three ports to connects adjacent
switches I, B, and H, because it is adjacent to I in both
two spaces. A and E are connected as they both have free
inter-switch ports.

3.3 Topology Construction
As a flexible data center network, S2 can be constructed by
either deploy-as-a-whole or incremental deployment.

For the deploy-as-a-whole construction of a network
with N switches and H servers, each switch is assigned 4]
or [Z]+1 servers. The number of spaces L is then set

to [4(w — [4])]. Switch positions are randomly assigned in
each space. For each space, cables are placed to connect
every pair of adjacent switches. If there are still more than
one switches with free ports, we randomly select switch
pairs and connect each pair. We will discuss more cabling

issues in Section 7.1.

1. ;s are real numbers. For implementation, we suggest using fixed-
point number types with minimum representable value less than 3—{_)

2. We now assume homogenous switches. We will discuss switch
heterogeneity in Section 7.4.
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ID X1 T2
A 005 017
B 013 0.62
cC 023 091
D 036 042
E 042 0.53
F 051 0.58
G 063 073
H 078 026
1 091 0.97

(a) Space Shuffle topolo-
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Fig. 1. Example S2 network with 9 switches and 18 servers in 2 spaces.
Squares are switches and circles are servers.

S2 can easily support any expansion of the data center
network using the incremental deployment algorithm. Sup-
pose we decide to expand the data center network by m
servers. A switch can connect w — 2L servers, and we can
determine the number of new switches is [m/(w — 2L)]. For
each new switch s, we assign it a set of random coordinates.
We find s’s two adjacent nodes v and v in each space, which
is currently connected. Then, the operator removes the cable
between v and v and let s connect to both of them. New
switches and servers can be added serially by iterative exe-
cution of this procedure.

Similar to Jellyfish [14], S2 can be constructed with any
number of servers and switches. For incremental network
expansion, only a few cables need to be removed and a few
new cables are placed. Hence, there is very little network
update cost.

At this point, coordinate generation is purely random.
We will discuss the impact of coordinate randomness to the
S2 routing protocol and introduce a method to generate
desired random coordinates in Section 4.3.

Essentially, SWDC [7], Jellyfish [14], and S2 use similar
random physical interconnects to approximate random reg-
ular graphs (RRGs). However, their logical organizations
and routing protocols are substantially different, which
result in different network performance such as throughput
and forwarding table size.

4 RouTING PROTOCOLS

A desired routing protocol in data center networks should
have several important features that satisfy application
requirements. First, a routing protocol should guarantee to
find a loop-free path to delivery a packet from any source to
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any destination, i.e., delivery guarantee and loop-freedom. Sec-
ond, the routing and forwarding should be scalable to a large
size of servers and switches. Third, it should utilize the band-
width and exploit path diversity of the network topology.

A straightforward way is to use shortest path based rout-
ing, such as OSPF on S2. However, shortest path routing
has a few potential scalability problems. First, in the data
plane, each switch needs to maintain a forwarding table
whose size is proportional to the network size. The cost of
storing the forwarding table in fast memory such as TCAM
and SRAM can be high [7]. As the increasing line speeds
require the use of faster, expensive, and power-consuming
memory, there is a strong motivation to design routing pro-
tocol that only uses a small size of memory and does not
require memory upgrades when the network size increases
[6]. Second, running link-state protocols introduces non-
trivial bandwidth cost to the control plane.

4.1 Greediest Routing

Since the coordinates of a switch can be considered geo-
graphical locations in L different spaces, we design a new
greedy geographic routing protocol for S2, called greediest
routing.

Routable address. The routable address of a server h,
namely X , is the virtual coordinates of the switch connected
to h (also called h’s access switch). Since most current appli-
cations uses IP addresses to identify destinations, an
address resolution method is needed to obtain the S2 rout-
able address of a packet, as ARP, a central directory, or a
DHT [8], [27]. The address resolution function can be
deployed on end switches for in-network traffic and on
gateway switches for incoming traffic. In a packet, the desti-
nation server h is identified by a tuple (X ,IDy,), where Xis
h's routable address (virtual coordinates of the access
switch) and 1D, is h’s identifier such as its MAC or IP
address. The packet is first delivered to the switch s that has
the virtual coordinates X, and then s forwards the packet to
h based on ID,.

MCD. We use the circular distance to define the distance
between two coordinates in a same space. The circular
distance for two coordinates z and y (0 < z,y < 1)1is

CD(z,y) = min{|z —y|,1 — |z — y[}.

In addition, we introduce the minimum circular distance
(MCD) for routing design. For two switches A and B with
virtual coordinates X = (1,9, ..., 21) and Y = (Y1,Y2, -+ s
yr) respectively, the MCD of A and B, MCD()_(‘7 }7), is
the minimum circular distance measured in the L spaces.
Formally,

MCD(X,Y) = min CD(z;, ;).

1<i<L
Forwarding decision. The greediest routing protocol works as
follows. When a switch s receives a packet whose destina-
tion is (X,, ID), it first checks whether X, is its own coordi-
nates. If so, s forwards the packet to the server whose
identifier is ID. Otherwise, s selects a neighbor v such that v

minimizes MCD(X,, X,) to the destination, among all
neighbors. The pseudocode of GREEDIST ROUTING ON SWITCH §
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TABLE 2
MCDs to C from H and its Neighbors in Fig. 1
Cir distin Space1  Cir distin Space2  Min cir dist
H 0.45 0.35 0.35
A 0.18 0.26 0.18
D 0.13 0.49 0.13
G 0.40 0.18 0.18
1 0.32 0.06 0.06

is presented in the appendix, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPDS.2016.2533618.

For example, in the network shown in Fig. 1, switch H
receives a packet whose destination host is connected to

switch C, hence the destination coordinates are X¢. H has
four neighbors A, D, I, and G. After computing the MCD
from each neighbor to the destination C as listed in Table 2,
H concludes that I has the shortest minimal circular dis-
tance to C' and then forwards the packet to /.

