
1

A Scalable and Resilient Layer-2 Network with
Ethernet Compatibility

Chen Qian, Member, IEEE, and Simon S. Lam, Fellow, IEEE

Abstract—We present the architecture and protocols of ROME,
a layer-2 network designed to be backwards compatible with
Ethernet and scalable to tens of thousands of switches and
millions of end hosts. Such large-scale networks are needed
for emerging applications including data center networks, wide
area networks, and metro Ethernet. ROME is based upon
a recently developed greedy routing protocol, greedy distance
vector (GDV). Protocol design innovations in ROME include
a stateless multicast protocol, a Delaunay DHT, as well as
routing and host discovery protocols for a hierarchical network.
ROME protocols do not use broadcast and provide both control-
plane and data-plane scalability. Extensive experimental results
from a packet-level event-driven simulator, in which ROME
protocols are implemented in detail, show that ROME protocols
are efficient and scalable to metropolitan size. Furthermore,
ROME protocols are highly resilient to network dynamics. The
routing latency of ROME is only slightly higher than shortest-
path latency. To demonstrate scalability, we provide simulation
performance results for ROME networks with up to 25,000
switches and 1.25 million hosts.

I. INTRODUCTION

Layer-2 networks, each scalable to tens of thousands of
switches/routers and connecting millions of end hosts, are
needed for important future and current applications and
services including: data center networks [14], metro Ethernet
[1], [4], [15], [17], wide area networks [5], [19], [16], as well
as enterprise and provider networks.

Ethernet offers plug-and-play functionality and a flat MAC
address space. Ethernet MAC addresses, being permanent
and location independent, support host mobility and facilitate
management functions, such as trouble shooting and access
control. For these reasons, Ethernet is easy to manage. How-
ever Ethernet is not scalable to a large network because it uses
a spanning tree routing protocol that is highly inefficient and
not resilient to failures. Also, after a cache miss, it relies on
network-wide flooding for host discovery and packet delivery.

Today’s metropolitan and wide area Ethernet services pro-
vided by network operators are based upon a network of
IP (layer-3) and MPLS routers which interconnect relatively
small Ethernet LANs [15]. Adding the IP layer to perform
end-to-end routing in these networks nullifies Ethernet’s de-
sirable properties. Large IP networks require massive efforts
by human operators to configure and manage, especially for
enterprise and data center networks where host mobility and
VM migration are ubiquitous. This is because IP addresses

This work was sponsored by National Science Foundation grants CNS-
0830939 and CNS-1214239. An abbreviated version of this paper [38]
appeared in Proceedings of IEEE ICNP, Austin, TX, November 2012.

Chen Qian is with the Department of Computer Science, University of
Kentucky, Lexington, KY 40506 (e-mail: qian@cs.uky.edu). Simon S. Lam is
with the Department of Computer Science, The University of Texas at Austin,
Austin, TX 78712 (e-mail: lam@cs.utexas.edu).

are location-dependent and change with host mobility and VM
migration. Network configurations and policies, such as access
control policies, specified by IP addresses require frequent
updates which impose a large administrative burden. As an
example, Google’s globally-distributed database scales up to
millions of machines across hundreds of data centers [10]
which are interconnected in layer 3. Using a scalable layer-2
networking technology, management complexity and cost of
such huge networks could be significantly reduced.

Networks that use shortest-path routing on flat addressing in
layer 2 have been proposed [21], [14]. These networks require
a large amount of data-plane state (forwarding table entries) to
reach every destination in the network. Also, when multicast
and VLAN are used, each switch has to store a lot more state
information. Such data plane scalability is challenging because
high-speed memory is both expensive and power hungry [49].

Besides scalability, resiliency is also an important require-
ment of large layer-2 networks. According to a recent study
by Cisco [3], availability and resilience are the most important
network performance metrics for distributed data processing,
such as Hadoop, in large data centers. Without effective fail-
ure recovery techniques, job completion will be significantly
delayed.

Therefore, it is desirable to have a scalable and resilient
layer-2 network that is backwards compatible with Ether-
net, i.e., its switches interact with hosts by Ethernet frames
using conventional Ethernet format and semantics. Ethernet
compatibility provides plug-and-play functionality and ease of
network management. Hosts still run current protocols and use
IP addresses as identifiers but the network does not use IP
addresses for routing.

In this paper, we present the architecture and protocols of a
scalable and resilient layer-2 network, named ROME (which is
acronym for Routing On Metropolitan-scale Ethernet). ROME
is fully decentralized and self-organizing without any central
controller or special nodes. All switches execute the same
distributed algorithms in the control plane. ROME uses greedy
routing instead of spanning-tree or shortest-path routing to
achieve scalability and resiliency. ROME provides control-
plane scalability by eliminating network broadcast and limiting
control message propagation within a local area. ROME pro-
vides data-plane scalability because each switch stores small
routing and multicast states.

ROME protocols utilize some recent advances in greedy
routing, namely, GDV on VPoD [37] and MDT [25]. Un-
like greedy routing in wireless sensor and ad hoc networks,
switches in ROME do not need any location information.
For routing in ROME, a virtual space is first specified, such



2

TABLE I
COMPARISON OF NETWORK PROTOCOLS IN ETHERNET, SEATTLE, AND ROME

Service Ethernet SEATTLE [21] ROME
Routing spanning tree link-state greedy routing in virtual space
Multicast/VLAN VLAN trunk protocol [2] stateful multicast trees stateless multicast
Host discovery/address resolution ARP [36] and DHCP [11] one-hop DHT DHT using greedy routing

as, a rectangular area in 2D.1 Each switch uses the VPoD
protocol to compute a position in the virtual space such that
the Euclidean distance between two switches in the space is
proportional to the routing cost between them. This property
enables ROME to provide routing latency only slightly higher
than shortest-path latency. Switches construct and maintain
a multi-hop Delaunay triangulation (MDT) which guarantees
that GDV routing finds the switch closest to a given destination
location [37], [25].

A. High level architecture and contributions of this paper

Protocol design innovations in this paper include the fol-
lowing: (i) a stateless multicast protocol to support VLAN
and other multicast applications; (ii) protocols for host and
service discovery using a new method, called Delaunay DHT
(D2HT); (iii) new routing and host discovery protocols for a
hierarchical network.

In Table I, we compare the protocols in ROME with those in
Ethernet and SEATTLE [21]. The protocols provide three basic
services of a layer-2 network, i.e., routing, multicast/VLAN,
and host discovery/address resolution. Both ROME and SEAT-
TLE have been designed to be compatible with Ethernet, i.e.,
each network interacts with hosts using Ethernet frames with
conventional Ethernet format and semantics.

Network-wide broadcast is used by the spanning tree proto-
col in the data plane and the link-state protocol in the control
plane. ROME does not use any broadcast. Instead it uses a
greedy routing protocol (GDV) in a 2D virtual space such that
each switch exchanges control messages with other switches
within a local area. Greedy routing also provides scalability
in the data plane because each switch only stores information
about a small subset of other switches, independent of the
network size. The coordinates of switches in the virtual
space are computed by the VPoD protocol [37]. VPoD [37]
incurs control message overhead but, for each switch, VPoD
effectively limits control message communication to a small
subset of other switches. In this paper, we will show that the
overall control message cost of ROME is much less than that
of link-state broadcast used in SEATTLE.

Multicast and VLAN protocols of Ethernet and SEATTLE
require storing state in each switch; hence the number of
multicast or VLAN groups in the network is limited by switch
memory size. ROME resolves this scalability problem by using
a stateless multicast protocol. Switches are free of multicast
state and utilize information stored in ROME’s multicast
packet header and unicast forwarding to provide multicast and
VLAN services.

SEATTLE uses the global switch-level view provided by
link-state routing to form a one-hop DHT, which stores the

12D, 3D, or a higher dimension can be used [25].

location of each host [21]. This approach, however, requires
each switch to store information about all other switches in
the network. For Delaunay DHT used in ROME, each switch
stores only a subset of other switches.

It has been shown that the forwarding table size and control
message overhead of SEATTLE are at least an order of magni-
tude smaller than those of Ethernet [21]. Therefore we evaluate
and compare the performance of ROME with SEATTLE only
using a packet-level event-driven simulator in which ROME
protocols (including GDV, MDT, and VPoD) and SEATTLE
protocols are implemented in detail. Every protocol message
is routed and processed by switches hop by hop from source to
destination. Experimental results show that ROME performed
better than SEATTLE by an order of magnitude with respect
to each of the following performance metrics: switch storage,
control message overhead during initialization and in steady
state, and routing failure rate during network dynamics.

The routing latency of ROME is only slightly higher than
the shortest-path latency. ROME protocols are highly resilient
to network dynamics and switches quickly recover after a peri-
od of churn. To demonstrate scalability, we provide simulation
performance results for ROME networks with up to 25,000
switches and 1.25 million hosts.

B. Paper outline

The balance of this paper is organized as follows. In Section
II, we discuss related work. In Section III, we introduce MDT,
VPoD, and GDV routing. We then present location hashing
in a virtual space and stateless multicast. In Section IV, we
present Delaunay DHT and its application to host discovery,
i.e., address and location resolution. In Section V, we present
ROME’s architecture and routing protocols for hierarchical
networks. In Section VI, we present performance evaluation
and comparison of ROME and SEATTLE. We conclude in
Section VIII.

