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Abstract—Computer networks are becoming increasingly com-
plex today and thus prone to various network faults. Traditional
testing tools (e.g., ping, traceroute) that often involve substantial
manual effort to uncover faults are inefficient. This paper focuses
on fault detection of the network data plane using test packets.
Existing solutions of test packet generation either take very long
time (e.g., more than one hour) to complete or generate too
many test packets that may hurt regular traffic. In this paper,
we present Pronto, an automated test packet generation tool that
generates test packets to exercise data plane rules in the entire
network in a short time (e.g., several seconds) and can quickly
react to rule changes due to network dynamics. In addition,
Pronto minimizes the number of test packets by allowing a packet
to test multiple rules at different switches. The performance
evaluation using two real network data plane rule sets shows
that Pronto is faster than a recently developed tool by more
than two orders of magnitude. Pronto can update the probes for
rule changes using less than 1ms while existing methods have no
such update function.

I. INTRODUCTION

Network faults are ubiquitous and inevitable [2], [3]. How-

ever, testing and debugging a large network is a complex

task. A standard enterprise network with tens of switches

may contain approximately one million rules in its data plane.

In large networks, forwarding rules at routers/switches are

determined by interactions of multiple protocols to address

routing policies and various service requirements (e.g., VLAN,

QoS). Access control lists (ACLs) in routers, switches, and

firewalls are designed and configured by different network

operation units over a long period of time. It is difficult to

ensure that every data plane rule is installed and executed

correctly. Many debugging services from network vendors

require specialized management tools and hence bring high

diagnosis cost to enterprises.

Towards reliable networks, automated tools [18]–[20], [23],

[27], [28] that are implemented in software have been pro-

posed to check network reachability (i.e., if any packet from

device x can reach another device y in the network) and

verify essential network properties such as loop-freedom,

(non-)existence of black holes, and network slice isolation.

For example, three recent solutions MDD Classifier [15], AP

Classifier [26] and Veriflow [20] enable fast identification

of the network-wide behavior for certain packet headers.

While these approaches can find logic errors in the control

plane, such as the controller in Software Defined Networks

(SDNs), they are not able to detect faults in the data plane,

���������	

��
����
������
��

�	�	������
���	���
���
����


��	�����	
�	�����	

��	�����	�
�����������	�

���	


������	�����
� ����!!�
������

�"""

������#������$��	�����

Fig. 1: Pronto vs. existing solutions

where problems such as hardware failures, soft errors and

switch implementation bugs can still result in erroneous data

plane behaviors, including incorrect packet forwarding and

processing [25]. A recent survey conducted for enterprise and

campus networks [30] shows that data plane software errors

and hardware failures are among the most common causes of

network outages.

This paper focuses on efficient fault detection for the data

plane, where the faults include both software errors and

hardware failures. The basic approach is to send test packets

(also called “probes”) and determine the correctness of the

data plane based the behavior of the packets. The problem

studied in this research is how to generate test packets for

efficiently testing data plane rules. We identify three funda-

mental requirements of a practical test packet generation tool

for the data plane.

1) Completeness. Every data plane rule should be tested

by at least one probe. Completely testing all rules is

necessary to locate and resolve data plane faults. This

problem is more challenging in current SDNs, such as

OpenFlow [24]. This is because the matching fields of

OpenFlow rules have more packet header fields than the

destination IP. Also, OpenFlow rules may have different

priority [21]. A probe may not successfully test a rule

if other rules with higher priority also match the probe.

2) Fast generation and update. Networks especially S-

DNs experience frequent rule changes. Recent mea-

surement results show that large SDNs should support

hundreds of data plane updates per second [16]. The

test packet generation tool should compute and update
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the set of probes in a short time so that the probes can

always be consistent with the current data plane rules.

3) Bandwidth efficiency. The probes cost network band-

width since they are transmitted in regular data paths and

may compete with other traffic. To reduce the bandwidth

overhead, it is desired that one probe can test multiple

rules at different switches.

Unfortunately, none of the existing solutions can meet all

three requirements stated above. Traditional methods (e.g.,

ping, traceroute, SNMP) that have been widely used by

network operators [1] cannot use arbitrary headers for test

packets. Hence some rules cannot be tested by these methods

[25], [30]. For example, ATPG [30] is a tool for automatic

end-to-end test packet generation by utilizing the header space

analysis method [19]. ATPG reads router configurations and

generates a minimum set of probes to exercise every rule and

link in the network. However, due to the complexity of com-

puting network reachability, ATPG takes tens of minutes to

hours to compute the probes for all rules and does not support

frequent rule update. The long computation delay prohibits

ATPG from being practical for dynamic SDNs. To deal with

frequent network changes, a recent work Monocle [25] reduces

the scope of diagnosis to a single switch. However, Monocle

needs to generate an individual probe for every rule and may

cause huge bandwidth cost for large networks. Fig. 1 shows the

disadvantages of the two methods: ATPG is computationally

slow and does not support rule update, whereas Monocle

generates a large number of probes that can induce expensive

network throuphput.
We propose an automatic and efficient test packet generation

tool called Pronto, for dynamic networks. Pronto utilizes an

efficient algorithm to determine which rules can be tested by

a given probe, based on the concept of Atomic Predicate (AP)

[28]. An AP is a concept that specifies a set of packets, which

have same forwarding decisions at all switches/routers in the

network. Pronto can quickly determine which set of packets

is able to traverse a sequence of switches and can be used to

test a number of rules at the switches. A reachability table is

then constructed to enable a single probe to test multiple rules.