We name our protocol as “greediest routing” because it
selects a neighbor that has a smallest MCD to the destina-
tion among all neighbors in all spaces. Existing greedy
routing protocols only try to minimize distance to the desti-
nation in a single space (Euclidean, or in other kinds).

The algorithm of executing greediest routing on switch s
is presented in Algorithm 1.

Algorithm 1. Greediest Routing on Switch s

input: Coordinates of all neighbors of switch s, destination
addresses (X, ID).
1if X, =X,
2 Then h « the server connected to s with identifier 1D
3 Forward the packet to h
4 return
5 Compute MCD L()?v, X’t) for all s’s neighbor switch v
6 Find v, such that MCD L(X"“O, X’}) is the smallest
7 Forward the packet to v

Greediest routing on 52 topologies provides delivery
guarantee and loop-freedom. To prove it, we first introduce
two lemmas.

Lemma 1. Inn a space and given a coordinate x, if a switch s is not
the switch that has the shortest circular distance to x in the
space, then s must have an adjacent switch s such that
CD(z,zy) < CD(x,x).

Lemma 2. Suppose switch s receives a packet whose destination
switch is t and the coordinates are X,,, s#t. Let v be the
switch that has the smallest MCD to X; among all neighbors
of 5. Then MCD(X,, X;) < MCD(X,, X,).

The proofs of the above two Lemma are presented in the
Appendix, available in the online supplemental materialx.
Lemma 2 states that if switch s is not the destination switch,
it must find a neighbor v whose MCD is smaller than s’s to
the destination. Similar to other greedy routing protocols,
when we have such “progressive and distance-reducing”
property, we can establish the proof for delivery guarantee
and loop-freedom.
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Fig. 2. Distribution of routing path lengths.

Proposition 3. Greediest routing finds a loop-free path of a finite
number of hops to a given destination on an S2 topology.

Proof. (1) Suppose switch s receives a packet whose destina-
tion switch is ¢. If s = t, the destination host is one of the
servers connected to s. The packet can be delivered.

(2) If s # t, according to Lemma 2, s will find a neigh-
bor v such that MCD;(X,, X,) < MCD(X,,X,), and
forward the packet to v.

(3) The MCD from the current switch to the destina-
tion coordinates strictly reduces at each hop. Greediest
routing keeps making progress. Therefore, there is no
routing loop. Since the number of switches is finite, the
packet will be delivered to . 0

Like other greedy routing protocols [7], [8], greediest
routing in S2 is highly scalable and easy to implement. Each
switch only needs a small routing table that stores the coor-
dinates of all neighbors. The forwarding decision can be
made by a fixed and small number of numerical distance
computation and comparisons. More importantly, the rout-
ing table size only depends on the number of ports and
does not increase when the network grows. In the control
plane, decisions are made locally without link-state broad-
cast in the network wide.

4.1.1 Reduce Routing Path Length

An obvious downside of greedy routing is that it does not
guarantee shortest routing path. Non-optimal routing paths
incur longer server-to-server latency. More importantly,
flows routed by longer paths will be transmitted on more
links, and thus consumes more network bandwidth [14]. To
resolve this problem, we allow each switch in S2 stores the
coordinates of 2-hop neighbors. To forward a packet, a
switch first determines the switch v that has the shortest
MCD to the destination, among all 1-hop and 2-hop neigh-
bors. If v is an 1-hop neighbor, the packet is forwarded to v.
Otherwise, the packet is forwarded to an one hop neighbor
connected to v. Delivery guarantee and loop-freedom still
holds. According to our empirical results, considering 2-
hop neighbors can significantly reduce routing path lengths.

As an example, in a 250 10-port switch network, the dis-
tribution of switch-to-switch routing path lengths of k-hop
neighbor storage is shown in Fig. 2, where the optimal val-
ues are the shortest path lengths. Storing 2-hop neighbors
significantly reduces the routing path lengths compared with
storing 1-hop neighbor. The average routing path length of
greediest routing with only 1-hop neighbors is 5.749. Includ-
ing 2-hop neighbors, the value is decreased to 5.199, which is
very close to 4.874, the average shortest path length. How-
ever, including 3-hop neighbors does not improve the
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Fig. 3. Routing path length using different numbers of spaces.

routing path much compared with using 2-hop neighbors.
Therefore, we decide to store 2-hop neighbors for S2 routing.
Although storing 2-hop neighbors requires more state, the
number of 2-hop neighbors are bounded by d?, where d is the
inter-switch port number, and this number is much lower
than d? in practice. As forwarding state is independent of the
network size, S2 routing is still highly scalable.

4.1.2 Impact of the Space Number

Proposition 3 holds for any L > 1. Therefore, greediest rout-
ing can use the coordinates only in the first d spaces, d < L,
and apply the MCD in the first d spaces (d¢-MCD) as the
greedy routing metric. In an extreme case where d =1,
greediest routing degenerates to greedy routing on one sin-
gle ring using the circular distance as the metric. For d < L,
the links connecting adjacent switches in the d,d+1,...,
Lth spaces are still included in routing decision. They serve
as random links that can reduce routing path length and
improve bandwidth.

For all d, 1 <d < L, greedy routing using d-MCD pro-
vides delivery guarantee and loop-freedom. We evaluate
how the value of d affects routing performance by showing
the number of spaces d versus the average routing path
length of a typical network topology in Fig. 3. The two error
bars represent the 10th and 90th percentile values. Only
switch-to-switch paths are computed. The optimal results
shown in the figure are shortest path lengths, which in
average is 2.498. We find that the routing path lengths sig-
nificantly reduce when the second and third spaces are
included in greedy routing. Using more than 4 spaces, the
average length is is close to the optimal value. Hence greedi-
est routing in 52 always use as many spaces as switch port
capacity allows. Commodity switches have more than
enough ports to support 5 or more spaces.