II. RELATED WORK

A. Scalable Ethernet

Towards the goal of scalability, Myers et al. [34] proposed
replacing Ethernet broadcast for host discovery by a layer-
2 distributed directory service. In 2007, replacing Ethernet
broadcast by a distributed hash table (DHT) was proposed
independently by Kim and Rexford [22] and Ray et al. [42].
In 2008, Kim et al. presented SEATTLE [21] which uses link-
state routing, a one-hop DHT (based on link-state routing) for
host discovery, and multicast trees for broadcasting to VLANs.
Scalability of SEATTLE is limited by link-state broadcast as
well as a large amount of data plane state needed to reach every
switch in the network [49]. In 2010, AIR [44] was proposed to
replace link-state routing in SEATTLE. However, its latency
was found to be larger than the latency of SEATTLE by 1.5



3

orders of magnitude. In 2011, VIRO [18] was proposed to
replace link-state routing. To construct a rooted virtual binary
tree for routing, a centralized algorithm was used for large
networks (e.g., enterprise and campus networks).

To increase the throughput and scalability of Ethernet for
data center networks, SPAIN [33] and PAST [46] proposed the
use of many spanning trees for routing. In SPAIN, an offline
network controller first pre-computes a set of paths that exploit
redundancy in a given network topology. The controller then
merges these paths into a set of trees and maps each tree
onto a separate VLAN. SPAIN requires modification to end
hosts. PAST does not requires end-host modification; instead,
a spanning tree is installed in network switches for every host.
The important issue of data plane scalability was not addressed
in both papers.

In four of the five papers with simulation results to show
network performance [21], [44], [18], [46], scalability was
demonstrated for networks of several hundred switches. In
SPAIN [33], simulation experiments were performed for spe-
cial data center network topologies (e.g., Fat Tree) of up to
2,880 switches. In this paper, we demonstrate scalability of
ROME from experiments that ran on a packet-level event-
driven simulator for up to 25,000 switches and 1.25 million
hosts.

ROME was designed to run on general topologies. Today’s
data center networks are often physically inter-connected as
a multi-rooted tree. Thus special topologies with a known
structure can be exploited to improve routing and forwarding
efficiency. FCP [24] shows the benefits of assuming some
knowledge of baseline topology in routing protocols. PortLand
[35] is a scalable layer-two design for Fat Tree topologies. It
employs a lightweight protocol to enable switches to discover
their positions in the topology. It further assigns internal
hierarchical addresses to all end hosts to encode their positions
in the topology. Portland uses a central controller to handle the
more complicated portions of address assignment as well as
all routing. ALIAS was later designed to explore the extent
to which hierarchical host labels can be assigned for routing
and forwarding, in a decentralized, scalable, and broadcast-
free manner for indirect hierarchical topologies [48].

B. Greedy routing and virtual coordinates

Many greedy geographic routing protocols have been de-
signed for wireless sensor and ad hoc networks. Two of the
earliest protocols, GFG [8] and GPSR [20], use face routing to
move packets out of local minima. They require the network
topology to be a planar graph in 2D to avoid routing failures.
Kim et al. [23] proposed CLDP which, given any connectivity
graph, produces a subgraph in which face routing would not
cause routing failures. Leong et al. proposed GDSTR [27]
for greedy routing without the planar graph assumption by
maintaining a hull tree. Lam and Qian proposed MDT [25]
for any connectivity graph of nodes with arbitrary coordinates
in a d-dimensional Euclidean space (d ≥ 2). From simulation
experiments in which GFG/GPSR, CLDP, GDSTR, and MDT-
greedy ran on the same networks, it is shown that MDT-greedy
provides the lowest routing stretch and the highest routing
success rate (1.0) [25].

Many virtual coordinate schemes have been proposed for
wireless networks when node location information is un-
available (e.g., [39], [12], and [9]). In each scheme, the
main objective is to improve greedy routing success rate.
Tsuchiya designed a hierarchical routing protocol using virtual
landmarks for large networks [47]. Lua et al. proposed to use
network-aware coordinates for overlay multicast [28]. VPoD
[37] is the only virtual coordinate protocol designed to predict
and minimize the routing cost between nodes.

III. ROUTING IN ROME

A. Services provided by MDT, VPoD, and GDV

ROME uses greedy routing to provide scalability and re-
siliency. The protocol used by ROME switches is GDV routing
which uses services provided by VPoD and MDT protocols
[37], [25].

In what follows, we first define Delaunay triangulation (DT)
before providing a brief overview of the three protocols.

A triangulation of a set S of nodes (points) in 2D is
a subdivision of the convex hull of nodes in S into non-
overlapping triangles such that the vertices of each triangle
are nodes in S. A DT in 2D is a triangulation such that
the circumcircle of each triangle does not contain any other
node inside [13]. The definition of DT can be generalized
to a higher dimensional Euclidean space using simplexes and
circum-hyperspheres. In each case, the DT of S is a graph that
can be computed from locations of the nodes in the Euclidean
space.

In a DT, two nodes sharing an edge are said to be DT
neighbors. For 2D, Bose and Morin [7] proved that greedy
forwarding in a DT guarantees to find the destination node.
For 2D, 3D, and higher dimensional Euclidean spaces, Lee
and Lam [26] generalized their result and proved that greedy
forwarding in a DT guarantees to find the node closest to a
destination location. Since two neighbors in a DT graph may
not be directly-connected, nodes maintain forwarding tables
for communication between DT neighbors multiple hops apart
(hence the name, multi-hop DT [25]).

At network initialization, each ROME switch assigns itself a
random location in the virtual space and discovers its directly-
connected neighbors. Each pair of directly-connected switches
exchange their unique identifiers (e.g., MAC addresses) and
self-assigned locations. Then, the switches have enough in-
formation to construct and maintain a multi-hop Delaunay
triangulation using MDT protocols [25].

ROME switches then repeatedly exchange messages with
their neighbors, including multi-hop DT neighbors, and change
their positions. Using the VPoD protocol [37], each switch
moves its location in the virtual space by comparing, for each
neighbor, the Euclidean distance with the routing cost between
them. (Routing cost can be in any additive metric.) A switch
stops running VPoD when the amount of location change has
converged to less than a threshold value. When all switches
finish, the Euclidean distance between two switches in the
virtual space approximates the routing cost between them.
(This is why greedy routing using VPoD coordinates can find
near-optimal routes.) Then switches use their updated locations



4

to construct a new multi-hop DT to be used by GDV routing
[37].

GDV routing is greedy routing in the multi-hop DT of a
set of nodes with VPoD coordinates [37]. GDV guarantees to
route every packet to the switch that is closest to the packet’s
destination location. It has been shown that the VPoD protocol
is very effective such that GDV’s routing cost is not much
higher than that of shortest-path routing.

MDT [25] and VPOD [37] protocols do not use broadcast.
MDT has a very efficient and effective search method for
each switch to find its multi-hop DT neighbors; in particular,
each switch only communicates with a small subset of other
switches in a large network. Also, construction of virtual
coordinates by VPoD can be performed in a short time.
Furthermore, MDT and VPoD protocols have been designed
to be highly resilient to rapid topology changes. Due to space
limitation, we omit a detailed explanation of design tradeoffs
and performance evaluation results of MDT, VPoD, and GDV.
The interested reader is referred to our prior publications [25],
[37].

B. Virtual space for switches

Consider a network of switches with an arbitrary topology
(any connected graph). Each switch selects one of its MAC ad-
dresses to be its identifier. End hosts are connected to switches
which provide frame delivery between hosts. Ethernet frames
for delivery are encapsulated in ROME packets. Switches
interact with hosts by Ethernet frames using conventional
Ethernet format and semantics. ROME protocols run only in
switches. Link-level delivery is assumed to be reliable.

A Euclidean space (2D, 3D, or a higher dimension) is
chosen as the virtual space. The number of dimensions and
the minimum and maximum coordinate values of each di-
mension are specified in the token at the beginning of VPoD
construction [37] and known to all switches. Each switch
determines for itself a location in the space represented by
a set of coordinates.

Location hashing. To start ROME protocols, each switch
boots up and assigns itself an initial location randomly by
hashing its identifier, IDS, using a globally-known hash func-
tion H. The hash value is a binary number which is converted
to a set of coordinates. Our protocol implementation uses the
hash function MD5 [43], which outputs a 16-byte binary value.
4 bytes are used for each dimension. Thus locations can be in
2D, 3D, or 4D.2

Consider, for example, a network that uses a 2D virtual
space. For 2D, the last 8 bytes of H(IDS) are converted to two
4-byte binary numbers, x and y. Let MAX be the maximum
4-byte binary value, that is, 232 − 1. Also let mink and maxk
be the minimum and maximum coordinate values for the kth
dimension. Then the location in 2D obtained from the hash val-
ue is (min1 +

x
MAX (max1 −min1), min2 +

y
MAX (max2 −min2)),

where each coordinate is a real number. The location can be
stored in decimal format, using 4 bytes per dimension. Here-
after, for any identifier, ID, we will use H(ID) to represent

2Conceptually, a higher dimensional space gives VPoD more flexibility but
requires more storage space and control overhead. Our experimental results
show that VPoD’s performance in 2D is already very good.

its location in the virtual space and refer to H(ID) as the
identifier’s location hash or, simply, location.

Switches discover their directly-connected neighbors and,
using their initial locations, proceed to construct a multi-hop
DT [25]. Switches then update their locations using VPoD
and construct a new multi-hop DT as described in subsection
III-A.

Unicast routing. Unicast packet delivery in ROME is
provided by GDV routing in the multi-hop DT maintained by
switches. In a correct multi-hop DT, GDV routing of a packet
guarantees to find the switch that is closest to the destination
location of the packet [25], [37] assuming reliable link-level
delivery and no packet drop due to congestion.