To further improve the efficiency of test packet generation, we

develop an efficient minimum set cover algorithm to compress

the reachability table that allows us to minimize the number

of test packets while retaining the coverage of rules. We also

propose a probe update approach, focusing on rules that are

affected due to network changes, to reduce the number of

probes that must be generated on a changed network. We

evaluated the performance of Pronto using the data plane rules

from two real networks [5] [4]. Experimental results show that

Pronto only takes a few seconds to determine the probes for

hundreds of thousands of rules and less than one millisecond

to change the probes to incorporate each rule update. The brief

performance comparison of Pronto and existing work is shown

in Fig. 1. In fact, Pronto is not a simple tradeoff solution,

but can achieve both minimum number of probes and short

computation time without any additional cost.
In summary, this paper makes the following contributions:

• To the best of our knowledge, Pronto is the first data

plane testing tool that can simultaneously meet two

objectives: low probe computation cost and minimum
probing packets number. A novel and efficient algorithm

is proposed and implemented by taking advantages of

atomic predicates.

• Pronto provides a probe update approach that can ef-

ficiently re-validate the networks in the presence of

frequent rule updates. The key idea is to identify rules

that are changed or affected by the network updates and

then generate minimum probes to test only these rules. We

know of no existing work that can achieve this objective.

• Unlike existing methods that often send packets from

the hosts at the network edge, Pronto is intended to

maximize the utilization of available testing resources

(i.e., ports) to test the maximum number of rules while

keeping the probe generation cost low. Therefore, Pronto

is scalable, transparent, and capable of dealing with

complex traditional and software-defined networks.

• Two real network data plane rule sets are used to evaluate

Pronto. The results show that Pronto is faster than a

state-of-the-art tool (i.e., ATPG) by more than two orders

of magnitude. In addition, Pronto can generate probing

packets for the updated rules within 1ms while existing

methods are not capable of handling rule updates.

The remainder of this paper is organized as follows. First,

we present the system model and the concept of AP in Sec-

tion II. Then, we present the detailed method and algorithms in

Section III and Section IV. Next, we present our experimental

evaluation of the new method in in Section V. Finally, we

review related work in Section VI, and give our conclusions

in Section VII.

II. SYSTEM MODELING AND BACKGROUND

A. System architecture

The network discussed in this work is modeled as an inter-

connection of switches. End hosts are connected to switches.

Each switch has a number of ports through which packets

can be forwarded to other switches or end hosts. Each switch

has a rule table including forwarding, ACL, and VLAN rules
that determines the forwarding actions applied to an incoming

packet. Each rule includes two main parts: matching fields and

actions. The matching fields define a set of packets that match

the rule, specified as a region of header space [19]. The actions

define the forwarding actions to the packets matching the rule,

such as forwarding them to a certain port or dropping them.

Rules have priorities. If a packet matches multiple rules, the

rule with the highest priority will determine the actions applied

to the packet. If a packet matches a multiple output actions

as a signal rule, the packets will be forwarding to all ports

of the rule. There is a manager that can obtain the network

topology and all rule tables in the network. To the simplicity

of presentation, we assume an SDN model where the manager

is an SDN controller. This work may also be applied to legacy

IP networks.
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Pronto is positioned as an agent program between the

controller and network devices (switches and hosts). Pronto

can request end hosts and OpenFlow switches to send test

packets (probes), which have already been implemented by

existing work [30] [25]. Pronto plans the packet header of

every probe. Each probe can test a number of rules at switches

along the forwarding path of the probe. If the destination

– an end host or an OpenFlow switch, receives the probe

and informs Pronto, Pronto confirms that these rules work

correctly. We call the probe “covers” these rules. Pronto may

choose to test all existing rules, a particular set of rules, or

newly installed rules.

A data plane fault can be a switch failure, link failure, or

incorrect rule. An incorrect rule can be a rule that has a wrong

action or a rule that is generated by the controller but does

not exist in the data plane. Similar to existing work [30] [25],

we consider only the errors in the action fields because they

cover a large number of failures. Detection of errors in the

matching fields will be future work.

In summary, Pronto provides at least three benefits. First,

Pronto efficiently generates probes to exercise all rules in the

data plane. Two classes of rules are considered infeasible to be

covered and thus eliminated by Pronto: a) a rule that has low

priority such that all packets matching it will exercise rules

with higher priority and b) a rule that exists in a hardware

switch and thus may not be exercised by probes with any

headers. Second, Pronto minimizes the number of probes

while retaining the coverage of all rules for saving network

bandwidth. Third, Pronto not only quickly computes the initial

probes but also efficiently updates probes to test rule changes.

B. Atomic Predicates

Following the concepts in [28], each switch has a number of

packet filters. Each rule in a switch table matches a subset of

packets. The set of packets that can be matched by a rule rx is

defined as the header space of this rule, denoted by ψx. In the

example of Fig.2, ra3’s header space ψa3 is {10.0.4.0, 10.0.4.1,

... 10.0.4.255}. Each outgoing port is a filter that allows only a

subset of packets to forward through, based on the forwarding

rules. On each port, the ACL can be viewed as two filters

determining the allowed packets for coming in and going out,

respectively. If a rule controls the set of packets forwarded

through a port, we call the rule guards the port. Each filter

can be specified by a predicate. The set of packets that are

allowed to foward through by the filter is evaluated to true

by the predicate. We represent a predicate as a binary decision

diagram (BDD) [7] whose input is a packet header and output

is true or false. A predicate p specifies the set of packets

for which p evaluates to true. Hence if a packet can travel

through a sequence of ports, it is true by the conjunction of

the predicates on the packet filters of the ports.

Given a set of predicates, we can compute a set of atomic
predicates (APs), which specifies the minimum set of equiva-

lence classes in the set of all packets [28]. The packets that are

evaluated to true by the same AP have identical behaviors at

all switches. For a set of predicates {p1, p2, ..., pk}, each AP
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Fig. 2: A sample network including two switches
ai is in the form ai = q1 ∧ q2 ∧ ...∧ qk, where qj ∈ {pj ,¬pj}
and j ∈{1, . . . , k} . Every predicate is equal to the disjunction

of a subset of APs. Every packet is evaluated to true by one

and only one AP.