4.2 Multi-Path Routing

Multi-path routing is essential for delivering full bandwidth
among servers in a densely connected topology and per-
forming traffic engineering. Previous greedy routing proto-
cols can hardly apply existing multi-path algorithms such
as equal-cost multi-path (ECMP) [28] and k-shortest paths
[14], because each switch lacks of global knowledge of the
network topology. Consider a potential multi-path method
for greedy routing in a single Euclidean space. For different
flows to a same destination, the source switch intentionally
forwards them to different neighbors by making not-so-
greedy decisions. This approach may result longer routing
paths. In addition, these paths will share a large proportion
of overlapped links because all flows are sent to a same
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direction in the Euclidean space. Overlapped links can eas-
ily be congested. Therefore, designing multi-path greedy
routing in a single space is challenging.

Greediest routing on S2 supports multi-path routing
well, due to path diversity across different spaces. Accord-
ing to Lemma 2, if a routing protocol reduces the MCD to
the destination at every hop, it will eventually find a loop-
free path to the destination. Based on this property, we
design a multi-path routing protocol presented as follows.
When a switch s receives the first packet of a new flow
whose destination switch ¢ is not s, it determines a set V'
of neighbors, such that for any veV, MCD(X'U, )_('t) <
MCD(X,, X;). Then s selects one neighbor vy in V' by hash-
ing the 5-tuple of the packet, i.e., source address, destination
address, source port, destination port, and protocol type.
All packets of this flow will be forwarded to vy, as they have
a same hash value. Hence, packet reordering is avoided.
This mechanism only applies to the first hop of a packet,
and on the remaining path the packet is still forwarded by
greediest routing. The main consideration of such design is
to restrict path lengths. According to our observation from
empirical results, multi-pathing at the first hop already pro-
vides good path diversity. The pseudocode of the multi-
path routing protocol is presented in Algorithm 2.

Algorithm 2. Multi-path Routing on Switch s

input: Coordinates of all neighbors, destination addresses
(X,,ID)
1if X, =X,
2 then h + the server connected to s with identifier 1D
3 Forward the packet to h
4 return
5 if the packet is not from a server connected to s
6 then Perform greediest routing
7 return
8V 10
9 for each neighbor v of s
10 doif MCDL(X,,X,) < MCD(X,, X,)
11 then V — V U {v}
12 Select vy from V by hashing the source and destination
addresses and ports
13 Forward the packet to v

S2 multi-path routing is also load-aware. As discussed in
[29], load-aware routing provides better throughput. We
assume a switch maintains a counter to estimate the traffic
load on each outgoing link. At the first hop, the sender can
select the links that have low traffic load. Such load-aware
selection is flow-based: all packets of a flow will be sent to
the same outgoing link as the first packet.

4.3 Balanced Random Coordinates

Purely uniform random generation of S2 coordinates will
probably result in an imbalanced coordinate distribution.
Fig. 6b shows an example coordinate distribution of 20
switches in a space. The right half of this ring has much
more switches than the left half. Some switches are close to
their neighbors while some are not. Theoretically, among n
uniform-randomly generated coordinates, the expected
value of the minimum distance between two adjacent coor-
dinates is n%, while the expected value of the maximum is
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@(10%) [30]. Imbalance of coordinate distribution is harmful
to S2 routing in two main aspects. First, greediest routing
may intend to choose some links and cause congestion on
them. We conjecture as follows. Consider two connected
switches A and B whose coordinates are extremely close in
one space. If one of them, say A4, is the destination of a group
of flows, other switches may intend to send the flows to B if
they are unaware of A. These flows will then be sent from B
to A and congest the link. Second, imbalanced key-value
store occurs if switches are not evenly distributed on a ring.
Previous work about load balancing in ring spaces cannot be
applied here because they do not consider greediest routing.

We perform empirical study of the impact of coordinate
distribution to routing loads. In a typical S2 network with
250 switches and L =4, we run greediest routing for all
pairs of switches to generate routing paths and then count
the number of distinct paths on each link. We find the top
10 percent links and bottom 10 percent links according to
the numbers of distinct paths and denote them by heavy
loaded links and light loaded links respectively. We plot the
heavy and light loaded links in a 2D domain as shown in
Fig. 4, where the z-axis is the MCD of a link’s two endpoints
and the y-axis is the sum of circular distances of a link’s two
endpoints in all spaces. We find that the frequency of
heavy/light loaded links strongly depends on the MCD of
two endpoints, but has little relation to the sum of circular
distances. If the MCD is shorter, a link is more likely to be
heavy loaded. Hence, it is desired to avoid two switches
that are placed very closely on a ring, meanwhile to enlarge
the minimal circular distance for links.

We further study the impact of coordinate distribution to
per-switch loads. We define the control area of switch s in a
space as follows: Suppose switch s’s coordinate in this space
is , s has two adjacent switches, whose coordinates are y
and z respectively. The control area of s on the ring is the
arc between the mid-point of ¥,z and the mid-point of z, z.
The size of s’s control area in the space is defined as
$CD(z,y) +1CD(x, z). For the same network as Fig. 4, we
count the number of different routing paths on each switch.
We then plot this number versus the sum of logarithm of
control area sizes of each switch in Fig. 5. It shows that they
are negatively related with a correlation coefficient —0.7179.
Since the sum of control area sizes of all switches is fixed ,
we should make the control areas as even as possible to
maximize the sum-log values. This is also consistent to the
load-balancing requirement of key-value storage. Based on
the above observations, we present a BALANCED RaANDOM
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COORDINATE GENERATION algorithm below, which is also
detailed in Algorithm 3.