As in most prior work [21], [49], [44], [18], the issue of
multi-path routing and traffic engineering is not addressed
herein and will be an interesting problem for future work.

C. Hosts

Hosts have IP and MAC addresses. Each host is directly
connected to a switch called its access switch. An access
switch knows the IP and MAC addresses of every host
connected to it. The routable address of each host is the
location of its access switch in the virtual space, also called the
host’s location. Hosts are not aware of ROME protocols and
run ARP [36], DHCP [11], and Ethernet protocols in the same
way as when they are connected to a conventional Ethernet.

D. Stateless multicast and its applications

To provide the same services as conventional Ethernet,
ROME needs to support group-wide broadcast or multicast,
for applications, such as, VLAN, teleconferencing, television,
replicated storage/update in data centers, etc.

A straightforward way to deliver messages to a group
is by using a multicast tree similar to IP multicast [21].
All broadcast packets within a group are delivered through
a multicast tree sourced at a dedicated switch, namely a
broadcast root, of the group. When a switch detects that one of
its hosts is a member of a group, the switch joins the group’s
multicast tree and stores some multicast state for this group.
When there are many groups with many hosts in each group,
the amount of multicast state stored in switches can become
a scalability problem.

We present a stateless multicast protocol for group-wide
broadcast in ROME. A group message is delivered using the
locations of its receivers without construction of any multicast
tree. Switches do not store any state for delivering group
messages.

The membership information of stateless multicast is main-
tained at a rendezvous point (RP) for each group. The RP of
a group is determined by the location hash H(IDG), where
IDG is the group’s ID. The switch whose location is closest
to H(IDG) serves as the group’s RP. The access switch of the
sender of a group message sends the message to the RP by
unicast. GDV routing guarantees to find the switch closest to
H(IDG).

The RP then forwards the message to other group members
(receivers) as follows: The RP partitions the entire virtual
space into multiple regions. To each region with one or more



5

SP1

S1

S2

S3

a

b

c

d f

e

g

(a) Split at S1

SP1

SP2

S1

S2 S3

a

b

c

d f

e

g

(b) Splits at S2 and S3

Fig. 1. Example of stateless multicast

receivers, the RP sends a copy of the group message with
the region’s receivers (their locations) in the message header
(actually the ROME packet header). The destination of the
group message for each region is a location, called split
position (SP), which is either (i) the closest receiver location
in that region, or (ii) the mid-point of the two closest receiver
locations in the region. By GDV routing, the group message
will be routed to a switch closest to the SP. This switch will in
turn partition its region into multiple sub-regions and send a
copy of the group message to the SP of each sub-region. Thus
a multicast tree rooted at the RP grows recursively until it
reaches all receivers. The tree structure is not stored anywhere.
At each step of the tree growth, a switch computes SP’s for
the next step based on receiver locations in the group message
it is to forward.

We present an example of stateless multicast in Figure 1(a).
The group consists of 7 hosts a,b,c,d,e, f ,g, connected to
different switches with locations in a 2D virtual space as
shown. Switch S1 serves as the RP. Host a sends a message to
the group by first sending it to S1. Upon receiving the message,
S1 realizes that it is the RP. S1 partitions the entire virtual space
into four quadrants and sends a copy of the message by unicast
to each of the 3 quadrants with at least one receiver. The
message to the northeast quadrant with four receivers (d,e, f ,
and g) is sent to a split position, SP1, which is the midpoint
between the locations of d and e, the two receivers closest to
S1. The message will then be routed by GDV to S2, the switch
closest to SP1.

Subsequently, S2 partitions the space into four quadrants and
sends a copy of the message to each of the three quadrants
with one or more receivers (see Figure 1(b)). For the northeast
quadrant that has two receivers, the message is sent to the split
position, SP2, which is the midpoint between the locations of
f and g. The message to SP2 will be routed by GDV to S3, the
switch closest to SP2, which will unicast copies of the message
to f and g.

In ROME, for each group, its group membership infor-
mation is stored in only one switch, the group’s RP. For
this group, no multicast state is stored in any other switch.
This is a major step towards scalability. The tradeoff for
this gain is an increase in communication overhead from
storing a set of receivers in the ROME header of each group
message. Experimental results in subsection VI-H show that
this communication overhead is small. This is because when

the group message is forwarded by the RP and other switches,
the receiver set is partitioned into smaller and smaller subsets.
For an extremely large group that does not fit into the header
of a group message, we can trade switch space for header
space by allowing some switches (SPs) to store membership
information of their regions.

The implementation of stateless multicast, as described, is
not limited to the use of a 2D space. Also, partitioning of a 2D
space at the RP, or at a switch closest to a SP, is not limited to
four quadrants. The virtual space can be partitioned into any
number of regions evenly or unevenly.

Stateless multicast for VLAN. Members of a VLAN
are in a logical broadcast domain; their locations may be
widely distributed in a large-scale Ethernet. ROME’s stateless
multicast protocol is used to support VLAN broadcast. When
a switch detects that one of its hosts belongs to a VLAN, it
sends a Join message to location H(IDV ), where IDV is the
VLAN ID. By GDV, The Join message is routed to the switch
closest to H(IDV ), which is the RP of the VLAN. The RP
then adds the host to the VLAN membership. The protocol
for a host to leave a VLAN is similar. VLAN protocols in
ROME are much more efficient than the current VLAN Trunk
Protocol used in conventional Ethernet [2]. The number of
global VLANs is restricted to 4094 in conventional Ethernet
[15]. There is no such restriction in ROME because stateless
multicast does not require switches to store VLAN information
to perform forwarding.

If the RP of a group (or VLAN) has failed, the switch that
is closest to the location hash, H(IDG), of the group becomes
the new RP. Group membership information is backed up
on a server. Periodically, the server probes each RP it backs
up. When a failed RP is detected, the server transfers group
membership information to the new RP.

IV. HOST AND SERVICE DISCOVERY IN ROME
Suppose a host knows the IP address of a destination host

from some upper-layer service. To route a packet from its
source host to its destination host, switches need to know the
MAC address of the destination host as well as its location,
i.e., location of its access switch. Such address and location
resolution are together referred to as host discovery.
A. Delaunay distributed hash table

The benefits of using a DHT for host discovery include
the following: (i) uniformly distributing the storage cost of



6

Location 

H(kb)

Sa

2. S’: closest to 

H(kb), stores 

the tuple

Sb

a

b

3. Message to b

4. Sending the 

query to H(kb)

1. Publishing <kb, vb>

to H(kb)

5. Replying <kb, vb>

to Sa

S’

Fig. 2. Sb publishes a tuple of b. Sa performs a lookup of b

host information over all network switches, and (ii) enabling
information retrieval by unicast rather than flooding. The
one-hop DHT in SEATTLE [21] uses consistent hashing of
identifiers into a circular location space and requires that every
switch knows all other switches. Such global knowledge is
made possible by link-state broadcast, which limits scalability.

In ROME, the Delaunay DHT (or D2HT) uses location
hashing of identifiers into a Euclidean space (2D, 3D, or a
higher dimension) as described in subsection III-B.

D2HT uses greedy routing (GDV) in a multi-hop DT
where every switch only needs to know its directly-connected
neighbors and its neighbors in the DT graph. Furthermore,
each switch uses a very efficient search method to find its
multi-hop DT neighbors without broadcast [25].

In D2HT, information about host i is stored as a key-value
tuple, ti =< ki, vi >, where the key ki may be the IP (or
MAC) address of i, and vi is host information, such as its
MAC address, location, etc. The access switch of host i is the
publisher of i’s tuples. A switch that stores < ki, vi > is called
a resolver of key ki. The tuples are stored as soft state.

To publish a tuple, ti =< ki, vi >, the publisher computes
its location H(ki) and sends a publish message of ti to
H(ki). Location hashes are randomly distributed over the entire
virtual space. It is possible but unlikely that a switch exists
at the exact location H(ki). The publish message is routed
by GDV to the switch whose location is closest to H(ki),
which then becomes a resolver of ki. When some other switch
needs host i’s information, it sends a lookup request message
to location H(ki). The lookup message is routed by GDV to
the resolver of ki, which sends the tuple < ki, vi > to the
requester. A publish-lookup example is illustrated in Figure 2.

Comparison with GHT. At a high level of abstraction, D2HT
bears some similarity to Geographic Hash Table (GHT) [41].
However, D2HT was designed for a network of switches
with no physical location information. On the other hand,
GHT was designed for a network of sensors in the physical
world with the assumption that sensors know their geographic
locations through use of GPS or some other localization
technique. Also, for greedy routing, GHT uses GPSR which
provides delivery of a packet to its destination under the highly
restrictive assumption that the network connectivity graph can
be planarized [20]. Thus protocols of D2HT and GHT are
very different and the network environments of their intended

applications are also different.
Comparison with CAN. D2HT and Content Addressable

Network (CAN) [40] are very different in design although they
both use a d-dimensional virtual space. In CAN, the entire
virtual space is dynamically partitioned into zones each of
which is owned by a node. Nodes in a CAN self-organize into
an overlay network that depends on the underlying IP network
for packet delivery. D2HT does not have the concepts of zone
and zone ownership. Instead, switches find their locations in a
virtual space using location hashing described in Section III-B.

B. Host discovery using D2HT

In ROME, the routable address of host i is i’s location ci,
which is the location of its access switch. There are two key-
value tuples for each host, for its IP-to-MAC and MAC-to-
location mappings.

