
1

Memory-efficient and Ultra-fast Network Lookup and Forwarding
using Othello Hashing

Ye Yu, Student Member, IEEE and ACM, Djamal Belazzougui, Chen Qian, Member, IEEE and ACM, and
Qin Zhang

Abstract—Network algorithms always prefer low memory cost
and fast packet processing speed. Forwarding information base
(FIB), as a typical network processing component, requires a
scalable and memory-efficient algorithm to support fast lookups.
In this paper, we present a new network algorithm, Othello
Hashing, and its application of a FIB design called Concise, which
uses very little memory to support ultra-fast lookups of network
names. Othello Hashing and Concise make use of minimal perfect
hashing and relies on the programmable network framework
to support dynamic updates. Our conceptual contribution of
Concise is to optimize the memory efficiency and query speed
in the data plane and move the relatively complex construction
and update components to the resource-rich control plane. We
implemented Concise on three platforms. Experimental results
show that Concise uses significantly smaller memory to achieve
much faster query speed compared to existing solutions of
network name lookups.

I. INTRODUCTION

Significant efforts have been devoted to the investigation
and deployment of new network technologies in order to
simplify network management and to accommodate emer-
ging network applications. Though different proposals of new
network technologies focus on a wide range of issues, one
consensus of most new network designs is the separation of
network identifiers and locators [27], which are combined
in IP addresses in the current Internet. Instead of IP, flat-
name or namespace-neutral architectures have been proposed
to provide persistent network identifers. A flat or location-
independent namespace has no inherent structure and hence
imposes no restrictions to referenced elements [5].

The Salter’s taxonomy of network elements [27] is one of
the early proposals that suggest the separation of network
identifiers and locators. We summarize an (incomplete) list
of reasons of using flat or location-independent names in
proposed network architectures:

• To simplify network management, pure layer-two Ethernet
is suggested to interconnect large-scale enterprise and data
center networks[19], [13], [31], where MAC addresses are
identifiers.

Ye Yu (ye.yu@uky.edu) is with University of Kentucky. Djamal
Belazzougui(dbelazzougui@cerist.dz) is with CERIST. Chen Qian
(qian@ucsc.edu) is with University of California Santa Cruz. Qin Zhang
(qzhangcs@indiana.edu) is with Indiana University Bloomington. Chen Qian
is the corresponding author.

Ye Yu and Chen Qian were supported by National Science Foundation
Grants CNS-1701681 and CNS-1717948. Qin Zhang was supported in part
by NSF CCF-1525024 and IIS-1633215.

A preliminary version of this paper was published in Proceedings of IEEE
ICNP 2017 [36].

• Software Defined Networking (SDN) uses matching of mul-
tiple fields in packet header space to perform fine-grained
per-flow control. Flow IDs can also be considered names,
though they are not fully flat.

• Flat network identifiers have been suggested by various
works to support host mobility and multi-homing, including
HIP [23], Layered Naming Architecture [5], and Mobility-
First [26].

• AIP [3] applies flexible addressing to ensure trustworthy
communication.

• The core network of Long-Term Evolution (LTE) needs to
forward downstream traffic according to the Tunnel End
Point Identifier (TEID) of the flows [38].

The most critical problem caused by location-independent
names is Forwarding Information Base (FIB) explosion. A FIB
is a data structure, typically a table, that is used to determine
the proper forwarding actions for packets, at the data plane of
a forwarding device (e.g, switch or router). Forwarding actions
include sending a packet to a particular outgoing interface and
dropping the packet. Determining proper forwarding actions of
the names in a FIB is called name switching. Unlike IP ad-
dresses, location-independent names are difficult to aggregate
due to the lack of hierarchy and semantics. The increasing
population of network hosts results in huge FIBs and their
continuing fast growth.

On the other hand, the increasing line speed requires the
capability of fast forwarding. To support multiple 10Gb Eth-
ernet links, a FIB may need to perform hundreds of millions of
lookups per second. Existing high-end switch fabrics use fast
memory, such as TCAM or SRAM, to support intensive FIB
query requests. However, as discussed in many studies [34],
[10], [35], fast memory is expensive, power-hungry, and hence
very limited on forwarding devices. Therefore, achieving fast
queries with memory-efficient FIBs is crucial for the new
network architectures that rely on location-independent names.
If FIBs are small and increase very little with network size,
network operators can use relatively inexpensive switches
to build large networks and do not need frequent switch
upgrade when the network grows. Hence, the cost of network
construction and maintenance can be significantly reduced. For
software switches, small FIBs are also important to fit into fast
memory such as cache.