Algorithm 3. Balanced Random Coordinate

input: n coordinates x1, xs, . .., 2, in a circular space
output: One new coordinate .,
if n = 0 then return RandomNumber(0, 1)
ifn=1
thena «— z1,b — 21 +1
else find z,1, 2,2 among x, za, ...
and CD(z,1, z,2) is the smallest
ifre—21 < %
thena « x,,b «— x,9
elsea «— w90, — 2,0 +1
t < RandomNumber(a +3-,b — &)
9ift > 1thent«—+¢t—1
10 returnt

W N =

,x, such that z,; < z9

(OB e NNe)]

When a switch s joins the network with n switches, in
every space we select two adjacent switches with the maxi-
mum circular distance, whose coordinates are y and z. By
the pigeonhole principle, CD(y,z) > L. Then we place s in
somewhere between y and z. To avoid being too close to
either of y and z, we generate s’s coordinate « in the space
as a random number inside (y+ 4.,z —4-), so that CD(x,
y) >3- and CD(z,z) > 3~ This algorithm can be used for
either incremental or deploy-as-a-whole construction. It is
guaranteed that the MCD between any pair of switches is
no less than 3-. An example of balanced random coordinates
is shown in Fig. 6.

For 10-port 250-switch networks, we calculate the greedi-
est routing path for every pair of switches. We show a typi-
cal distribution of routing load (measured by the number of
distinct routing paths) on each link in Fig. 7, where we rank
the links in increasing order of load. Compared with purely
random coordinates, balanced random coordinates increase
the load on under-utilized links (before rank 300) and

(a) Random (b) Balanced Random

Fig. 6. Examples of random and balanced random coordinates.
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evidently decrease the load on over-utilized links (after rank
600). About 8 percent links of purely random coordinates
have more than 300 paths on each of them, and only 1 percent
links of balanced random coordinates have that number. The
maximum number of distinct paths that a link is on also
decreased from 470 to 350 using balanced random coordi-
nates. Balanced random coordinates provide better fairness
among links, and thus improve the network throughput.

We also examine the routing path lengths using balanced
random coordinates. Fig. 8 shows the distribution of switch-
to-switch routing path lengths of the same network dis-
cussed above. Balanced random coordinates slightly reduce
the average routing path lengths from 3.35 to 3.20.

4.4 Key-Based Routing
Many applications running in today’s data center networks
use keys to identify data or users, such as MapReduce [2],
Amazon Dynamo [31], Microsoft Dryad [4], and Facebook
Photos [32]. Key-based routing enables direct data access
without knowing the IP address of the server that stores the
data. CamCube [13] is a prototype built by Microsoft to
implement key-based routing in data centers. Moreover,
key-based routing is an important building block of several
network services such as host-discovery and multicast [8].
S2 supports efficient key-based routing based on the princi-
ple of consistent hashing. Only small changes are required
to the greediest routing protocol.

The key-based routing of S2 utilizes two important
properties.

(1) Given a destination coordinate y, greedy routing in a
space using the circular distance guarantees to find
the switch closest to y in the space.

(2) Given d-dimensional destination coordinates Y,
greediest routing using d-MCD guarantees to find a
switch s, such that at least in one space r (1 <r < d), s
is the switch closest to y,..

We prove the correctness of the two properties in the
appendix, available in the online supplemental material.

Each piece of data is stored in S2 based on a key. Let K|,
be the key of a piece of data a. In S2, a should be stored in d
multiple copies at different servers. In S2 key-based routing,
a set of globally known hash functions Hy, Hs, ..., H; can be
applied to K,. We use H(K,) to represent a hash value for
K, mapped in [0, 1]. The routable address of K, is defined
as (Hi(K,),Hy(K,), ..., Hy(K,)). Hereafter, we simply use
H(K,) to represent the mapped hash value in the range of
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[0,1]. For each space r, 1 < r < d, the switch s whose coordi-
nate x, is closest to H,(K,) among all switches is called the
home switch of K, in space r. K, has at most d home switches
in total.® A replica of a is assigned to one of the servers con-
nected to the home switch s. The server selection is deter-
mined by re-mapping H(K,) to the range [1,n;], where ny,
is the number of servers connected to s. The selected server
is called a home server which actually stores a. If s happens
to be the home switch of K, again in another space r’, it
selects the same server for a and use only one replica for a
on that server.

S2 provides a function STORE(K,, ) that can send a copy
of a to the home server in space r from any source. By run-
ning STORE(K,,7), a copy of a is forwarded by greedy rout-
ing using circular distance in space r. If a switch finds none
of its neighbors has a smaller circular distance to H(K,), it
can determine that the closest switch to H(K,) is itself and
assign a to a server.

Obviously, any server can find the replica of data a in
space r by sending a query message which will be for-
warded using the same algorithm as STORE(K,,r). How-
ever, we design an algorithm Retrieve(K,) that results
shorter paths to find a, by utilizing d-way replication. The
basic idea is to use the second property, i.e., greediest rout-
ing using the d-MCD as the routing metrics guarantees to
find at least one replica of the data.

In fact, if greediest routing in the first d spaces cannot
make progress on switch s, then s is a home switch of K.
S2 supports key-based routing by executing greediest rout-
ing to coordinate (H;(K,), Hy(K,), ..., Hq(K,)) in the first d
spaces. Since the key to server mapping is not changed,
Retrieve(K,) can find a replica of a.

Failure resiliency of key-value stores is an important
issue but out of the scope of this paper. Therefore we leave
it to future work.

5 FAILURE RECOVERY

Data center networks suffer from network failures. The
switch and links may fail.As a result, the correctness of the
greediest routing may be violated, resulting in packet failure.

Due to the dense interconnection of S2, a destination
server is highly likely to remain reachable upon link failures

3. If there are two switches which are both closest to H,(K,) with a
same circular distance, the tie is broken by selecting the one with larger
coordinate. For the ease of presentation, we consider there is only one
switch closest to a coordinate hereafter.
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or switch failures. Proposition 3 states that the greediest
routing keeps making progress as long as the MCD from
the current switch to the destination strictly reduces at each
hop. Hence, S2 is able to deliver most of the packets under
failures by maintaining a list of available neighbors on each
switch and avoiding sending packets to failed switches or
through failed links.