In a tuple for host i, the key ki may be its IP or MAC
address. If ki is the MAC address, value vi includes location
ci and the unique ID, Si, of i’s access switch. If ki is the IP
address, the value vi includes the MAC address, MACi, as well
as ci and Si. Note that the host location is included in both
tuples for each host.

After a host i is plugged into its access switch Si with
location ci, the switch learns the host’s IP and MAC addresses,
IPi and MACi, respectively. Si then constructs two tuples:
< MACi, ci, Si > and < IPi, MACi, ci, Si >, and stores them
in local memory. Si then sends publish messages of the two
tuples to H(IPi) and H(MACi).

Note that each switch stores two kinds of tuples. For a tuple
with key ki stored by switch S, if S is i’s access switch, the
tuple is a local tuple of S. Otherwise, the tuple is published
by another switch and is an external tuple of S. Switches store
key-value tuples as soft state.

Each switch interacts with directly-connected hosts using
frames with conventional Ethernet format and semantics.
When a host j sends its access switch S j an ARP query
frame with destination IP address IPi and the broadcast MAC
address, S j sends a lookup request to location H(IPi), which is
routed by GDV to a resolver of IPi. The resolver sends back to
S j the tuple < IPi, MACi, ci, Si >. After receiving the tuple, the
access switch S j caches the tuple and transmits a conventional
ARP reply frame to host j. When j sends an Ethernet frame
with destination MACi, the access switch S j retrieves location
ci from its local memory and sends the Ethernet frame to ci.
If S j cannot find the location of MACi in its local memory
because, for instance, the cached tuple has been overwritten,
it sends a lookup request which is routed by GDV to H(MACi)
to get the MAC-to-location mapping of host i.

All publish and lookup messages are unicast messages.
Host discovery in ROME is accomplished on demand and is
flooding-free.

C. Reducing lookup latency

We designed and evaluated several techniques to speed up
key-value lookup for host discovery, namely: (i) using multiple
independent hash functions to publish each key-value tuple at
multiple locations, (ii) hashing to a smaller region in the virtual
space, (iii) caching key-value tuples for popular hosts as well



7

as other shortcuts for faster responses. These latency reduction
techniques are omitted due to page limitation.

D. Maintaining consistent key-value tuples

A key-value tuple < ki,vi > stored as an external tuple in a
switch is consistent iff (i) the switch is closest to the location
H(ki) among all switches in the virtual space, and (ii) ci is
the correct location of i’s access switch. At any time, some
key-value tuples may become inconsistent as a result of host
or network dynamics.

Host dynamics. A host may change its IP address, such as,
when a mobile node moves to a new physical location or a
virtual machine migrates to a new system. A host may also
change its MAC address due to NIC card change or MAC
address spoofing.

Network dynamics. These include the addition of new
switches or links to the network as well as deletion/failure of
existing switches and links. MDT and VPoD protocols have
been shown to be highly resilient to network dynamics (churn)
[25], [37]. Switch states of the multi-hop DT as well as switch
locations in the virtual space recover quickly to correct values
after churn. The following discussion is limited to how host
and network dynamics are handled by switches in the role of
publisher and in the role of resolver in D2HT.

As a publisher, each switch ensures that local tuples of its
hosts are correct when there are host dynamics. For example,
if a host has changed its IP or MAC address, the host’s tuples
are updated accordingly. If a new host is plugged into the
switch, it creates tuples for the new host. New as well as
updated tuples are published to the network. In addition to
these reactions to host dynamics, switches also periodically
refresh tuples they previously published. For every local tuple
< ki, vi >, S sends a refresh message every Tr second to its
location H(ki). The purpose of a refresh message is twofold: (i)
If the switch closest to location H(ki) is the current resolver,
timer of the soft-state tuple in the resolver is refreshed. (ii)
If the switch closest to H(ki) is different from the current
resolver, the refresh message notifies the switch to become a
resolver.

As a resolver, each switch sets a timer for every external
tuple stored in local memory. The timer is reset by a request
or refresh message for the tuple. If a timer has not been reset
for Te time, timeout occurs and the tuple will be deleted by
the resolver. Te is set to a value several times that of Tr.

For faster recovery from network dynamics, we designed
and implemented a technique, called external tuple handoff.
When a switch detects topology or location changes in the
multi-hop DT, it checks the location H(ki) of every external
tuple < ki, vi >. If the switch finds a physical or DT neighbor
closer to H(ki) than itself, it sends a handoff message including
the tuple to the closer neighbor. The handoff message will be
forwarded by GDV until it reaches the switch closest to H(ki),
which then becomes the tuple’s new resolver.

E. DHCP server discovery using D2HT

In a conventional Ethernet, a new host broadcasts a Dynamic
Host Configuration Protocol (DHCP) discover message to find
a DHCP server. Each DHCP server that has received the

discover message allocates an IP address and broadcasts a
DHCP offer message to the host. The host broadcasts a DHCP
request to accept an offer. The selected server broadcasts a
DHCP ACK message. Other DHCP servers, if any, withdraw
their offers.

In ROME, the access switch of each DHCP server publishes
the server’s information to a location using a key known by
all switches, such as, “DHCPSERVER1”. When some access
switch receives a DHCP discover message from one of its
hosts, it sends a server query message to the location of
a specific DHCP server. The query is routed by GDV to
the resolver of the server. The resolver sends to the access
switch a reply message containing the location of the specific
DHCP server. The access switch then sends a DHCP request
to the server and subsequently receives a DHCP offer from
the queried server. In these message exchanges, each message
is sent by unicast. (Unlike Ethernet, broadcast is not used.) To
be compatible with a conventional Ethernet, the access switch
replies to the host with a DHCP offer and later transmits a
DHCP ACK in response to the host’s DHCP request.

V. ROME FOR A HIERARCHICAL NETWORK

A metropolitan or wide area Ethernet spanning across a
large geographic area typically has a hierarchical structure
comprising many access networks interconnected by a core
network [17]. Each access network has one or more border
switches. The border switches of all access networks form the
core network. Consider a hierarchical network consisting of
500 access networks each of which has 2000 switches. The
total number of switches is 1 million. At 100 hosts per switch,
the total number of hosts is 100 millions. We believe that
a 2-level hierarchy is adequate for metropolitan scale in the
foreseeable future.

A. Routing in a hierarchical network

For hierarchical routing in ROME, separate virtual spaces
are specified for the core network and each of the access
networks, called regions. Every switch knows the virtual space
of its region (i.e., dimensionality as well as maximum and
minimum coordinate values of each dimension). Every border
switch knows two virtual spaces, the virtual space of its region
and the virtual space of the core network, called backbone.

The switches in a region first discover their directly-
connected neighbors. They then use MDT and VPoD protocols
to determine their locations in the region’s virtual space
(regional locations) and construct a multi-hop DT for the
access network. Similarly, the border switches use MDT and
VPoD protocols to determine their locations in the virtual
space of the backbone (backbone locations) and construct a
multi-hop DT for the core network. Each border switch sends
its information (unique ID, regional and backbone locations)
to all switches in its region.

The Delaunay DHT requires the following extension for
hierarchical routing: Each key-value tuple < ki,vi > of host i
stored at a resolver includes additional information, Bi, which
specifies the IDs and backbone locations of the border switches
in host i’s region.



8

virtual spaces of 
access networks

virtual space of the 
core network

Inter-region 
routing

Intra-region 
routing

use regional 
location

1. use regional 
location

2. use backbone 
location

3. use regional 
location

S1

S2

S3 S4

S5

S6

S7

S8

virtual space 
of the access 

network

Fig. 3. Routing in a hierarchical network

When a host sends an Ethernet frame to another host, its
access switch obtains, from its cache or using host discovery,
the destination host’s key-value tuple, which includes border
switch information of the destination region. This information
allows the access switch to determine whether to route the
frame to its destination using intra-region routing or inter-
region routing.

Intra-region routing. The sender’s access switch indicates
in the ROME packet header that this is an intra-region packet.
The routable address is the regional location of the access
switch of the receiver. The packet will be routed by GDV to
the access switch of the receiver as previously described. In
the example of Figure 3, an intra-region packet is routed by
GDV from access switch S1 to destination host’s access switch
S2 in the same regional virtual space.

Inter-region routing. For a destination host in a different
region, an access switch learns, from the host’s key-value
tuple, information about the host’s border switches and their
backbone locations. This information is included in the ROME
header encapsulating every Ethernet frame destined for that
host.

We describe inter-region routing of a ROME packet as
illustrated in Figure 3. The origin switch S1 computes its
distances in the regional virtual space to the region’s border
switches, S3 and S4. S1 chooses S3 which is closer to S1 than
S4. The packet is routed by GDV to S3 in the regional virtual
space.

S3 learns from the ROME packet header, S5 and S8, bor-
der switches in the destination’s region. S3 computes their
distances to destination S7 in the destination region’s virtual
space. S3 chooses S5 because it is closer to the destination loca-
tion. The packet is then routed by GDV in the backbone virtual
space to S5. Lastly, the packet is routed, in the destination
region’s virtual space, by GDV from S5 to S7, which extracts
the Ethernet frame from the ROME packet and transmits the
frame to the destination host.

Note that at the border switch S3, it has a choice of
minimizing the distance traveled by the ROME packet in the
backbone virtual space or in the destination region’s virtual
space. In our current ROME implementation, the distance

in the destination region’s virtual space is minimized. This
is based upon our current assumption that the number of
switches in an access network is larger than the number of
switches in the core network. This choice at a border switch is
programmable and can be easily reversed. It is not advisable
to use the sum of distances in two different virtual spaces
(specified independently) to determine routing because they
are not comparable. This restriction may be relaxed but it is
beyond the scope of this paper.