In the example of Fig.2(a), there are two switches α and

β and two hosts h1 and h2. The switches α and β include

three and two rules, respectively. For simplicity, we assume

each rule defines only one matching field (i.e., destination

IP). The three outgoing ports P1, P2, and P4 correspond to

the predicates p1, p2, and p4, respectively. We can then de-

termine five APs a1 to a5, which separate the matching fields

into multiple sub-spaces as shown in Fig.2(b). For example,

p1 denotes the set of packets whose destination address is

between 10.0.0.0 and 10.0.1.254, and these packets can be

forwarded by α to Port P1. AP a2 = p1 ∧ ¬p2 ∧ p4 indicates

that the set of packets can pass Ports P1 and P4 but not P2,

whose destination is between 10.0.1.0 and 10.0.1.255. Each

predicate is a disjunction of a set of APs, e.g., p4 = a2 ∨ a3.

As such, we can easily represent the packets that pass a port

as a union of APs. For example, the set of packets for port

P4 can be represented by S(P4) = {a2, a3}. Finally, the

network reachability of a path can be efficiently computed

by intersecting the AP sets of all ports along that path. In

the example of Fig. 2, to compute the reachability from α
to h1, we start with the set of all APs Z = {a1, ..., a5} and

then compute the intersection of the AP sets P1 and P4, i.e.,

Z∩S(P1)∩S(P4) = {a2}. Therefore, packets of a2 can reach

h1 from α, traveling through the outgoing ports P1 and P4.

III. PROBING PACKET GENERATION

Pronto has two major modules: probe generation and probe
update. In this section, we focus on the probe generation. We

will describe the probe update approach in Section IV.

The probe generation module consists of four major steps

– see Figure 3. These steps include i) Converting the for-
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Fig. 3: Overview of the probes generation of Pronto

TABLE I: Reachability-to-AP table for Fig. 2

Ingress port Egress port AP set
P0 P1 a1, a2

P0 P2 a4

P0 P4 a2

P3 P4 a2, a3

TABLE II: Reachability-to-path table for Fig. 2

Ingress port Egress port AP set Path
P0 P1 a1 P0, P1

P0 P1 a2 P0, P1

P0 P2 a4 P0, P2

P0 P4 a2 P0, P1, P3, P4

P3 P4 a2 P3, P4

P3 P4 a3 P3, P4

warding and ACL rules into predicates and APs to construct

reachability-to-AP table, ii) Computing reachability-to-path

table, iii) Constructing reachability-to-rules table, and iv)

Generating probes to cover all rules in the reachability-to-rules

table.

Step 1. Pronto first computes the predicates of all ports as

well as the APs of the networks. Note that our computation is

guided by the rules that guard each port, whereas existing AP

computation approaches [28] do not consider rules. As such,

Pronto can determine whether a packet can travel from one

incoming port to another outgoing port in the network, i.e.,

the reachability information. The computation of reachability

for all pairs of ports in the network can be done in a very

short time because it is computed by AP set intersection rather

than header space intersection used by the existing method

[30]. Note that the AP space is much smaller than the packet

header space (≈ 210 versus at least 232). Table I shows the

reachability-to-AP table computed from the example of Fig. 2.

This table includes all pairs of ports that allow certain packets

to travel, where the ingress port is the incoming side of a port

and the egress port is the outgoing side of a port. A pair of

ports that do not allow any packets to travel will not appear

in the table.

Step 2. Pronto leverages the information in the reachability-

to-AP table to compute a reachability-to-path table that asso-

ciates each AP with a specific path (i.e., the sequence of ports).

TABLE III: Reachability-to-rules table for Fig. 2

Entry # Ingress Egress Header space Ω Rule list
1 P0 P1 10.0.0.0 rα1

2 P0 P1
10.0.0.0/23
∧(¬10.0.0.0)

rα2

3 P0 P2 10.0.4/24 rα3

4 P0 P4 10.0.2/24 rα2, rβ2
5 P3 P4 10.0.1/24 rβ1
6 P3 P4 10.0.2/24 rβ2

Table II shows the reachability-to-path table computed from

Table I.

Step 3. For each entry of the reachability-to-path table,

Pronto considers the sequence of ports and the rules that guard

these ports, and then generates a reachability-to-rules table

(e.g., Table III). Each table entry has a header space indicating

that any packet in this space can travel from the ingress port

to the egress port and cover the listed rules. For example, a

packet with the header 10.0.2/24 can travel from P0 to P4 and

cover rules rα2 and rβ2.

Step 4. The reachability-to-rules table has two important

properties: i) It includes the complete set of all rules that can

be covered by probes (i.e., the fifth column). ii) For each single

entry, one probe can cover all rules in the entry. Note that a

rule may appear in multiple entries. For example, if Pronto

uses a probe with the header 10.0.2/24 to cover rα2 and rβ2 in

Entry 4, there is no need to send probes to cover the two rules

in Entries 2 and 6. Hence, minimizing the number of probes

is actually the minimum set cover problem, one of Karp’s 21

NP-complete problems [17]. In this example, the minimum set

of probes to cover all rules are four probes in header spaces

of Entries 1, 3, 4, and 5. The ingress and egress ports of the

probes are also given in the table. Fig. 3 illustrates the work-

flow of our approach according to more general cases.

Pronto has a tremendous advantage in computation efficien-
cy: it only uses 1.9 seconds to determine probes while ATPG
uses 3525 seconds for the same network.

We describe the details of the Pronto algorithm in the

sections that follow.
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A. Converting Rules into the Predicates and APs

The first step of Pronto is to convert the rules into predicates

and APs. Existing AP computation approaches (e.g., AP

verifier [28]) only compute the reachability information be-

tween two ports. In contrast, Pronto considers the relationship

between rules and APs.