Failure detection. We categorize the failures in S2 into two
classes :(1) link failure: a link connecting a pair of switches
fails to transmit packets correctly; (2) switch failure: a switch
fails to forward packets correctly. In 52, switches send
keepalive message to their neighbors periodically.

We propose a shortcut path discovery mechanism for S2,
so that the S2 network still guarantees to deliver all packets
upon network failures, as long as there is an available path
from the current switch to the destination.

Shortcut discovery. S2 handles these two kinds of failures
by maintaining a list of available neighbors. A neighbor
switch v of switch s is considered to be available, if and only
if v and the link between v and s both exist. This list serves
as the candidate set of greediest routing.

Upon network failures, the property of the topology is
affected and is reflected in the available neighbor list. As a
result, a packet with destination (Y, ID) may be routed to a
local minimum switch p, such that for all p’s neighbor s,
MCD(X,,Y) < MCD(X,,Y).

S2 uses a broadcast-confirm mechanism to discover an
alternative shortcut for destination coordinates Y from
switch p. Each S2 switch maintains a shortcut table to store
the discovered shortcut paths. Each entry of the shortcut
table includes the destination coordinates and next-hop
switch, (Y, s). When switch p receives a packet with destina-
tion Y it should forward the packet to s.

When a switch p finds that it is the local minimum of a
packet to destination coordinate Y/, it initiates the process to
discover a shortcut path. Switch p tags the packet as a probe
packet and sends replicas of the probe packet along its all
available outgoing links. These probe packets are then
duplicated and transmitted along the network.

Once a probe packet reaches the home switch of the des-
tination server, a shortcut path is established. Then the
home switch sends a reply packet backwards to p to confirm
the path. Upon receiving a reply packet, a switch adds an
entry in its shortcut table. The rest packets to the same desti-
nation will match the shortcut table and be forwarded along
the shortcut path.

The pseudocode of the failure-resilient routing algorithm
of 52 is presented in the appendix, available in the online
supplemental material. Note that, the packets can be tagged
as REGULAR, PROBE and REPLY. The default type of the
packets traverse through the network is REGULAR.

We evaluate the effectiveness of the failure-resilient rout-
ing mechanism in Section 6.9.

6 PERFORMANCE EVALUATION

In this section, we conduct extensive experiments to evalu-
ate the efficiency, scalability, fairness, and reliability of S2
topologies and routing protocols. We compare S2 with two
recently proposed data center networks, namely Small-
World data center [7] and Jellyfish [14].
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6.1 Methodology

Most existing studies use custom-built simulators to evalu-
ate data center networks at large scale [7], [14], [15], [22],
[23], [24], [33]. We find many of them use a certain level
of abstraction for TCP, which may result in inaccurate
throughput results. We develop our own simulator® to
perform fine-grained packet-level event-based simulation.
TCP New Reno is implemented in detail as the transport
layer protocol. We simulate all packets in the network
including ACKs, which are also routed by greedy routing.
Our switch abstraction maintains finite shared buffers
and forwarding tables.

We evaluate the following performance criteria of S2.

Bisection bandwidth describes the network capacity by
measuring the bandwidth between two equal-sized part of
a network. we calculate the empirical minimum bisection
bandwidth of the network by randomly separating the serv-
ers into two partitions and computing the maximum flow
between the two parts. The minimum bisection bandwidth
value of a topology is computed from 50 random partitions.
Each value shown in figures is the average of 20 different
topologies.

Ideal throughput characterizes a network’s raw capacity
with perfect load balancing and routing (which do not exist
in reality). A flow can be split into infinite subflows which
are sent to links without congestion. Routing paths are not
specified and flows can take any path between the source
and destination. We model it as a maximum multi-commodity
network flow problem and solve it using the IBM CPLEX opti-
mizer [34]. The throughput results are calculated using a spe-
cific type of network traffic, called the random permutation
traffic used by many other studies [14], [15], [33]. Random
permutation traffic model generates very little local traffic
and is considered easy to cause network congestion [33].

Practical throughput is the measured throughput of ran-
dom permutation traffic routed by proposed routing proto-
cols on the corresponding data center topology. It reflects
how a routing protocol can utilize the topology bandwidth.
We compare the throughput of S2 with Jellyfish and SWDC
for both single-path and multi-path routing.

Scalability. We evaluate forwarding state on switches to
characterize the data plane scalability. We measure the
number of forwarding entries for shortest-path based rout-
ing. However, greedy routing uses distance comparison
which does not rely on forwarding entries. Therefore we
measure the number of coordinates stored. The entry-to-
coordinate comparison actually gives a disadvantage to S2,
because storing a coordinate requires much less memory
than storing a forwarding entry.

Routing path lengths are important for data center net-
works, because they have strong impact to both network
latency and throughput. For an 52 network, we calculate the
routing path length for every pair of source and destination
switches and show the average value.

Fairness. We evaluate throughput and completion time of
different flows.

4. We experienced very slow speed when using NS for data center
networks. We guess the existing studies do not use NS because of the
same reason. Our simulator is available at https://github.com/
sdyy1990/S2Simulator
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switch ratios (12.8:1 and 4.8:1).

Resiliency to network failures reflects the reliability of the
network topology and routing protocol. We evaluate the
routing path length and routing success rate of greedy rout-
ing under switch failures. We further evaluate the practical
throughput of our failure-resistant routing algorithm.

SWDC allows each node to store 2-hop neighbors. The
default SWDC configuration has six inter-switch ports. For
SWDC configurations with more than six inter-switch ports,
we add random links until all ports are used. For Jellyfish,
we use the same implementation of k-shortest path algo-
rithm [35], [36] as in [14].