In this paper, we present a new FIB design called Concise.
It has the following properties.

1) Compared to existing FIB designs for name switching,
Concise supports much faster name lookup using signific-
antly smaller memory, shown by both theoretical analysis

2

FIB Construction
Time

Query Structure
Size (bits)

Query
Time Note

Concise O(n) ≤ 4n logw O(1) Exact 2 memory reads per query.
(2,4)-Cuckoo [39] O(n) ∼ 1.1n(L+logw) O(1) Up to 8 memory reads per query.

SetSep [38] O(n logw) (2+1.5 logw)n O(logw) No method for updates. Not designed as FIB in [38].
BUFFALO [34] O(nt) αwn O(tw) Probabilistic results. Error ratio affected by t and α.

TSS [30] O(n(t+logw)) O(n(t+logw)) O(t) Designed for names with tfields. t = O(L).

Table I: Comparison among FIBs. n: # of names. L: length of names. w: # of possible actions. In practice, Concise achieves
7% to 40% memory and >2x speed compared to Cuckoo, though they share the same order of big O time complexity.

and empirical studies.
2) Concise can be efficiently updated to reflect network

dynamics. A single CPU core is able to perform millions
of network updates per second. Concise makes the control
plane highly scalable.

3) Concise guarantees to return the correct forwarding ac-
tions for valid names. It is not probabilistic like those using
Bloom filters [34], [22].
Concise is built on a new network algorithm named Othello

Hashing. Othello was inspired by the techniques used in
perfect hashing [21], [6]. Different from the static solutions
such as Bloomier Filter [7], our unique contribution on Oth-
ello is to utilize the programmable networking techniques to
support network dynamics and corresponding updates. Othello
Hashing and Concise FIB support fast query and update
(addition/deletion of names). In the resource-limited switches
(data plane), Concise only includes the query component
and is optimized for memory efficiency and query speed.
The construction and update components are moved to the
resource-rich control plane. Concise is constructed and up-
dated in the control plane and transmitted to the data plane
via a standard API such as OpenFlow. It is the first work
to implement minimal perfect hashing schemes to network
applications with update functionalities. Concise is designed
for name switching, so it does not support IP prefix matching.
Concise is a portable solution, and it can be used in

either software or hardware switches. We have implemented
Concise in three different computing environments: memory
mode, CLICK Modular Router [20], and Intel Data Plane
Developement Kit [14]. The experiments conducted on an
ordinary commodity desktop computer show that Concise

uses only few MBs of memory to support hundreds of millions
lookups per second, when there are millions of names.

The rest of this paper is organized as follows. Sec. II
presents related work. We introduce the overview of Concise
in Sec. III. We present the Othello data structure in Sec. IV
and the system design in Sec. V. We present the system
implementation and experimental results in Sec. VI. Sec. VII
discusses a few related issues. Finally, we conclude this work
in Sec. VIII.

II. RELATED WORK

Location-independent network names. Separating net-
work location from identity has been proposed and kept re-
peating for over two decades. Numerous network architectures
appear in the literature that suggest this concept. As discussed
in Sec. I, a number of new network architectures adopt
location-independent names. A location-independent name can

be a MAC address, a tuple consisting of several packet header
fields [18], a file name [15], [37], a TEID [38], etc. To route
packets for flat names, ROFL [9] and Disco [29] propose to use
compact routing to achieve scalability and low routing stretch.
ROME [25] is a routing protocol for layer-two networks that
uses greedy routing whose routing table size is independent
of network size. Concise is a forwarding structure and does
not deal with routing.

FIB scalability. We name some techniques used for FIBs
and compare them in Table I.