Computing predicates. The algorithm of converting rules

into the predicates is shown in Algorithm 1. The algorithm

takes as input a set of forwarding tables with sorted rules

and outputs a set of predicates for all ports in the forwarding

tables. These predicates are used to compute APs. A rule’s

predicate defines the set of packets that can match this rule.

We use a BDD to represent a rule [7]. The algorithm iterates

through all ports of each forwarding table t and initializes the

predicate of each port i to false, indicating that no packets

can match i’ rules yet (lines 2-4). It also creates a variable

ψ′ to record the header spaces of rules (line 5). However, the

predicate may not be equal to the header space of the matching

fields. This is because some packets matching the rule can be

processed by other rules with higher priority. In the example

of Fig. 2, rα1 and rα2 overlap and rα1 has higher priority.

Hence the header space of rα1 is 10.0.0.0 and that of rα2 is

[10.0.0.1, 10.0.1.255]. To compute the header spaces of rules,

Pronto first scans the rules from the highest priority to the

lowest and records them into ψ′. Next, for each rule Pronto

checks the header space of the matching fields and removes

the part that overlaps with ψ′ (line 9). The remaining header

space is the header space of the rule to be added to ψ′ (line

11). The time complexity is O(m) for m rules. Note that if

the header space of a rule is always false, i.e., this rule is

impossible to test and can be discarded.

Once we obtain the predicates of all rules, we compute the

predicate for each port k (line 10). A port may have two types

of rules: forwarding rules and ACL rules. To compute the

ports’ predicates for the forwarding rules, the algorithm uses

a hash table Hrp to associate rules with their forwarding ports,

in which the key is a port and the value is a set of rules (line 8).

Note that a port k may associate with more than one rules. The

algorithm then computes the conjunction of the header spaces

of the rules (i.e., ψj) in k and the address range in pk to obtain

the k’s predicate (line 10). Fig.3(a) illustrates the predicates

computed from the forwarding rules of each forwarding table.

This algorithm also takes O(m) time.

Pronto treats ACL rules differently because they only have

two types of actions: permit and deny. Pronto maintains

another hash table Hfa whose key is a forwarding rule and

value is a set of ACL rules. The rationale behind this is that

a probe used to test a forwarding rule can also be used to test

the ACL rules by retrieving the key in Hfa. To build such a

relationship between forwarding rules and ACL rules, for each

permit rule rp, the algorithm computes whether its predicate

intersects with the predicate of any forwarding rule rf . If the

result is true, rp is added to the entry associated with the key

rf in Hfa. The deny rules cannot be considered as predicates

because they do not allow any packet. We will discuss this

problem at the end of this section.

Algorithm 1 Converting Rules into the Predicates

Input: A set of forwarding tables FTB
Output: A set of predicates {p1, p2...pn}
1: for each t ∈ FTB do
2: for each i ∈ t.getAllPorts() do
3: pi ← false /*no packets match the rules for port i*/

4: end for
5: ψ′ ← false
6: for rj ∈ t.getAllRules() do
7: k ← rj .port /*retrieve the port of ri*/

8: Hrp.set(k, rj)
9: ψj ← ψj ∧ ¬ψ′

10: pk ← ψj ∨ pk
11: ψ′ ← ψj ∨ ψ′
12: end for
13: end for

Computing atomic predicates. Leveraging the method of AP

Verifier [28], we compute the APs of the network, A(P),
where P is the set of predicates of all ports, A() is a function

to compute the predicates of ports to atomic predicates. For

example, {a0, a1...an} = A({px, py}) means that the set

of APs {a0, a1...an} are computed from the predicates of

ports Px and Py . A(P) can be computed using the following

recursion.

{
A({pi}) = {pi,¬pi}
A({p0, p1...pi}) = A({pi}) �A({p0, p1...pi−1}) (1)

where � is an operator defined as follows: {b1, b2, ..., bl} �
{d1, d2, ..., dl′} is equal to:

{wi = bi1 ∧ di2 |wi 	= false, i1 ∈ {1, ..., l}, i2 ∈ {1, ..., l′}}
The set of APs can be computed very efficiently because in

practical networks most conjunctions are always false.
If an AP ai includes a term pj , we may conclude that

packets defined by ai can pass the port Pj whose predicate

is pj , where j is the port ID. For each port Pi, Pronto stores

the its disjunction of a subset of APs, denoted as S(Pi). From

the S(Pi), we can easily retrieve the set of ports that allow

the packets defined by the AP to pass, denoted as T [ai]. For

each port in T [ai], Pronto checks whether the intersection of

any rules guarding the port and the header space of ai is null,

by computing the conjunction of each rule’s header space ψ
and ai. We use a hash table Hra to store the result of the

intersection (if not null), where the key is an AP ai and the

value is a set of rules resulting from the intersection.
All ACL deny rules are tested separately from other rules.

This is because when a probe matches a deny rule, it is

dropped by the switch and disappears in the network. In this

case, Pronto generates a probe to cover some forwarding rules

and a deny rule. It first sends the probe to ensure that the

forwarding rules work well. Then, if the packet disappears,

Pronto concludes that the deny rule is correct.
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B. Computing the Reachability-to-path Table

The reachability-to-AP table stores the information related

to whether there are some packets allowed to travel from an

ingress port Pi to another egress port Pe in the network. Here,

we use Table I as an example. If Pe is reachable from Pi,

the pair < Pi, Pe > is added to the table (e.g., Columns 1-2

in Table I). The reachability information is computed by the

intersection of AP sets as the example Z ∩ S(P1) ∩ S(P4) =
{a2} discussed in Sec. II-B. The table also stores the set of

APs (e.g., Column 3 in Table I) that define the set of packets

that can travel from Pi to Pe. The S(P ) used to compute APs

is computed in Sec. III-A.