The destination region may have a large number of border
switches. Inter-region routing works correctly if at least one
border switch of the destination region is included in the
ROME header. Including fewer border switches reduces header
size. The tradeoff is less flexibility for the source region’s
border switch to optimize routing distance.

B. Host discovery in a hierarchical network

As illustrated in Figure 4, the key-value tuple < ki,vi >
of host i is published to two resolvers in the entire network,
namely: a regional resolver and a global resolver. The regional
resolver is the switch closest to location H(ki) in the same
region as host i; it is labeled by Sr1 in the figure. The publish
and lookup protocols are the same as the ones presented in
subsection IV-B. To find a tuple with key ki, a switch sends
a lookup message to position H(ki) in its own region. A
regional resolver provides fast responses to queries needed for
intra-region communications. A global resolver provides host
discovery service for inter-region communications.

Publish to a global resolver. Switches outside of host i’s
region cannot find its regional resolver. Therefore, the key-
value tuple < ki,vi > of host i is also stored in a global resolver
to respond to host discovery for inter-region communications.
The global resolver can be found by any switch in the entire
network. As shown in Figure 4, to publish a tuple < ki,vi >
to its global resolver, the publish message is first routed by
GDV to the regional location of one of the border switches in
the region, labeled by SB1 in the figure. SB1 computes location
H(ki) in the backbone virtual space and includes it with the
publish message which is routed by GDV to the border switch
closest to backbone location H(ki) in the core network, labeled
by SB2 in the figure.

Switch SB2 serves as the global resolver of host i if it has
enough memory space. Switch SB2 can optionally send the tu-
ple to a switch in its region such that all switches in the region
share the storage cost of the global resolver function (called
two-level location hashing). In two-level location hashing, the
publish message of tuple < ki,vi > sent by SB2 is routed by
GDV to a switch closest to the regional location H(ki) (labeled
by Sr2 in the figure) inside SB2’s access network. Sr2 then
becomes a global resolver of host i.

Lookup in a hierarchical network. To discover the key-
value tuple < ki,vi > of host i, a switch S j first sends a lookup
message to location H(ki) in its region. As illustrated in Figure
4 (upper left), the lookup message arrives at a switch Su closest
to H(ki). If S j and host i were in the same region, Su would be
the regional resolver of i and it would reply to S j with the key-
value tuple of host i. Given that S j and host i are in different
regions, it is very unlikely that Su happens to be a global



9

virtual spaces of 
access networks

virtual space of the 
core network

Publish
message

Lookup 
message

Publish to regional 

location H(ki)

Si

Sr1

SB1

SB3
Sj

i

SB2

Sr2

Send to backbone 

location H(ki)

Send to regional 

location H(ki)

Su

virtual space of the 
access network

Fig. 4. Tuple publishing and lookup in a hierarchical Ethernet

resolver of host i (however the probability is nonzero). If Su
cannot find host i’s tuple in its local memory, it forwards the
lookup message to one of the border switches in its region, SB3
in Figure 4. Then SB3 computes location H(ki) in the backbone
virtual space and includes it with the lookup message, which
is routed by GDV to the border switch SB2 closest to H(ki).

In the scenario illustrated in Figure 4, SB2 is not host i’s
global resolver and it forwards the lookup message to switch
Sr2 closest to the regional location H(ki), which is the global
resolver of host i.

Hash functions. In the above examples, the core and access
networks use different virtual spaces but they all use the same
hash function H. We note that different hash functions can
be used in different networks. It is sufficient that all switches
in the same network (access or core) agree on the same hash
function, just like they must agree on the same virtual space.

Tuple maintenance at a border switch. If a border switch
is replaced by a new switch, all tuples at the backbone level
stored in the old switch are migrated to the new one which
is identified by the same location in the virtual space. If a
failed border switch is not replaced (assuming that its region
has another border switch), backbone-level tuples in the failed
switch will be stored by new resolvers when their publishers
republish them periodically (tuples are soft state).

VI. PERFORMANCE EVALUATION
A. Methodology

The ROME architecture and protocols were designed with
the objectives of scalability, efficiency, and reliability. ROME
was evaluated using a packet-level event-driven simulator in
which ROME protocols as well as the protocols, GDV, VPoD,
and MDT [25], [37] used by ROME are implemented in detail.
Every protocol message is routed and processed by switches
hop by hop from source to destination. Since our focus is on
routing protocol design, queueing delays at switches were not
simulated. Packet delays from one switch to another on an
Ethernet link are sampled from a uniform distribution in the
interval [50 µs,150 µs] with an average value of 100 µs. This
abstraction speeds up simulation runs and allows performance
evaluation and comparison of routing protocols unaffected
by congestion issues. The same abstraction was used in the
packet-level simulator of SEATTLE [21].

For comparison with ROME, we implemented SEATTLE
protocols in detail in our simulator. We conducted extensive
simulations to evaluate ROME and SEATTLE in large net-
works and dynamic networks with reproducible topologies.
For the link-state protocol used by SEATTLE, we use OSPF
[32] in our simulator. The default OSPF link state broadcast
frequency is once every 30 seconds. Therefore, in ROME,
each switch runs the MDT maintenance protocol once every
30 seconds.

In ROME, a host’s key-value tuple may be published using
one location hash or two location hashes. In the case of
publishing two location hashes for each tuple, the area of the
second hash region is 1/4 of the entire virtual space.

Performance criteria. Storage cost is measured by the
average number of entries stored per switch. These entries
include forwarding table entries and host information entries
(key-value tuples).

Control overhead is communication cost measured by the
average number of control message transmissions, for three
cases: (i) network initialization, (ii) network in steady state,
and (iii) network under churn. Control overhead of ROME
for initialization includes those used by switches to determine
virtual locations using VPoD, construct a multi-hop DT using
MDT protocols, and populate the D2HT with host information
for all hosts. Control overhead of SEATTLE for initialization
includes those used by switches for link-state broadcast and to
populate the one-hop DHT with host information for all hosts.
During steady state (also during churn), switches in SEATTLE
and ROME use control messages (i) to detect inconsistencies
in forwarding tables and key-value tuples stored locally and
externally, as well as (ii) to repair inconsistencies in forward-
ing tables and key-value tuples.

We measure two kinds of latencies to deliver ROME pack-
ets: (i) latency of the first packet to an unknown host, which
includes the latency for host discovery, and (ii) latency of a
packet to a discovered host.

To evaluate ROME’s (also SEATTLE’s) resilience under
churn, we show the routing failure rates of first packets to
unknown hosts and packets to discovered hosts. Successful
routing of the first packet to an unknown host requires suc-
cessful host discovery as well as successful packet delivery by
switches from source to destination.

Network topologies used. To evaluate the performance of
ROME as the number of hosts increases, we used the AS-
6461 topology with 654 routers from Rocketfuel data [45]
where each router is modeled as a switch. To evaluate the
performance of ROME as the number of switches increases,
synthetic topologies generated by BRITE with the Waxman
model [30] at the router level were used. We included a set of
experiments on typical data center topologies, FatTrees for k =
4, 8, and 16, where k is the number of ports per switch. Every
data point plotted in Figures 7, 8, and 11 is the average of
20 runs from different topologies generated by BRITE. Upper
and lower bars in the figure show maximum and minimum
values of each data point (these bars are omitted in Figure
8(c) for clarity). Most of the differences between maximum
and minimum values in these figures are very small (many not
noticeable) with the exception of latency values in Figures 8(a)



10

0 0.4 0.8 1.2 1.6 2 2.4
1

2

4

8

Time (s)

G
D

V
 R

ou
tin

g 
st

re
tc

h

 

 

VPoD (2D)
VPoD (3D)

(a) Routing stretch convergence

100 400 700 1000
0

20

40

60

80

100

No. of nodes

S
to

ra
ge

 c
os

t

 

 

VPoD(3D)
VPoD(2D)
Num of neighbors

(b) Storage cost

Fig. 5. Performance comparison for 2D and 3D virtual spaces

and (b).

B. Choice of dimensionality

We evaluated GDV routing performance in 2D and 3D
spaces for Brite networks. The VPoD adjustment period was
set at 100 ms. Figure 5(a) shows the GDV routing stretch
(equal to routing latency divided by shortest path latency)
versus time for simulation runs in 2D and 3D. At the start
of each simulation run, the routing stretch was relatively high
for both 2D and 3D because node locations were randomly
selected. After a number of VPoD adjustments, the routing
stretch converged in 2.5 seconds of simulated time to 1.25 and
1.15 seconds for 2D and 3D, respectively. Our experiments
for Rocketfuel networks show similar results. Figure 5(b)
shows the per node storage cost (average number of entries
in a forwarding table) of ROME in 2D and 3D for BRITE
networks. The average number of directly-connected neighbors
is shown as the baseline for comparison. Clearly, running
VPoD in 3D requires a higher storage cost than in 2D.
From experimental results (presented below), we found that
the routing latency provided by 2D is already very good.
Therefore, we choose to use 2D rather than 3D (or 4D) to
minimize the storage of ROME switches and control message
overhead.