Hashing is a typical approach to reduce the memory cost
of FIBs for name-based switching. CuckooSwitch [39] uses
carefully revised Cuckoo hash tables [24] to reach desir-
able performance on specific high-end hardware platforms.
ScaleBricks [38] also makes use of a memory-efficient data
structure SetSep to partition a FIB to different nodes in a
cluster, it does not store the names as well. We provide a
comprehensive comparison of Cuckoo hashing, and Concise

in Sec. VII-B. The use of Bloom filters has been proposed in
some designs such as BUFFALO [34], [22]. However, they
may forward packets incorrectly due to the false positives
in Bloom filters, causing forwarding loops and bandwidth
waste. For IP lookups, SAIL [33] and Portire [4] demonstrate
desirable throughput for IPv4 FIB queries. These solutions
are usually based on hierarchical tree structures, and their
performance are challenged by FIBs with large number of
flat names. The Tuple Space Search algorithm (TSS) [30] is
widely used for name matching with multiple files, such as
in OpenVswitch and PIECES [28]. It is not designed for flat-
name switching. Other solutions use hardware to accelerate
name switching. For example, Wang et al. [32] uses GPU to
accelerate name lookup in Named Data Networks.

Minimal perfect hashing. The data structure used in this
work, Othello, is inspired by the studies on minimal perfect
hashing. In particular, MWHC [21] is able to generate order-
preserving minimal perfect hash functions using a random
graph. MWHC is also presented as Bloomier Filter in [7].
The differences between Othello and these studies include:
(1) Both MWHC and Bloomier Filter are designed for static
scenarios and they do not support frequent updates like Othello
does. (2) Othello uses a bipartite graph instead of a general
graph. This design allows much simpler concurrency control
mechanism. (3) Othello is optimized for real network condi-
tions. It performs different functionalities on the control plane
and the data plane. Othello aims to support fast flat name
switching, while MWHC is for finding minimum perfect hash
functions [21] and Bloomier Filter is designed for approximate
evaluation queries [7].

3

FIB update

Control structure

Controller

Query
Structure

ℎ

ℎ

ℎ

ℎ

Figure 1: Network Overview of Concise

III. DESIGN OVERVIEW

Consider a network of n hosts identified by unique names.
The hosts are connected by SDN-enabled switches. A logic-
ally central controller is responsible of deciding the routing
paths of packets. Each switch includes a FIB. The controller
communicates with each switch to install and update the FIB.

Each packet header includes the name of the destination
host, denoted as k. Upon receiving a packet, the switch decides
the forwarding action of the packet, such as forward to a port
or drop. We assume the controller knows the set S of all names
in the network. In addition, Concise only accepts queries of
valid names, i.e., k ∈ S. We assume that firewalls or similar
network functions are installed at ingress switches to filter
packets whose destination names do not exist. More discussion
about eliminating invalid names is presented in Sec. VII-A.
Concise makes use of a data structure Othello. Othello

exists in both the switches (data plane) and the controller
(control plane). It has two different structures in the data plane
and control plane:
• Othello query structure implemented in a switch is the

FIB. It only performs name queries. The memory efficiency
and query speed is optimized and the update component is
removed.

• Othello control structure implemented in the controller
maintains the FIB as well as other information used for FIB
construction and updates, such as the routing information
base (RIB).

Upon network dynamics, the control structure computes the
updated FIBs of the affected switches. The modification is
then sent from the controller to each switch.

Separating the query and control structures is a perfect
match to the programmable networks such as SDN. We
call this new data structure design as a Polymorphic Data
Structure (PDS). PDS is the key reason that we can apply
minimal perfect hashing techniques in programable networks.
PDS differs from the current SDN model. SDN separates the
RIB and FIB to the control and data plane respectively. We
further move part of the FIB to the control plane to minimize
the data plane resource cost.

IV. OTHELLO HASHING

In this section, we describe the Othello data structure.
Inspired by the MWHC minimal perfect hashing algorithm
[21], we design Othello specially for maintaining the FIB.
The Bloomier filter [7] can be considered as a special case of
the static version of Othello.

The basic function of a FIB is to classify all names into
multiple sets, each of which represents a forwarding action.
Let S be the set of all names. n = |S|. An Othello classifies
n names into two disjoint sets X and Y : X ∪ Y = S and
X ∩ Y = ∅. Othello can be extended to classify names into
d (d > 2) disjoint sets, serving as a FIB with d actions.