We employ the following optimization strategy during the

table construction. For different ingress ports at the same

switch, it is very likely that the ACL rules guarding the

incoming side of these ports are the same. Some ports may not

have ACL rules. In this case, the reachability information will

not change even if we vary these ingress ports. Therefore, for

ingress ports that are at the same switch and guarded by the

same set of ACL rules, we only need to compute the reacha-

bility information from one of them to the remaining network.

This optimization has reduced the time of reachability analysis

by over 50%.

Note that one probe can match at most one AP, because

APs define disjoint sets of packets. Thus, if an entry of the

reachability-to-AP table includes multiple APs, we need to

examine them separately. For this reason, we generate the

reachability-to-path table, as shown Table II, in which each

entry includes the ingress and egress ports < Pi, Pe > and

exact one AP ai. All packets defined by ai traveling from

Pi to Pe will be forwarded by the same path, shown in the

fourth column as a sequence of ports. This path can be easily

computed based on reachability-to-AP computing process.

Notice that, between the ingress and egress ports < Pi, Pe >, a

network may have more than one paths. Because AP represents

packets’ behavior in networks, all packets defined by ai will

only be forwarded by the same path.

C. Computing the Reachability-to-rules Table

The reachability-to-rules table Tr is constructed based on

the information from the reachability-to-path table Tp. The

algorithm is shown in Algorithm 2. It takes as input the

Tp table, as well as the Hrp, Hfa and Hra obtained from

Section III-A. Each entry e in the Tr indicates that there exists

at least one probe that can pass a sequence of ports within a

header space to cover a list of rules.

There are two key elements in Tr: header space and histor-

ical rules (i.e., rule list). Fig. 4 illustrates the computation of

the header space and a list of rules for each entry e. The arrow

represents the header space. Suppose there are three ports P1,

P2, and P3 for the AP a1 in an entry. By searching the hash

table Hrp and Hra (lines 5-6), there are four rules r1, r2,

r3, and r4 that intersect a1, each of which guards a port. The

goal is to compute a header space, by which a probe can travel

through the path specified in e. The shaded area in Fig. 4 is

the header space Ω, which is the intersection of the matching
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Fig. 4: Compute the header space that can pass all three
ports of an AP a1

fields of the three rules r2, r3, and r4. If the return value of

the intersection is not false (line 8), Pronto can generate a

new entry for the Tr (lines 9-14), including the ingress and

egress ports, the header space Ω, and the rules r2, r3, and r4.

This entry means that if Pronto sends a probe from P1 to P3

whose header is in Ω, it can cover three rules r2, r3, and r4 at

the same time. Note that there could be multiple shaded areas

indicating that the header spaces that can pass all ports on a

path. In this case, each header space is a new entry in Tr.

Algorithm 2 Computing the Reachability-to-rules Table

Input: Reachability-to-path Table Tp, Hrp, Hfa, Hra

Output: Reachability-to-rules Table Tr
1: for each table entry ep ∈ Tp do
2: ap← ep.getAP()
3: P ← ep.getPort()
4: for each port i ∈ P do
5: Ri ← Hrp.get(i) /*the rule set for port i*/

6: Bi ← Hra.get(ap)∧Ri /*a subset of Ri*/

7: end for
8: if {ψa ∧ψb ∧ ... 	= false|ra ∈ B1, rb ∈ B2, . . . } then
9: er ← Tr.createNewEntry()

10: er.setPorts (ep.InPort, ep.OutPort)

11: er.Ω← ap ∧ ψa ∧ ψb ∧ ...
12: er.setHeaderSpace (Ω)

13: er.setFowardRuleSet ({ra, rb...})
14: er.setACLRuleSet() ← Hfa.getRule(ra)∨

Hfa.getRule(rb)∨. . .

15: end if
16: end for

To compute the header spaces, a simple exhaustive com-

bination would require O(uv) time complexity for u rules

and v ports on a path. We design a novel and more efficient

algorithm that takes only O(Nu log u) time for N matching

fields of the header space. Specifically, for each field d, the

algorithm first sorts all start and end points of d for all rules.

Next, the algorithm scans these points in ascending order and

inserts a rule when encountering a start point and removes a

rule when encountering an end point. After each insertion, the

algorithm checks if the current value of d matches at least

one rule of each port. For each field d, we need O(u log u)
time to compute the rule sets and their corresponding range in

the field. Therefore, for all N fields we need to compute their

common rule sets. Hence the overall time is O(Nu log u).
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The rules we have discussed so far are all forwarding rules.

We are aware that a probe covering the forwarding rules in

an entry can also test some ACL rules. Therefore, we use the

hash table Hfa defined in Section III-A to retrieve a set of

ACL rules that intersect the forwarding rules. We then add

the ACL rules that can also be covered by the probe into the

rule list of this entry (lines 13).

D. Minimizing the Number of Probes

For each entry in the reachability-to-rules table, one probe

can cover all rules associated with that entry. As such, for a

table with L entries, Pronto needs to send at most L probes to

cover all rules in the networks. However, a rule may appear

in multiple entries. In this case, if the rules in an entry have

already been covered by the probes used to test other entries,

there is no need to send a probe for this entry.

To minimize the number of probes for saving network

bandwidth, Pronto selects the minimum set of entries while

still being able to cover all rules that appear in the reachability-

to-rules table. This problem can be formulated into a minimum

set cover problem – one of Karp’s 21 NP-complete problems

[17]. However, the traditional greedy heuristic algorithm for

minimum set cover [10] is inefficient. Specifically, in each

iteration, the set that includes most items is selected and the

items are removed from all other sets. The algorithm repeats

until no item is left for any set. In the worst case, this algorithm

takes O(L2) time for L sets (i.e., entries in our context). Our

experiment using the real forwarding rules of Internet 2 [5]

shows L can be as large as 210,000. Therefore, we need to

design a more efficient algorithm.