C. Varying the number of hosts

For a network with n switches and m hosts, a conventional
Ethernet requires O(nm) storage per switch while SEATTLE
requires O(m) storage per switch. We found that ROME also
requires O(m) storage per switch with a much smaller abso-
lute value than that of SEATTLE. We performed simulation
experiments for a fixed topology (Rocketfuel AS-6461) with
654 switches. The number of hosts at each switch varies. The
total number of hosts of the entire network varies from 5,000
to 50,000. We found that the storage costs of ROME and
SEATTLE for forwarding tables are constant, while their stor-
age costs for host information increase linearly as the number
of hosts increases. In Figure 6(a), the difference between the
storage costs of ROME and SEATTLE is the difference in their
forwarding table storage costs per switch. The host information
storage cost of ROME using two (location) hashes is close to,
but not larger than, twice the storage cost of ROME using one
hash.

Figures 6(b) and 6(c) show the control overheads of ROME
and SEATTLE, for initialization and in steady state. We
found that the control overheads for constructing and updating
SEATTLE’s one-hop DHT and ROME’s D2HT both increase

k = 4 k = 8 k = 16
0

2

4

6

8

10

La
te

nc
y 

(in
 h

op
 c

ou
nt

)

 

 

SEATTLE
ROME

(a) Routing latency

k = 4 k = 8 k = 16
0

100

200

300

400

A
ve

. n
o.

 o
f e

nt
rie

s 
st

or
ed

 p
er

 s
w

itc
h

 

 

SEATTLE
ROME

(b) Storage cost

Fig. 10. Performance comparison for FatTrees

linearly with m and they are about the same. However, the
figures show that ROME’s overall control overhead is much
smaller than that of SEATTLE. This is because ROME’s
forwarding table construction and maintenance are flooding-
free and thus much more efficient.

D. Varying the number of switches

In this set of experiments the number n of switches increases
from 300 to 2,400 while the average number of hosts per
switch is fixed at 20. Thus the total number of hosts of the
network also increases linearly from 6,000 to 48,000. The
results are shown in Figure 7. Note that each y-axis is in
logarithmic scale.

Figure 7(a) shows storage cost versus n. Note that while the
storage cost of SEATTLE increases with n, ROME’s storage
cost is almost flat versus n. At n = 2400, ROME’s storage cost
is less than 1/20 of the storage of SEATTLE.

Figures 7(b) and (c) show that the control overheads of
ROME for initialization and in steady state are both substan-
tially lower than those of SEATTLE. These control overheads
of ROME increase slightly with n. This is because the paths
from publishers to resolvers in a larger network are longer.

E. Routing latencies

These experiments were performed using the same network
topologies (with 20 hosts per switch on average) as in subsec-
tion VI-D. Figure 8(a) shows the latency (in average number
of hops) of packets to discovered hosts. Note that ROME’s
latency is not much higher than the shortest-path latency of
SEATTLE.

Figure 8(b) shows the latency of first packets to unknown
hosts for SEATTLE and for ROME using one and two hashes.
This latency includes the round-trip delay between sender
and resolver, and the subsequent latency from sender to
destination. By using two hashes instead of one, the latency
of ROME improves and becomes very close to the latency
of SEATTLE. At n = 300, the latency of ROME (2-hash) is
actually smaller than the latency of SEATTLE.

We also performed experiments to evaluate ROME and
SEATTLE latencies in hybrid networks, where 20% of the
switches are replaced by wireless switches. The packet delay
of a wireless hop is sampled uniformly from [5 ms,15 ms]
with an average value of 10 ms, much higher than 100 µs for
a wired connection. Figure 8(c) shows that SEATTLE still has
the lowest latency, but the difference between SEATTLE and
ROME is negligible.

F. Data center topologies

We evaluated the performance of ROME running on typical
data center topologies, i.e., FatTrees for k = 4, 8, and 16.



11

10K 20K 30K 40K 50K
0

200

400

600

800

1000

No. of hosts

A
ve

. 
n

o
. 

o
f 
e

n
tr

ie
s 

st
o

re
d

 p
e

r 
sw

itc
h

SEATTLE
ROME 2−hash
ROME 1−hash

(a) Storage cost

10K 20K 30K 40K 50K
0

1K

2K

3K

4K

5K

6K

No. of hosts

C
o

n
tr

o
l o

ve
rh

e
a

d
 p

e
r 

sw
itc

h

SEATTLE
ROME 2−hash
ROME 1−hash

(b) Control overhead for initialization

10K 20K 30K 40K 50K
0

40

80

120

160

200

No. of hosts

C
o

n
tr

o
l o

ve
rh

e
a

d
 p

e
r 

sw
itc

h
 p

e
r 

se
c

SEATTLE
ROME 2−hash
ROME 1−hash

(c) Control overhead in steady state

Fig. 6. Performance comparison by varying the number of hosts

300 600 900 1200 1500 1800 2100 2400
50

100

500

1000

3000

No. of switches

A
ve

. 
n

o
. 
o

f 
e

n
tr

ie
s 

st
o

re
d

 p
e

r 
sw

itc
h

SEATTLE
ROME 2−hash
ROME 1−hash

(a) Storage cost

300 600 900 1200 1500 1800 2100 2400
500

1K

5K

10K

25K

No. of switches

C
o

n
tr

o
l o

ve
rh

e
a

d
 p

e
r 

sw
itc

h

SEATTLE
ROME 2−hash
ROME 1−hash

(b) Control overhead for initialization

300 600 900 1200 1500 1800 2100 2400
2

5

10

50

100

500

1000

No. of switches

C
o

n
tr

o
l o

ve
rh

e
a

d
 p

e
r 

sw
itc

h
 p

e
r 

se
c

SEATTLE
ROME 2−hash
ROME 1−hash

(c) Control overhead in steady state

Fig. 7. Performance comparison by varying the number of switches

300 600 900 1200 1500 1800 2100 2400
0

5

10

15

20

25

30

No. of switches

La
te

nc
y 

(in
 h

op
 c

ou
nt

) ROME
SEATTLE

(a) Packet to a discovered host

300 600 900 1200 1500 1800 2100 2400
0

10

20

30

40

50

60

No. of switches

La
te

nc
y 

(in
 h

op
 c

ou
nt

)

ROME 1−hash
ROME 2−hash
SEATTLE

(b) 1st packet to an unknown host

300 600 900 1200 1500 1800 2100 2400
0

5

10

15

No. of switches

La
te

nc
y 

(m
s)

ROME 1−hash
ROME 2−hash
SEATTLE

(c) 1st packet to unknown host in hybrid nets

Fig. 8. Latency vs. number of switches

0 20 40 60 80 100 120 140 160
0

0.05

0.1

0.15

0.2

Time (sec)

R
o
u
tin

g
 f
a
ilu

re
 r

a
te

SEA (100 switches/min)
SEA (60 switches/min)
SEA (20 switches/min)
ROME (100 switches/min)
ROME (60 switches/min)
ROME (20 switches/min)

(a) Routing failure rate to a discovered host

0 20 40 60 80 100 120 140 160
0

0.05

0.1

0.15

0.2

0.25

Time (sec)

R
o
u
tin

g
 f
a
ilu

re
 r

a
te

SEA (100 switches/min)
SEA (60 switches/min)
SEA (20 switches/min)
ROME (100 switches/min)
ROME (60 switches/min)
ROME (20 switches/min)

(b) Routing failure rate to an unknown host

20 40 60 80 100
1

5

10

50

100

500

1000

Churn rate (switches/min)

C
o
n
tr

o
l o

ve
rh

e
a
d
 p

e
r 

sw
itc

h
 p

e
r 

se
c

SEATTLE
ROME

(c) Control overhead

Fig. 9. Performance under network dynamics

Figure 10(a) shows latency comparison between SEATTLE
and ROME for FatTrees. We found that when k becomes
larger, the latency difference between SEATTLE and ROME
reduces. Figure 10(b) shows the average number of entries per
switch. Similar to previous results, ROME requires substantial-
ly less data plane storage than SEATTLE. Network throughput
achieved by load-balanced routing is an important performance
metric for data center networks. We discuss a design of high-
throughput greedy routing in another paper [51].

G. Resilience to network dynamics
We performed experiments to evaluate the resilience of

ROME using two hashes and SEATTLE under network dy-
namics for networks with 1,000 switches and 20,000 hosts.

Before starting each experiment, consistent forwarding tables
and DHTs were first constructed. During the period of 0-
60 seconds, new switches joined the network and existing
switches failed. The rate at which switches join, equal to the
rate at which switches fail, is called the churn rate. Figure
9(a) shows the routing failure rates to discovered hosts as a
function of time for ROME and SEATTLE. Different curves
correspond to churn rates of 20, 60, and 100 switches per
minute. At these very high churn rates, the routing failure
rate of ROME is close to zero. The routing failure rate of
SEATTLE is relatively high but it converged to zero after 100
seconds (40 seconds after churn stopped).

Figure 9(b) shows routing failure rates to unknown hosts



12

300 600 900 1200 1500 1800 2100 2400
0

500

1000

1500

2000

2500

No. of switches

A
ve

. 
n
o
. 
o
f 
tx

 t
o
 d

e
liv

e
r 

a
 g

ro
u
p
 m

sg

ROME (group size = 250)
SEATTLE (group size = 250)
SEATTLE (group size = 50)
ROME (group size = 50)

(a) Ave. no. of transmissions to deliver a
group message

300 600 900 1200 1500 1800 2100 2400
0

2K

4K

6K

8K

No. of switches

A
ve

. 
n
o
. 
o
f 
m

u
lti

ca
st

 e
n
tr

ie
s 

p
e
r 

sw
itc

h

SEATTLE (group size = 250)
SEATTLE (group size = 50)

(b) Multicast storage cost per switch of SEAT-
TLE

300 600 900 1200 1500 1800 2100 2400
0

3

6

9

12

15

18

No. of switches

A
ve

. 
n
o
. 
o
f 
h
o
st

s 
in

 a
 p

a
ck

e
t 
h
e
a
d
e
r

ROME (group size = 250)
ROME (group size = 50)

(c) Ave. no. of destinations in the header of a
ROME group message

Fig. 11. Performance of multicast

versus time. Both SEATTLE and ROME experienced many
more routing failures which include host discovery failures.
The routing failure rate of ROME at the churn rate of 100
switches/minute is still less than that of SEATTLE at the churn
rate of 20 switches/minute.