A. Definitions

An Othello is a seven-tuple 〈ma,mb, ha, hb,a, b, G〉,
defined as follows.
• Integers ma and mb, describing the size of Othello.
• A pair of uniform random hash functions 〈ha, hb〉,

mapping names to integer values {0, 1, · · · ,ma−1} and
{0, 1, · · · ,mb−1}, respectively.
• Bitmaps a and b. The lengths are ma and mb respectively.
• A bipartite graph G. During Othello construction and

update, G is used to determine the values in a and b.

Figure 2 shows an Othello example. We require that ma =
Θ(n), mb = Θ(n), and mamb > n2. We provide two options
to determine the values ma and mb. 1) ma is the smallest
power of 2 such that ma ≥ 1.33n and mb = ma. 2) ma is
the smallest power of 2 such that ma ≥ 1.33n and mb is the
smallest power of 2 such that mb ≥ n. A user may choose
either option. The difference is that for Option 1 we establish
a rigorous proof of constant update time and for Option 2 we
establish the proof with a constraint on n. However Option 2
provides slightly better empirical results.

Othello supports the query operation. For a name k, it
computes τ(k) ∈ {0, 1}. If k ∈ X , τ(k) = 0. If k ∈ Y ,
τ(k) = 1. If k /∈ S, τ(k) returns 0 or 1 arbitrarily. The values
of a and b are determined during Othello construction, so that
τ(k) can be computed by:

τ(k) = a[ha(k)]⊕ b[hb(k)]

Here, ⊕ is the exclusive or (XOR) operation. In other words,
if k ∈ X , a[ha(k)]=b[hb(k)]; if k ∈ Y , a[ha(k)] 6=b[hb(k)].

B. Othello Operations

Othello is maintained via the following operations.
• construct(X,Y): Construct an Othello for two name

sets X and Y .
• addX(k) and addY(k): add a new name k into the set
X or Y .
• alter(k): For a name k ∈ X ∪ Y , move k from set X

to Y or from Y to X . After this operation, the query
result τ(k) is changed.
• delete(k): For a name k ∈ X ∪Y , remove k from set
X or Y .

1) Construction
The construct operation takes as input two sets of

names X and Y . The output is an Othello O =
〈ma,mb, ha, hb,a, b, G〉.

Here, G is used to determine the hash function pair and the
values of a and b. G = (U, V,E). |U | = ma, |V | = mb. A
vertex ui ∈ U or vj ∈ V corresponds to bit a[i] or b[j]. Each
edge in E represents a name. There is an edge (ui, vj) ∈ E

4

u0

v0

u1

v1

u2

v2

u3

v3

u5

v5

u6

v6

1 0 0

0 1 1 1

k0 1 0 1
k1 1 2 0
k2 1 3 0
k3 4 2 1
k4 6 5 1

u7

v7

u4

v4

k0 k1
k2 k3 k4

Figure 2: Example of Othello of n = 5 names with ma =
mb = 8. Left: Bipartite graph G and bitmaps a and b. Right:
five names k0, k3, k4 ∈ X and k1, k2 ∈ Y ; the hash values
and τ(k) values.

if and only if there is a name k ∈ S such that ha(k) = i and
hb(k) = j.

For each vertex that is associated with at least one edge,
the corresponding bit is set to 0 or 1. A vertex associated
with bit 0 is colored in white and a vertex associated with
bit 1 is colored in black. For vertices that have no associated
edges, the value of the corresponding bits can be set to 0 or
1 arbitrarily, because they do not affect any τ(k) value for
k ∈ S. In order to assign correct values of a and b, Othello
requires G to be acyclic.

The construction algorithm consists of two phases.
Phase I: Selecting the hash function pair.
In this phase, Othello finds a hash function pair 〈ha, hb〉.

We assume there are many candidate hash functions and will
discuss the implementation in Sec. V-B. In each round, two
hash functions are chosen randomly and G is accordingly
generated. We use Depth-First-Search (DFS) on G to test
whether it includes a cycle, which takes O(n) time. The order
in which the edges are visited during the DFS, i.e, the DFS
order of the edges is recorded to prepare for the second phase.
Note that if two or more names generate edges with the same
two endpoints, we will consider as if there is a cycle. If G is
cyclic, the algorithm will select another pair of hash functions
until an acyclic G is found.

Phase II: Computing the bitmaps.
In this phase, we assign values for the two bitmaps a and b.