Pronto uses a new minimum set cover algorithm whose idea

is from a recent work [11]. For L entries we have L rule

sets, R1, R2, ..., RL. For each set Ri, we put it to Level t
if pt ≤ |Ri| ≤ pt+1, where p > 1 is a pre-specified value.

Let C be the covered rule set. For each round, we pick the

set Ri from the highest level such as |Ri \ C| is the largest

among all sets in the level, and add its rules to C. For another

set Rj in the highest level K, if |Rj \ C| ≤ pK , Rj will be

dropped down to a lower level. The algorithm repeats until

C includes all rules. The time complexity of the algorithm is

O([1 + 1/(p− 1)]Σi|Ri|).
Pronto employs a different method to handle ACL rules.

Since different ACL rules in an entry may be disjunct with

each other, computing one header space to detect all possible

ACL rules in a probe is infeasible. Thus, in pronto, one probe

detects only one ACL rule. Among all entries at the same

level t of the minimum set cover algorithm, entries that have

ACL rules are tested first. Otherwise, these entries may be

dropped down to a lower level without being tested. To do

this, we randomly pick a uncovered ACL rule from each entry

to generate a probe. The final header space of the probe is

Ω = Ω ∧ ψd, where ψd is the header space of the selected

ACL rule.

We have evaluated the efficiency of Pronto’ algorithm. For

the forwarding rules of Internet 2 [5], the traditional greedy

algorithm [10] takes more than one hour to finish and generates

more than 32,000 probes to cover all rules for 210,000 table

entries. On the other hand, Pronto takes only one second to

generate almost the same number of probes to cover all rules

in the same table.

Here, the ACL deny rules are treated separately because a

probe cannot test more than one deny rules. To address this

problem, Pronto selects the minimum set of packets that cover

at least one forwarding rule and one deny rule. Similar to

the method described in Section III-A, Pronto first tests the

forwarding rules, and then checks if the test packet disappears

to determine the correctness of the deny rule.

IV. PROBE UPDATE

The second key component in Pronto is the probe update

module. In many SDNs, rules undergo numerous updates to

perform traffic engineering and congestion avoidance. Net-

work engineers must ensure that the updates do not cause

any unintended impact to the dynamic networks. To ensure

consistency of the data plane after rule updates, Pronto updates

the set of probes such that the probes can still cover all existing

rules, including rules that have been removed, modified and

newly added. We call this type of probe generation probe
update. However, rather than starting the probe generation

from scratch using the approach described in Section III, the

key idea here is to identify rules that are changed or affected

by the changed rules, and then update the existing probes that

exercise these rules. To our best knowledge, we know of no

existing approaches that use this idea to perform efficient probe

generation under frequent rule changes.

We propose two strategies to support efficient probe update:

quick update and optimal update. Quick update aims to com-

pute a set of probes for covering all affected rules. However,

quick update does not intend to optimize the overall number

of probes. As such, if a network operator needs to periodically

re-validate all existing rules, using quick update may lead to

many probes. To address this problem, we propose optimal
update, which is designed to minimize the set of probes to

cover all rules after the update. In our evaluation, quick update

takes less than 1ms to update probes for the two real network

data planes, hence it can immediately react to frequent network

updates. Optimal update takes a little longer, but only 0.5s and

0.05s. In practice, the network operator may choose to use

quick update as the response to the rule changes in a short time

(e.g., every 0.1 second), and periodically run optimal update

to obtain a minimized set of probes (e.g., every 5 minutes).

A. Quick Update

The quick update method handles every changed rule.

We consider two types of changes: rule removals and rule

additions. In the case of rule modifications, we treat each

modification as the removal of the old rule and addition of

a new rule.

Rule removal. Pronto maintains a coverage history for a

given rule to record the probes exercising that rule. For each

removed rule r, we find the set of probes T that covers it

by querying the reachability-to-rules table. If the rule list of a
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table entry covered by a t ∈ T contains only a single r, then t
is not used. If the rule list R has other rules R′ besides r, we

check whether each r′ ∈ R′ can still be tested by the probe

t′ after r’s removal. If not, we consider r′ being affected by

r′s removal. Therefore, Pronto updates probe t′ to ensure that

r′ is tested. In fact, the removal of r can affect not only the

rules in the current table entry but also rules in other entries.

Specifically, if the affected rule r′ also appears in another entry

e and the rule list R of e is not covered by any existing probes,

Pronto generates a new probe for e. On the other hand, if R
is covered by a probe t but t′ /∈ T , no action is needed. The

above process is repeated until all affected rules by r’s removal

are tested.

Rule addition. When a new rule is added to the network,

simply generating a new probe to test it is not enough. This

is because the added rule may affect the header spaces of

other rules with lower priority. For example, suppose a probe

t is generated to test an existing rule r. If a new rule r′ with

higher priority is added, which also matches t, then t has no

chances to exercise r. To address this problem, for every rule

r sitting at the same switch with r′, Pronto evaluates whether

the intersection of the header spaces of r and r′ is empty. If

not, we perform actions to handle the following two cases:

i) The probe t that is used to cover r matches r′ rather than

r. In this case, we further check if r is covered by another

existing probe. If not, Pronto generates a new probe for r. ii)

The probe t still matches r but does not match r′. If all rules

that intersect r′ fall into this case, Pronto generates a new

probe for r′. The ingress and egress port of the probe should

be on the same switch of this rule, and the header space of

the probe should not intersect with other rules.

B. Optimal Update

The optimal update method also considers two types of

changes – rule removals and rule additions. To obtain the

minimum set of probes, optimal update needs to re-compute

predicates and APs according to the rule changes. However,

rather than re-computing them from scratch, Pronto focuses

on only affected predicates and APs. For example, if an

update occurs at the switch α, the predicates related to other

switches do not need to be re-computed. To do this, Pronto

first identifies the set of affected predicates that need to be

re-computed based on the updated rules. The result is a set

of removed predicates Pr and a set of new predicates Pn.