Figure 9(c) shows the control overhead (per switch per
second) during a churn and recovery period versus churn
rate during the period. The control overhead of SEATTLE is
very high due to link-state broadcast. The control overhead of
ROME is about two orders of magnitude smaller than that of
SEATTLE.

The results show that for networks under churn ROME
has much smaller routing failure rates and control overheads
than those of SEATTLE. This is because each ROME switch
(using the MDT maintenance protocol [25]) can find all its
neighbors in the multi-hop DT of switches very efficiently
without broadcast.

H. Performance of multicast

Both SEATTLE and ROME provide multicast support for
services like VLAN. SEATTLE uses a multicast tree for
each group which requires switches in the tree to store some
multicast state. ROME uses the stateless multicast protocol
described in subsection III-D. We performed experiments
using the same network topologies (with 20 hosts per switch
on average) as in subsection VI-D. The average multicast
group size is 50 or 250 in an experiment. The number of
groups is 1/10 of the number of hosts.

Figure 11(a) shows the average number of transmissions
used to deliver a group message versus the number n of
switches. For multicast using a tree, this is equal to the number
of links in the tree. SEATTLE used fewer transmissions than
ROME in experiments for average group size 250. ROME used
fewer transmissions in experiments for average group size 50.

Figure 11(b) shows the amount of multicast state (average
number of groups) per switch in SEATTLE versus n, the
number of switches. (ROME’s multicast is stateless.) Each
switch in SEATTLE stores multicast state for a large number
of groups, i.e., thousands in these experiments. (Group mem-
bership information stored at rendezvous points is not included
because it is needed by both ROME and SEATTLE.) On the
other hand, ROME requires the packet header of each group
message to store a subset of hosts in the group. (SEATTLE
does not have this overhead.) Figure 11(c) shows the average
number of hosts in a ROME packet header. For experiments

To a discovered host To an unknown host
0

10

20

30

40

50

60

70

La
te

nc
y 

(in
 h

op
 c

ou
nt

) OSPF+DHT
ROME 1−hash
ROME 2−hash

Fig. 12. Latency comparison for a very large hierarchical network (25,000
switches)

in which average group size is 50, the number is around 3. For
experiments in which average group size is 250, the number
is about 6.

I. Performance of a very large hierarchical network

We use a hierarchical network consisting of 25 access
networks of 1000 switches each (generated by BRITE at router
level). Two switches in each access network serve as border
switches in a backbone network of 50 switches with topology
generated by Brite at AS level. Kim et al. [21] discussed ideas
for a multi-level one-hop DHT. Based upon the discussion,
we implemented in our packet-level event-driven simulator an
extension to SEATTLE for routing in a hierarchical network,
which we refer to as ”OSPF+DHT”.

We performed experiments for this network of 25,000
switches for 250K to 1.25 million hosts. Figure 12 shows the
routing latencies for ROME and OSPF+DHT. ROME’s latency
to a discovered host is very close to the shortest-path latency
of OSPF+DHT, much closer than the latencies in single-region
experiments shown in Figure 8(a). ROME’s latency to an
unknown host is also very close to the shortest-path latency
of OSPF+DHT. Figure 13 shows the storage cost per switch,
control overheads for initialization and in steady state. The
performance of ROME is about an order of magnitude better
than the OSPF+DHT approach.

J. Comparison of ROME and SEATTLE

ROME is much more scalable than SEATTLE in the data
plane. Based on our results, its storage cost is almost flat versus
the number of switches and more than an order of magnitude
smaller than that of SEATTLE. The control message overhead
incurred per node by all protocols used in ROME is more than
an order of magnitude smaller than that of link-state broadcast
in SEATTLE for network initialization, for networks in steady



13

250K 500K 750K 1M 1.25M
0

300

600

900

1200

1500

No. of hosts

A
ve

. 
n

o
. 
o

f 
e

n
tr

ie
s 

st
o

re
d

 p
e

r 
sw

itc
h

OSPF+DHT
ROME 2−hash
ROME 1−hash

(a) Storage cost

250K 500K 750K 1M 1.25M
0

2K

4K

6K

8K

10K

No. of hosts

C
o

n
tr

o
l o

ve
rh

e
a

d
 p

e
r 

sw
itc

h

OSPF+DHT
ROME 2−hash
ROME 1−hash

(b) Control overhead for initialization

250K 500K 750K 1M 1.25M
0

50

100

150

200

250

300

No. of hosts

C
o

n
tr

o
l o

ve
rh

e
a

d
 p

e
r 

sw
itc

h
 p

e
r 

se
c

OSPF+DHT
ROME 2−hash
ROME 1−hash

(c) Control overhead in steady state

Fig. 13. Performance comparison for a very large hierarchical network (25,000 switches)

state, and for networks under churn. The routing failure rates
of ROME to discovered hosts as well as unknown hosts are
much smaller than those of SEATTLE under churn. ROME
uses stateless multicast which does not require data-plane state
for multicast trees (as in SEATTLE) but it uses additional
space in the header of group packets. The packet latency of
ROME to a discovered host is only slightly higher than that
of SEATTLE which uses shortest path routing.

VII. DISCUSSION OF IMPLEMENTATION

ROME can be implemented in custom-built switches.
ROME’s data plane consists of the greedy routing and forward-
ing logic, which only includes simple arithmetic computation
and numerical comparison and hence can be implemented at
low cost. ROME’s control plane consists of two functional
components: 1) a module for maintaining neighbor informa-
tion, and 2) a module for maintaining end host information
and a consistent D2HT. Compared to SEATTLE, ROME’s
control plane does not require connectivity information of the
entire network and its data plane requires a much smaller
routing/forwarding table, as shown in the experimental re-
sults. ROME’s multicast requires that switches perform two
additional operations: hashing and space splitting, which can
also be implemented by special hardware. According to the
implementation of OpenSketch [50], hashing and some other
operations implemented in hardware do not affect switch
throughput.

ROME can also be implemented by software defined net-
working (SDN) such as OpenFlow [29]. Even though ROME
was designed for distributed control, the existence of a S-
DN controller provides simplified control-plane and switch-
state management for ROME. Recent technologies, such as
Devoflow [31], can extend OpenFlow forwarding rules with
local routing decisions for forwarding flows that do not require
vetting by the controller. Hence the SDN controller only
needs to specify the greedy routing algorithm in local actions
of switches. Therefore, ROME can improve SDN scalability
by reducing communication cost between switches and the
controller. Lastly, multiple independent controllers can be used
for a large network that runs ROME, with each controller
responsible for switches in a local area. Such load distribution
can effectively mitigate the scalability problem of a single
controller [6].

VIII. CONCLUSIONS

We present the architecture and protocols of ROME, a
scalable and resilient layer-2 network that is backwards com-

patible with Ethernet. Our protocol design innovations include
a stateless multicast protocol, a Delaunay DHT (D2HT), as
well as routing and host discovery protocols for a hierarchical
network. Experimental results using both real and synthetic
network topologies show that ROME protocols are efficient
and scalable. ROME protocols are highly resilient to network
dynamics and its switches quickly recover after a period of
churn. The routing latency of ROME is only slightly higher
than the shortest-path latency.

Experimental results show that ROME performs better than
SEATTLE by an order of magnitude with respect to each
of the following performance metrics: switch storage, control
message overhead (for networks during initialization, in steady
state, and under churn), as well as routing failure rates for
networks under churn. To demonstrate scalability, we provide
simulation performance results for ROME networks with up
to 25,000 switches and 1.25 million hosts.

REFERENCES

[1] Metro ethernet. http://metro-ethernet.org/.
[2] Understanding VLAN Trunk Protocol (VTP). Cisco Technical Support

& Documentation, 2007.
[3] Big Data in the Enterprise: Network Design Considerations. Cisco White

Paper, 2011.
[4] AT&T. Metro ethernet service. http://www.business.att.com/enterprise/

Service/network-services/ethernet/metro-gigabit/.
[5] AT&T. Wide area ethernet. http://www.business.att.com/enterprise/

Service/network-services/ethernet/wide-area-vpls/.
[6] T. Benson, A. Akella, and D. A. Maltz. Network traffic characteristics

of data centers in the wild. In Proceedings of ACM IMC, 2010.
[7] P. Bose and P. Morin. Online routing in triangulations. SIAM journal

on computing, 33(4):937–951, 2004.
[8] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with

Guaranteed Delivery in Ad Hoc Wireless Networks. In Proc. of the
International Workshop on Discrete Algorithms and Methods for Mobile
Computing and Communications (DIALM), 1999.

[9] A. Caruso, S. Chessa, S. De, and R. Urpi. GPS Free Coordinate
Assignment and Routing in Wireless Sensor Networks. In Proceedings
of IEEE INFOCOM, pages 150–160, 2005.

[10] J. C. Corbett et al. Spanner: Google’s Globally-Distributed Database.
In Proceedings of USENIX OSDI, 2012.