Each result shown by a figure in this section, unless oth-
erwise mentioned, is from at least 20 production runs using
different topologies.

6.2 Bisection Bandwidth

We compare the minimum bisection bandwidth of 52, Jelly-
fish, SWDC, and FatTree. For fair comparison, we use two
FatTree networks as benchmarks, a 3,456-server 720-switch
(24-port) FatTree and a 27,648-server 2,880 switch (48-port)
FatTree. Note that, FatTree can only be built in fixed sizes
with specific numbers of ports. The ratio of server number
to switch number in above two configurations are 4.8:1 and
12.8:1 respectively. For experiments of S2 and Jellyfish, we
fix the server-to-switch ratio in these two values and vary
the number of switches. In Fig. 9, We show the bisection
bandwidth of 52, FatTree, and Jellyfish, in the two server-to-
switch ratios. The isolated diamond and square markers
represent the minimum bisection bandwidth of FatTree.
Both S2 and Jellyfish are free to support arbitrary number of
servers and switches. They have identical bisection band-
width according to our results. When using the same num-
ber of switches as FatTree (732 and 2,880), both S2 and
Jellyfish provide substantially higher bisection bandwidth
than FatTree. SWDC only uses a fixed 1:1 server-to-switch
ratio and 6-port switches as presented in the SWDC paper
[7]. In such configuration, S2, SWDC, and Jellyfish have sim-
ilar bisection bandwidth. However, it is not clear whether
SWDC can support incremental growth.

6.3 Ideal Throughput

We model the computation of ideal throughput as a maxi-
mum multi-commodity network flow problem: each flow is
a commodity without hard demand. We need to find a
flow assignment that maximizes network throughput
while satisfying capacity constraints on all links and flow
conservation. Each flow can be split into an infinite num-
ber of subflows and assigned to different paths. We solve

Number of Hosts

Fig. 10. Ideal throughput of S2 and Jellyfish for a 125-switch network.

it through linear programming using the IBM CPLEX
optimizer [34] and then calculate the maximized network
throughput. We show the throughput versus the number
of servers of a typical 10-port 125-switch network in
Fig. 10. When the server number is smaller than 320, the
total throughput increases with the server number. After
that the network throughput decreases because inter-
switch ports are taken to support more servers. S2 is mar-
ginally worse than Jellyfish, which has been shown to
have clearly higher throughput than FatTree with the
same network equipments [14].

6.4 Scalability
We consider each coordinate as an entry and compare the
number of entries in forwarding tables. In practice, a coordi-
nate requires much less space than a forwarding entry. Even
though we give such a disadvantage to S2, S2 still shows
huge lead in data plane scalability. Fig. 11 shows the average
and maximum forwarding table sizes of S2 and Jellyfish in net-
works with 10 inter-switch ports. The number of entries of S2 is
less than 500 and does not increase when the network grows. The
average and maximum forwarding entry numbers of Jelly-
fish in MPLS implementation [14] are much higher. Note
that, the curve of Jellyfish looks like linear but is in fact
O(Nlog N). When N is in a relatively small range, the curve
looks similar to linear. Using the SWDC configuration, the
forwarding state of SWDC 3D is identical to that of S2,
and those of SWDC 1D and 2D are smaller. The number of
forwarding entries of the two-level routing table in FatTree
is the number of ports, shown as a single point in Fig. 11.
From our experiments on a Dell Minitower with an Intel
Core 17-4770 processor and 16 GB memory, we also find
that it takes hours to compute all pair 8-shortest paths for
Jellyfish with more than 500 switches. Hence it is difficult
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for switches to compute k-shortest paths of a large network
in a way similar to link-state routing.

6.5 Practical Throughput

We conduct experiments to measure the practical through-
put of 52, SWDC, FatTree and Jellyfish for both single-path
and multi-path routing. For multi-path routing, the sender
splits a flow into k subflows and sends them using S2 multi-
path routing. Packets of the same subflow are forwarded
via the same path. Since the multi-path routing protocol of
SWDC is not clearly designed in [7], we use a multi-path
method similar to that of S2.

In Fig. 12, we show the throughput of S2 and FatTree on
networks in the FatTree’s configuration of number of
switches and switch-server ratio. We measure the through-
put on a S2 network with the same number of switches and
servers. The throughput is normalized to 100 with respect
to the bisection bandwidth of the network. S2 shows slightly
higher throughput than that of FatTree in all topologies.

In Fig. 14, we show the network throughput (normalized
to 100) of S2, SWDC, and Jellyfish of a 12-port 250-switch
network with 550 servers, using routing with 1, 2, 4, and 8
paths per flow. S2 and Jellyfish have similar network
throughput. Using 2-path and 4-path routing, S2 has
slightly higher throughput than Jellyfish, while Jellyfish
has slightly higher throughput than S2 for 1-path and
8-path. Both 52 and Jellyfish overperform SWDC in
throughput by about 50 percent. We find that multi-path
routing improves the throughput of SWDC very little. We
conjecture that multi-path greedy routing of SWDC may
suffer from shared congestion on some links, since greedy
routing paths to a same destination may easily contain
shared links in a single space.
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Fig. 13. Throughput of a 400-switch network in SWDC configuration.
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In fact, SWDC has three variants (1D Ring, 2D Torus, and
3D Hex Torus) and special configuration (inter-switch port
number is 6 and one server per switch). Hence, we conduct
experiments to compare S2 with all three SWDC networks
in the SWDC configuration. Fig. 13 shows that even under
the S2 configuration, S2 provides higher throughput than
all three types of SWDC especially when multi-pathing is
used. We only show SWDC 2D in remaining results, as it is
a middle course of all three types.

Flow completion time. We evaluate both all-flow and per-
flow completion time of data transmission. Fig. 15 shows
the time to complete transmitting all flows in the same set
of experiments as in Fig. 14. Each flow transmits 16 MB
data. S2 takes the least time (0.863 second) to finish all flows.
SWDC 2D and 3D also finish all transmissions within 1 sec-
ond, but use longer time than S2.