Pronto then uses the following method to re-compute the set

of APs in the network. Recall that each AP ai is in the form

ai = q1 ∧ q2 ∧ ... ∧ qk, where qj ∈ {pj ,¬pj}. We remove the

term of pj if pj ∈ Pr. After removing all terms of predicates

in Pr, we have a new set of conjunctions A′. Then the new

set of APs is computed as A′ �A(Pn).
After computing the new set of APs, Pronto compares them

to the previous set of APs and identifies only APs that are

different from the previous ones. This is because not every

AP is affected after a number of rule updates. For every

affected AP, Pronto re-computes the corresponding entries in

the reachability-to-path table, and hence the reachability-to-

rules table is also updated. Next, Pronto invokes the minimum

set cover algorithm to obtain the new set of probes.

Changes of the ACL rules are handled differently. Here, we

consider four types of ACL updates: permit expansion, permit

shrink, deny expansion, and deny shrink.

1) Permit expansion means that the header space of an ACL

permit rule is enlarged. In this case, Pronto generates a

new Probe that matches the enlarged header space. The

probe also matches some forwarding rules because ACL

rules can only be tested along with forwarding rules.

2) Permit shrink means that the header space of an ACL

permit rule becomes smaller. In this case, Pronto needs

to ensure that the probe used to test this rule is still

valid. Otherwise, this probe is updated by re-computing

the intersection of the new ACL rule and corresponding

forwarding rules. Detailed description is skipped.

3) For a deny expansion that may potentially block more

packets, Pronto identifies the affected forwarding rules

at the same switch and determines whether there exists

any probe blocked by this expansion. New probes are

generated to replace the blocked probes.

4) A deny shrink can be handled easily. If the previous

probe used to test this shrink rule still matches the rule,

we are done. Otherwise a new probe is generated to

cover this rule.

V. PERFORMANCE EVALUATION

To evaluate Pronto we consider two research questions:

RQ1: How does the efficiency of Pronto, considering generat-

ing probe packets from scratch, compare to that of the ATPG

approach?

RQ2: How efficient is Pronto at updating probes, and to what

extent do the choices of using quick update and optimal update

in Pronto affect its efficiency?

We have implemented a prototype of Pronto using Java. We

conducted our experiments on a desktop computer with eight

Intel i7-4790 processors running at 3.6GHz and 32GB RAM.

To address our research questions, we applied Pronto to two

real networks: Internet2 [5] and Stanford backbone network

[4]. The Internet2 topology has nine routers with 126,017

forwarding rules. The Stanford topology includes 16 routers,

14 are edge routers while 2 are core routers. The data plane

state of Stanford network contains 757,170 forwarding rules

and 1,584 ACL rules (including about more than 100 VLANs).

Some rules in two real networks are unreachable, we do not

add them into the evluation.

In practice, it is possible that certain ports cannot be used to

send probes for testing and debugging purpose. For example,

private organizations may not be willing to use certain ports

for sending probes due to security concerns. In traditional

networks, it is also hard to send probes directly from a port

inside a network [30]. In this paper, the ports that can be used

to send probes are defined as available ports.

To answer our research questions, we compare Pronto to

ATPG [30]. We choose ATPG as a baseline because it achieves
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Fig. 5: Rule coverage versus percentage of available ports
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Fig. 6: Number of probes vs. percentage of available ports.
ATPG for Stanford is not shown because ATPG does not
handle the VLAN rules
a similar objective as Pronto – generating minimum number

of probes to cover multiple rules. We do not compare Pronto

to Monocle because Monocle does not aim to optimize the

number of probes. In fact, the number of probes used by

Monocle is equivalent to the number of rules.

A. RQ1: Efficiency of Probe Generation from Scratch

To answer RQ1, we evaluate the efficiency of Pronto

for probe generation when the percentage of available ports

increases from 10% to 100%. We randomly choose a certain

percentage of ports as available ports and calculate the subset

of rules that can be tested. Fig. 5 shows the rule coverage for

both Internet2 and Stanford network when the percentage of

available ports is equal to 10%, 40% and 70%. For Pronto, we

show the values of average, minimum, maximum, 25th, and

75th percentile, among all production runs. From the figure,

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Time Cost (ms)

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

 

 

Internet2 Add

Internet2 Remove

Stanford Add

Stanford Remove

Fig. 7: CDF of the time cost for quick update.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

Time Cost (s)

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

 

 

Internet2 Add

Internet2 Remove

Stanford Add

Stanford Remove

Fig. 8: CDF of the time cost for optimal update.
we can see that Pronto has similar rule coverage rates on

Internet2 and Stanford, and the average values are higher than

those of ATPG in all cases.

Fig. 6 shows the number of probes for both networks when

varying the percentage of available ports. We compare the

number of probes generated by Pronto and that by ATPG on

Internet 2 in Fig. 5a. The results show that the two methods

achieve almost equal effectiveness in terms of numbers. We

do not perform this comparison on the Stanford, because

ATPG does not handle VLAN rules on the Stanford, whereas

Pronto does. Specifically, a VLAN rule takes multiple output

actions as a signal rule, and Pronto generates probes for each

action. The results show that, comparing to Internet 2, Stanford

requires substantially fewer probes to cover all rules. Fig. 6

also indicates that the number of probes increases as more

ports are used in Pronto. The gap penalty is smaller than the

linear relationship. This observation implies that it is more

likely to take advantage of minimum set cover when the size

of rule set becomes larger.

The 2-3th rows in Table. IV and Table. V summarize the

results on the number of generated probes and rule coverage

across the percentage of available ports on both networks.

Next, we measure the cost of Pronto in terms of time.