[11] R. Droms. Dynamic Host Configuration Protocol. RFC 2131, 1997.
[12] R. Fonseca, S. Ratnasamy, J. Zhao, C. T. Ee, D. Culler, S. Shenker, and

I. Stoica. Beacon-Vector Routing: Scalable Point-to-Point Routing in
Wireless Sensor Networks. In Proc. of NSDI, 2005.

[13] S. Fortune. Voronoi diagrams and Delaunay triangulations. In J. E.
Goodman and J. O’Rourke, editors, Handbook of Discrete and Compu-
tational Geometry. CRC Press, second edition, 2004.

[14] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta. VL2: a scalable and flexible
data center network. In Proceedings of ACM SIGCOMM, 2009.

[15] S. Halabi. Metro Ethernet. Cisco Press, 2003.
[16] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,

and R. Wattenhofer. Achieving High Utilization with Software-Driven
WAN. In Proceedings of ACM Sigcomm, 2013.



14

[17] M. Huynh and P. Mohapatra. Metropolitan Ethernet Network: A Move
from LAN to MAN. Computer Networks, 51, 2007.

[18] S. Jain, Y. Chen, S. Jain, and Z.-L. Zhang. VIRO: A Scalable, Robust
and Name-space Independent Virtual Id ROuting for Future Networks.
In Proc. of IEEE INFOCOM, 2011.

[19] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Holzle, S. Stuart,
and A. Vahdat. B4: Experience with a Globally-Deployed Software
Defined WAN. In Proceedings of ACM Sigcomm, 2013.

[20] B. Karp and H. Kung. Greedy Perimeter Stateless Routing for Wireless
Networks. In Proceedings of ACM Mobicom, 2000.

[21] C. Kim, M. Caesar, and J. Rexford. Floodless in SEATTLE: A Scalable
Ethernet Architecture for Large Enterprises. In Proc. of Sigcomm, 2008.

[22] C. Kim and J. Rexford. Revisiting Ethernet: Plug-and-play made scalable
and efficient. In Proceedings of IEEE LAN/MAN Workshop, May 2007.

[23] Y.-J. Kim, R. Govindan, B. Karp, and S. Shenker. Geographic Routing
Made Practical. In Proceedings of USENIX NSDI, 2005.

[24] K. Lakshminaryanan, M. Caesar, M. Rangan, T. Anderson, S. Shenker,
and I. Stoica. Achieving Convergence-Free Routing using Failure-
Carrying Packets. In Proceedings of ACM SIGCOMM, 2007.

[25] S. S. Lam and C. Qian. Geographic Routing in d-dimensional Spaces
with Guaranteed Delivery and Low Stretch. In Proceedings of ACM
SIGMETRICS, June 2011; extended version in IEEE/ACM Transactions
on Networking, Vol. 21, No. 2, April 2013.

[26] D.-Y. Lee and S. S. Lam. Protocol design for dynamic Delaunay
triangulation. Technical Report TR-06-48, The Univ. of Texas at Austin,
Dept. of Computer Science, December 2006; an abbreviated version in
Proceedings IEEE ICDCS, June 2007.

[27] B. Leong, B. Liskov, and R. Morris. Geographic Routing without
Planarization. In Proceedings of USENIX NSDI, 2006.

[28] E. K. Lua, X. Zhou, J. Crowcroft, and P. V. Mieghem. Scalable
multicasting with network-aware geometric overlay. Journal Computer
Communications, 2008.

[29] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. Openflow: Enabling innovation
in campus networks. SIGCOMM Comput. Commun. Rev., 2008.

[30] A. Medina, A. Lakhina, I. Matta, , and J. Byers. BRITE: An Approach to
Universal Topology Generation. In Int. Workshop on Modeling, Analysis
and Simulation of Computer and Telecom. Systems, 2001.

[31] J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, A. R. Curtis, and
S. Banerjee. Devoflow: scaling flow management for high-performance
networks. In Proc. of ACM SIGCOMM, 2011.

[32] J. Moy. OSPF Version 2. RFC 2328, 1998.
[33] J. Mudigonda, P. Yalagandula, M. Al-Fares, and J. C. Mogul. SPAIN:

COTS data-center Ethernet for multipathing over arbitrary topologies.
In Proceedings of USENIX NSDI, 2010.

[34] A. Myers, T. E. Ng, and H. Zhang. Rethinking the service model:
Scaling ethernet to a million nodes. In Proceedings of HotNets, 2004.

[35] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya, and A. Vahdat. Portland: a scalable
fault-tolerant layer 2 data center network fabric. In Proceedings of ACM
SIGCOMM, 2009.

[36] D. Plummer. An Ethernet Address Resolution Protocol. RFC 826,
1982.

[37] C. Qian and S. S. Lam. Greedy Distance Vector Routing. In Proceedings
of IEEE ICDCS, June 2011.

[38] C. Qian and S. S. Lam. ROME: Routing On Metropolitan-scale Ethernet.
In Proceedings of IEEE ICNP, 2012.

[39] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica.
Geographic Routing without Location Information. In Proceedings of
ACM Mobicom, 2003.

[40] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker.
A Scalable Content-Addressable Network. In Proceedings of ACM
SIGCOMM, 2001.

[41] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and
S. Shenker. GHT: a geographic hash table for data-centric storage. In
Proceedings of ACM WSNA, 2002.

[42] S. Ray, R. Guerin, and R. Sofia. A distributed hash table based address
resolution scheme for large-scale Ethernet networks. In Proceedings of
Int. Conf. on Communications, June 2007.

[43] R. Rivest. The MD5 Message-Digest Algorithm. RFC 1321, 1992.
[44] D. Sampath, S. Agarwal, and J. Garcia-Luna-Aceves. Ethernet on

AIR: Scalable Routing in Very Large Ethernet-based Networks. In
Proceedings of IEEE ICDCS, 2010.

[45] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP Topologies
with Rocketfuel. In Proceedings of ACM SIGCOMM, 2002.

[46] B. Stephens, A. Cox, W. Felter, C. Dixon, and J. Carter. PAST: Scalable
Ethernet for Data Centers. In Proceedings of ACM CoNEXT, 2012.

[47] P. F. Tsuchiya. The landmark hierarchy: a new hierarchy for routing in
very large networks. SIGCOMM Comput. Commun. Rev., 1988.

[48] M. Walraed-Sullivan, R. N. Mysore, M. Tewari, Y. Zhang, K. Marzullo,
and A. Vahdat. ALIAS: Scalable, Decentralized Label Assignment for
Data Centers. In Proceedings of ACM SOCC, 2011.

[49] M. Yu, A. Fabrikant, and J. Rexford. Buffalo: Bloom filter forwarding
architecture for large organizations. In Proceedings of ACM CoNEXT,
2009.

[50] M. Yu, L. Jose, and R. Miao. Software defined traffic measurement with
opensketch. In Proc. of USENIX NSDI, 2013.

[51] Y. Yu and C. Qian. Space shuffle: A scalable, flexible, and high-
bandwidth data center network. In Proc. of IEEE ICNP, 2014.

Chen Qian (M’08) is an Assistant Professor at
the Department of Computer Science, University of
Kentucky. He received the B.Sc. degree from Nan-
jing University in 2006, the M.Phil. degree from the
Hong Kong University of Science and Technology
in 2008, and the Ph.D. degree from the University
of Texas at Austin in 2013, all in Computer Science.
His research interests include computer networking,
data-center networks and cloud computing, and s-
calable routing and multicast protocols. He has pub-
lished research papers in a number of conferences

and journals including ACM SIGMETRICS, IEEE ICNP, IEEE ICDCS, IEEE
PerCom, IEEE/ACM Transactions on Networking, and IEEE Transactions on
Parallel and Distributed Systems. He is the recipient of the James C. Browne
Outstanding Graduate Fellowship in 2011. He is a member of IEEE and ACM.

Simon S. Lam (F’85) received the B.S.E.E. degree
with Distinction from Washington State University,
Pullman, in 1969, and the M.S. and Ph.D. degrees in
engineering from the University of California, Los
Angeles, in 1970 and 1974, respectively. From 1971
to 1974, he was a Postgraduate Research Engineer
with the ARPA Network Measurement Center at
UCLA, where he worked on satellite and radio
packet switching networks. From 1974 to 1977, he
was a Research Staff Member with the IBM T. J.
Watson Research Center, Yorktown Heights, NY.

Since 1977, he has been on the faculty of the University of Texas at Austin,
where he is Professor and Regents Chair in computer science, and served as
Department Chair from 1992 to 1994.

He served as Editor-in-Chief of IEEE/ACM Transactions on Network-
ing from 1995 to 1999. He served on the editorial boards of IEEE/ACM
Transactions on Networking, IEEE Transactions on Software Engineering,
IEEE Transactions on Communications, Proceedings of the IEEE, Computer
Networks, and Performance Evaluation. He co-founded the ACM SIGCOMM
conference in 1983 and the IEEE International Conference on Network
Protocols in 1993.

Professor Lam is a Member of the National Academy of Engineering and a
Fellow of ACM. He received the 2004 ACM SIGCOMM Award for lifetime
contribution to the field of communication networks, the 2004 ACM Software
System Award for inventing secure sockets and prototyping the first secure
sockets layer (named Secure Network Programming), the 2004 W. Wallace
McDowell Award from the IEEE Computer Society, as well as the 1975
Leonard G. Abraham Prize and the 2001 William R. Bennett Prize from the
IEEE Communications Society.