6.6 Fairness among Flows
We demonstrate that S2 provides fairness among flows in
the following two aspects.

Throughput fairness. We evaluate the throughput fairness
of S2. For the experiments conducted for Fig. 14, we show
the distribution of per-flow throughput in Fig. 16 where the
z-axis is the rank of a flow. It shows that S2 provides better
fairness than SWDC and more than 75 percent of 52 flows
can achieve the maximum throughput. Measured by the
fairness index proposed by Jain et al. [37], 52 and SWDC 2D
have fairness value 0.995741 and 0.989277 respectively, both
are very high.

Completion time fairness. We take a representative produc-
tion run and plot the cumulative distribution of per-flow
completion time in Fig. 17. We found that 52 using 8-path
routing provides both fast completion and fairness among
flows — most flows finish in 0.2 - 0.4 second. S2 single-path
completes flows more slowly, but is still competitive with
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Fig. 15. All-flow completion time.
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SWDC 8-path routing. Clearly, SWDC single-path has the
worst performance in completion time as well as fairness
among flows. Jellyfish has similar results as 52, which is not
plotted to make the figures clear.

6.7 Routing Path Length

Fig. 18 shows the average routing path length of S2, SWDC,
and Jellyfish by varying the number of switches (12-port).
Using 12-port switches, the FatTree topology contains exactly
180 switches, with a switch-to-switch path length equal to
3.81. The average path length of 52 is clearly shorter than that
of SWDC and FatTree, and very close to that of Jellyfish,
which uses shortest path routing. For 800-switch networks,
the 90th percentile value is 8 for SWDC and 6 for S2 and Jelly-
fish. The 10th percentile values is 2 for all S2 and Jellyfish

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO. 11,

NOVEMBER 2016

Routing path length
N

0 200 400 600 800
I of switches

Fig. 19. Average path length of key-based routing.

8000 H
— SWDC i
g 7000F  —— §2 4l spaces e
3 -
2 6000f - $2 one space "
g
— " —_
£ 5000f_— =
| = -
U S ”
2 4000f
S ll
5 J
7 3000f
v
u
50 100 150 200

Rank of switches

Fig. 20. Num of key-value stores per switch.

networks, and 3 for all SWDC networks with more than 500
switches. We do not plot the 10th and 90th values because
they would make the figure too crowded. Results show that
greediest routing in multiple spaces produces much smaller
path lengths than greedy routing in a single space.

6.8 Key-Based Routing

For the performance of key-based routing, we measure rout-
ing path lengths, which reflect the store/retrieval latency,
and balance of key-value load among switches.

Fig. 19 shows the average key-based routing path length
of S2 and SWDC. Each value is the average path length of
100,000 different keys. Each data record is stored in 3-repli-
cation for both S2 and SWDC experiments. We find that 52
has significantly shorter routing paths, which also grow
more slowly with the increase of network size compared to
the SWDC paths. Fig. 20 shows the number of key-value
stores per switch (we assume the switch-to-server key map-
ping is balanced). Since SWDC uses uniform node coordi-
nates, it can achieve near-perfect load balance. If S2 only
uses coordinates in one space, the key-values stores are
very biased. However, when S2 applies replication in three
spaces, key-value storage load distribution is almost as uni-
form as that of SWDC.

6.9 Failure Resiliency

Evaluation of failure resiliency of greedy routing protocol. In this
set of experiments, we measure the routing performance of
52, SWDC, and Jellyfish, under switch link failures (a switch
failure can be modeled as multiple link failures). We show
the routing success rate versus the fraction of failed links in



YU AND QIAN: SPACE SHUFFLE: A SCALABLE, FLEXIBLE, AND HIGH-PERFORMANCE DATA CENTER NETWORK

OO
Q

S W

-=- S2
F 4= SWDC
F ¢ Jellyfish

Route success rate
o
~

0.4
0.00

0.05 0.10 0.15 0.20

Fraction of link failed randomly

Fig. 21. Routing success rate versus failure fraction.

Fig. 21. S2 is very reliable under link failures. When 20 per-
cent links fail, the routing success rate is higher than 0.85.
SWDC and Jellyfish perform clearly worse than S2. When
20 percent links fail, the routing success rate of SWDC is
0.70 and that of Jellyfish is 0.59. S2 uses greedy routing in
multiple spaces, hence it is less likely to encounter local
minimum under link failure compared to SWDC. Jellyfish
has the worst resiliency because it uses pre-computed paths.

Fig. 22 shows the normalized average routing path
length versus the failure fraction for the same set of experi-
ments. We compare the routing path lengths with those
without failures and plot the normalized values. We find
that switch link failures have no big impact to the average
routing path length of S2 and SWDC. However, we should
notice that a fraction of paths are broken and their lengths
cannot be measured.

Evaluation of the failure-recovery mechanism. In this set of
experiments, we measure the performance of the failure-
recovery protocol under link failures. Using 8-port 128-
switch topologies, we randomly remove a fraction of links
in the topology. We measure the network performance
using the single-path permutation traffic. Each plot in
Fig. 23 shows the maximum throughput of S2 using the fail-
ure-recovery protocol. We compare the throughput with
that of networks without failures. Using the failure-recovery
protocol, S2 is able to delivery all packets. However, due to
the existence of link failures, the throughput reduces
slightly. When 10 percent links fail, the throughput is still
higher than 0.85 of that in the static networks.

We also measure the completion time of flows under fail-
ures. We show the average flow completion time and the
all-flow completion time in Fig. 24. The all-flow completion
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Fig. 22. Greedy routing path length versus failure fraction.
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time on the complete graph is normalized to 1. Somewhat
surprisingly, we observe that the all-flow completion time
does not go up when failure exists. When there are 8 percent
failed links, the all-flow completion time is only 94 percent
of that of the complete topology. We conjecture that this is
because the paths discovered by the failure-resistant proto-
col is different from the greedy routing paths. As a result,
some heavy loaded links are avoided. Meanwhile, the aver-
age flow completion time rises slightly as the fraction of
failed links increases. When 20 percent of the links fail, the
average flow completion time rises by 8.6 percent.