The results on the two networks are shown in the 4-5th

rows of the Table. IV and Table. V, respectively. The fourth

row of each Table reports the time for AP computation, i.e.,

5.4s on Internet 2 and 1.57s on Standford. These times are

consistent for each network regardless of the number of ports.

The fifth row of each Table reports the total time for probe

generation, including AP computation, construction of the

reachability tables, and determining the probes. On the Internet

2, the probe generation time ranges from 5.8s to 6.9s. On

the Stanford network, the total time is always less than 2s.

These results indicate that the majority of time is spent on

AP computation. On the other hand, the remaining steps are

more efficient and cost less than 1.5s across all percentages of

available ports. When comparing Pronto to ATPG [30] under

the same experiment settings, ATPG takes 33.3 minutes and

46.8 minutes to generate probes for the Internet 2 and the

Stanford, respectively, which are higher than those of Pronto

by 300 to 1400 times.

In summary, the above results imply that: 1) Pronto only
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TABLE IV: Probe generation results for Internet2.

Internet 2 10% 40% 70% 100%

Number of probes 9270 26749 30172 32379

Rule coverage 22.1% 65.2% 88.4% 100%

AP computation time 5.4s

Probe generation 5.81s 6.23s 6.83s 6.9s

TABLE V: Probe generation results for Stanford.

Stanford 10% 40% 70% 100%

Number of probes 1649 2931 4828 5540

Rule coverage 12.1% 40.1% 80.5% 100%

AP computation time 1.57s

Probe generation 1.64s 1.74s 1.87s 1.91s

takes a few seconds to generate probes and is thus efficient
enough to be used in practice; 2) Pronto is substantially more
efficient than the existing method ATPG, while retaining the
rule coverage effectiveness of this method.

B. RQ2: Efficiency of Probe Update under Rule Updates

To answer RQ2, we evaluate the efficiency of Pronto on

dealing with probe update. Here, we do not compare Probe

to ATPG because ATPG does not generate probes to handle

rule updates. We conduct 100 production runs for each of

the rule addition and removal operations on the Internet 2

and Stanford. Fig. 7 shows the cumulative distribution of the

time cost of Pronto when using the quick update method to

react to rule updates, for the two networks. We find that in

all cases of the rule addition operation on Internet 2 and rule

addition and removal operations on Stanford, the time cost

is always lower than 0.7ms. However, the time cost for the

rule addition on Internet 2 has a (relatively) long tail: more

than 10% rule additions requires greater than 0.1ms for probe

update. In general, quick update is very fast.

Fig. 8 shows the cumulative distribution of the time cost

of Pronto when using the optimal update method, which aims

to minimize the number of probes. The results show that the

optimal update for Stanford is very fast and all updates are

completed within 0.1s. Pronto on Internet 2 requires more

time for the optimal update, but in all cases, the updates are

completed within 1.2s.

VI. RELATED WORK

There has been much work on testing and verifying network

control planes [9], [18]–[20], [22], [28], [29]. For example,

Header Space Analysis (HSA) [19] verifies essential properties

for static networks. HSA relies on computing the intersection

of packet header sets, which is highly computational-intensive.

A later work [18] extends HSA to deal with dynamic network

changes. AP Verifier [28] is a more time and space efficient

tool to calculate the reachability of a network, compared to

HSA. It proposes the concept of AP. We have described the

details of AP calculation in Section II-B. These control plane

verification tools cannot be used to debug the data plane.

There are several existing techniques for testing and verify-

ing network data planes. For example, BUZZ [12] is a testing

framework to ensure that the stateful data plane elements meet

complex context-dependent policies. However, this technique

focuses on data plane functions and cannot be used to test the

rules considered in our work. SDN traceroute [6] measures

packet data paths using tag-matching. It does not consider test

packet generation to cover all rules. RuleScope [8] is designed

to detect and diagnose data plane faults related to the priority

of rules. This technique, however, is restricted to priority faults

and cannot handle real-time rule updates.

The two closely related techniques to Pronto are ATPG [30]

and Monocle [25]. They both can generate probes to test data

plane rules. ATPG makes use of HSA and spends substantial

amount of time (> 1 hour) on generating probes. In addition,

ATPG does not support real-time rule updates and thus needs

to recompute all probes when network dynamics occur. Given

the network update frequency, ATPG may not be able to

generate complete probes to verify the current data plane state

at a given moment. The SDN-based solution Monocle [25]

restricts fault detection to a single switch. It uses a SAT solver

to determine headers of probes. However, Monocle may incur

large bandwidth overhead since each single rule in the data

plane needs to be covered by an individual probe. In contrast,

Pronto achieves the benefits and overcomes the limitations of

the two techniques: it minimizes the number of probes and

supports fast probe generation and update.

Fault localization for network data and control planes has

also been studied. For example, NetSight [13] locates faults of

the data plane by analyzing the packet processing histories on

each switch. These techniques can be used as a complement

for Pronto to locate and resolve faults when a test packet fails.

VII. CONCLUSION AND FUTURE WORK

We design and implement Pronto, a fast test packet gener-

ation tool for dynamic network data planes. Pronto uses the

concept of atomic predicate to quickly compute the forwarding

and ACL rules that can be tested by a probe sent from a port

and received at another port in the network. Pronto employs

an efficient minimum set cover algorithm to determine the

set of probes that can cover all rules. Experiments using

a single-thread implementation show that Pronto only takes

several seconds to generate all probes from scratch and less

than 1ms to update the probes for each changed rule, on two

real network data plane rule sets that consist of hundreds of

thousands rules.

Currently, Pronto can detect only forwarding rules and deny

rules in the data plane. As part of the future work, we plan to

develop approaches to handle modification rules. One option

is to leverage the APT (Atomic Predicates for Transformers)

method [14], which has been successfully used to handle the

modification rules in the control plane.
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