First, the values in a and b are marked as undefined. Then, we
execute the followings for each e = (ui, vj) in the DFS order
of the edges: Let k be the name that generates e. If none of
a[i] and b[j] has been assigned, let a[i]← 0 and b[j]← τ(k).
If there is only one of a[i] and b[j] has been assigned, we can
always assign an appropriate value to the other one, such that
a[i]⊕ b[j] = τ(k). As G is acyclic, following the DFS order,
we will never see an edge such that both a[i] and b[j] have
values.

We show the pseudocode of Othello construction in Al-
gorithm 1.

Note that the edges of G are only determined by S = X∪Y
and the hash function pair 〈ha, hb〉. If we find G to be cyclic
for a given S and a pair 〈ha, hb〉, we shall use another pair
〈ha, hb〉 to make G acyclic. We show that for a randomly
selected pair of hash functions 〈ha, hb〉, the probability of G
to be acyclic is very high:

Theorem 1. Given set of names S = X ∪ Y , n = |S|.
Suppose ha, hb are randomly selected from a family of fully
random hash functions. ha : S → {0, 1, · · · ,ma − 1},

Input: Key-set X ,Y .
Output: An Othello structure 〈m,ha, hb, a, b,G〉
begin

1 S ← X ∪ Y .
2 select m value according to n = |S|.

/* Phase I: decide hash function pair */
3 repeat
4 Randomly select hash function ha, hb.

until GeneratedGraphIsAcyclic(S, ha, hb).
/* Phase II: Compute bitmaps */

5 Compute G = (U, V,E) using ha, hb and S.
6 Execute Depth-First-Search on G.
7 (e1, e2, · · · , en)← the DFS order of E.
8 Mark all a[i], b[j](0 ≤ i, j < m) as unassigned.
9 for t = 1, 2, · · · , n do

10 k ← the corresponding address for et.
11 if k ∈ X then v ← 0 else v ← 1.
12 i← ha(k); j ← hb(k).
13 if both a[i] and b[j] are unassigned then
14 a[i]← 0; b[j]← v.
15 else if a[i] is unassigned then
16 a[i]← b[j]⊕ v.
17 else /* b[j] isunassigned */
18 b[j]← a[i]⊕ v.

end
end

end
Algorithm 1: Othello construct procedure

hb : S → {0, 1, · · · ,mb − 1}. Then the generated bipartite
graph G is acyclic with probability

√
1− c2 when n→∞,

where c = n√
mamb

, c < 1.

When G is acyclic, we say that 〈ha, hb〉 is a valid hash
function pair for S. We prove Theorem 1 using the technique
described in [8].

Proof. Let G = (U, V,E) be a bipartite random graph with
|U | = ma, |V | = mb, |E| = n, where each edge is
independently taken at random with probability n

mamb
. Let

C2` be the set of cycles of length 2` (` ≥ 1) in the complete
bipartite graph Kma

,mb. A cycle in C2` is a sequence of 2`
distinct vertices chosen from U and V . Hence,

|C2`| =
1

2`
(ma)`(mb)`,

where (m)` = m(m−1) · · · (m− `+1). Meanwhile, As each
edge in G is selected independently, each cycle in C2` occurs
in G with probability (n

mamb
)2`.

As proved in [8], the number of cycles of length 2` in G
converges to a Poisson distribution with parameter λ2`. For
n→∞,

λ2` = p2`|C2`|

= (
n

mamb
)2`

1

2`
(ma)`(mb)` →

1

2`

n2`

(mamb)`

Let c = n√
mamb

we have λ2` → 1
2`c

2` as n→∞.
The number of cycles of any even length in G, represented

as a random variable X , converges to a Poisson distribution

5

u0

v0

u1

v1

u2

v2

u3

v3

u5

v5

u6

v6

0 1 1 1 0 0𝑎

1 0 0 1 0𝑏

u7

v7

u4

v4

u0

v0

u1

v1

u2

v2

u3

v3

u5

v5

u6

v6

0 1 1 1 0𝑎

1 0 0 1 0𝑏

u7

v7

u4

v4

Figure 3: Example of Othello update. Dashed edges represent-
ing added keys. Gray cells: modified values in a and b. Left:
Case I, Right: Case II.

with parameter λe, where

λe =

∞∑
`=1

λ2` = −1

2
ln(1− c2).