7 DISCUSSION

7.1 Data Center Network Wiring
Labor and wiring expenses consume a significant part of
financial budget of building a data center.

One important feature of hierarchical data center net-
works, such as FatTree, is that cabling can be simplified by
taking the advantage of the local connection links within a
pod. However, wiring random connection based topologies
such as 52 and Jellyfish is complex. It is mainly because of the
links that may connect two arbitrary switches in the network.
In fact, most links in S2 and Jellyfish are not “local”. Hence
cables may be very long and hard to manage. Fortunately, the
coordinates of S2 still provide some locality information of
the switches and can be used to reduce the wiring complexity.

In an S2 topology, the majority of cables are inter-switch
ones. Thus, we propose to locate the switches physically
close to each other so that to reduce cable lengths as well as
labor work.

ol —©— All-flow completion time

=>— Mean flow completion time
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0.6 s 3¢ 3—3——H—H—H—H—X

0.05

Norm. flow compl time
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Fig. 24. Flow completion time versus failure fraction.
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Benefits of coordinates. It is possible to accommodate the
switches of an S2 network inside several standard racks.
These racks can be put close to each other and we suggest to
use aggregate cable bundles to connect them. The coordi-
nates provide a way to help to arrange the inter-rack cables
in order. A virtual space can be divided into several quad-
rants and we may allocate switches to racks based on corre-
sponding quadrants.

For inner-rack cables, a unique method provided by the
nature of coordinates, is using a patch panel that arranges
the cables in order according to the coordinates. Coordi-
nates make it possible to build aggregate bundle wires that
are similar to flexible flat cables.

Hamedazimi et al. [38] proposed to use free-space optical
communication in data center networks by putting mirrors
and lens on switch racks and the ceiling of data center to
reflect beams. Coordinates provide a unique way to locate
the switches, and make it able to have these beams neatly
ordered.

7.2 Server Multi-Homing

When the access bandwidth of servers becomes perfor-
mance bottleneck, an effective method to improve data cen-
ter throughput is using server multi-homing. For example,
the Dual-homed FatTree has been proposed, which pro-
vides throughput improvement with Multipath TCP
(MPTCP) for a wide range of practical workloads [39]. 52
is also able to adopt multi-homing servers and MPTCP.
When a server is connected to multiple S2 switches, it has
multiple routable addresses, i.e.,, the coordinates of its
access switches. The sender can split the flow to the receiver
into multiple subflows, each of which is routed to different
access switches using different coordinates. These subflows
can be maintained by MPTCP or by multiple TCP sessions
separately. Since we do not focus on resolving access band-
width bottleneck in this paper, we leave a comprehensive
study of 52 multi-homing in future work.

7.3 Direct Server Connection

Although S2 is proposed to interconnect ToR switches, we
may also use the S2 topology to connect servers directly and
forward packets using S2 routing protocols. Similar
approaches are also discussed in CamCube [13] and SWDC
[7]. There are mainly two key advantages to use this topol-
ogy. First, greedy routing on a server-centric topology can
effectively implement custom routing protocols to satisfy
different application-level requirements. This service is
called symbiotic routing [13]. Second, hardware acceleration
such as GPUs and NetFPGA can be used for packet switch-
ing to improve routing latency and bandwidth [7].

7.4 Switch Heterogeneity

S2 can be constructed with switches of different port num-
bers. The multiple ring topology requires each switch
should have at least 2L inter-switch ports. According to
Fig. 3 and other experimental results, five spaces are enough
to provide good network performance. It is reasonable to
assume that every switch in the network has at least 10
inter-switch ports. Switches with less ports may carry fewer
servers to maintain the required inter-switch port number.
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7.5 Possible Implementation Approaches

We may use open source hardware and software to imple-
ment S2’s routing logic such as NetFPGA. S2’s routing logic
only includes simple arithmetic computation and numerical
comparison and hence can be prototyped in low cost.

S2 can also be implemented using existing open-source
software utilities such as the Click Modular Router [18].
Using Click, an 52 switch can be implemented as an element.
The coordinates of the switch is passed to the element as the
initialization parameter. The elements pulls packets from
the incoming ports, computes the index of the nexthop port
and pushes the packet to the output port accordingly.

On x86 platforms, S2 can be implemented as an applica-
tion using the Intel Data Plane Development Kit (DPDK)
[19], which enables programmer to develop programs that
processes packets. The application reads packets from the
Rx queue, computes the next hop ports and send packets
towards the corresponding Tx queue.

Any forwarding algorithm can be implemented using
Click and DPDK. Since S2 only requires arithmetic compu-
tation, the time complexity of S2 forwarding on Click and
DPDK is small.

8 CONCLUSION

The key technical novelty of this paper is in proposing a
novel data center network architecture that achieves all of
the three key properties: high-bandwidth, flexibility, and
routing scalability. The significance of this paper in terms of
impact lies in that greediest routing of S2 is the first greedy
routing protocol to enable high-throughput multi-path rout-
ing. In addition, S2 supports efficient key-based routing for
various data center applications. We conduct extensive
experiments to compare S2 with two recently proposed
data center networks, SWDC and Jellyfish. Our results
show that S2 achieves the best of both worlds. Compared to
SWDC, S2 provides shorter routing paths and higher
throughput. Compared to Jellyfish, S2 demonstrates signifi-
cant lead in scalability while provides likewise high
throughput and bisectional bandwidth. We expect greedy
routing using multiple spaces may also be applied to other
large-scale network environments such as peer-to-peer sys-
tems due to its scalability and efficiency.
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