Therefore, the probability that G contains no cycle is

Pr(X = 0) = e−λe =
√

1− c2.

When c ≤ 0.75 (i.e, n ≤ 0.75m),
√

1− c2 ≥ 0.66. Hence
the expected number of rounds to find an acyclic G in Phase
I is 1√

1−c2 ≤ 1.51 when c < 0.75. The time complexity is
O(n) in each round. The second phase takes O(n) time to
visit n edges and assign values of a and b. Hence, the total
expected time of construct is O(n).

2) Name addition
To add a name k to X or Y , the graph G and two bitmaps

should be changed in order to maintain the correct result τ(k).
The algorithm first computes the edge e = (u, v) to be

added to G for k, u = uha(x), v = vhb(x). Note that G can be
decomposed into connected components. As shown in Figure
3, e must fall in one of the following cases.

Case I: u and v belong to the same connected component
cc. Adding e to G will introduce a cycle. In this case, we
have to re-select a hash function pair 〈ha, hb〉 until a valid
hash function pair is found for the new name set S∪{k}. The
construct algorithm is used to perform this process.

Case II: u and v are in two different connected components.
Combining the two connected components and the new edge,
we have a single connected component that is still acyclic. As
discussed in Sec. IV-B1, it is simple to find a valid coloring
plan for an acyclic connected component. Hence, the values
of a and b can also be set properly. In fact, at least one of
the two connected components can keep the existing value
assignments.

Complexity Analysis. We now compute the time com-
plexity of add using three theorems. In particular, we will
show that the time complexity of the add operation is O(1).
The proof is established by computing the susceptibility of
graph G, namely χ(G). We give a closed-form estimation for
χ(G) = 1

1−p where p = n(ma+mb)
2mamb

, and prove that χ(G) has
a constant upperbound E[χ(G)] ≤ 4. We are able to compute
the closed-form formulae for χ(G) when ma = mb. For the
case ma = 2mb, we give a looser upper bound. The numerical
estimation shows that the upper bound E[χ(G)] ≤ 4 is true for
both of the two situations where ma = mb and ma = 2mb.

For the sake of analysis we let GA(ma,mb, n) be a
random acyclic graph generated using the same process as
G(ma,mb, n) except that an edge is not added if it introduces
a cycle in the graph. It could also be generated by repeatedly
generating graphs G(ma,mb, n) until we get an acyclic graph.
It is evident that this random graph model corresponds to the
graphs constructed and maintained by Othello.

As stated before, there are two options in choosing values
ma and mb. In Option 1, ma = mb and in Option 2, ma = mb

or ma = 2mb. For the case ma = mb we have

Theorem 2. Suppose we have a random graph
GA(ma,mb, n) where ma = mb and we randomly select
a node w in GA. Let cc(w) be the connected component
containing w. Then the expected value of |cc(w)| is ma

ma−n
as n→∞.

Proof. The important parameter that governs the complexity
of an insertion is the susceptibility of the graph G which is
defined as the expected size of the connected component that
contains a randomly chosen node, and is denoted by χ(G).

Let χ(G) = E[|cc(w)|] where w is randomly selected from
G and |cc(w)| denotes the number of nodes in cc(w). In
[11, Lemma 1], it was proved that for a random sparse graph
G(ma,ma, n) with n edges, we have χ(G) = 2ma

2ma−2n when
n→∞ given that n < 0.999ma. We will show that the same
bound holds for a graph GA(ma,ma, n). It is well known that
the largest connected component in a random graph with n
edges and m nodes with n ≤ 0.99 · m/2 has size O(log n)
with probability 1− 1

n10 [11].
We now generate a graph GA(ma,ma, n) by generating the

edges one by one. If an edge (v, w) makes the graph cyclic,
then we do not add it, but instead put it into a set S. Let E
be the set of n edges in the generated acyclic graph G1. Then
graph G2 with the set of edges E ∪ S will clearly be a graph
G(ma,ma, n

′) with n′ = n+O(log2 n) ≤ 0.999m/2. Now we
have that χ(G1) ≤ χ(G2) and χ(G2) = 2ma

2ma−2n′ →
2ma

2ma−2n
when n→∞.

For the case ma = 2mb we have the following result:

Theorem 3. Suppose we have a random graph
GA(ma,mb, n) where ma = 2mb, n ≤ 0.65mb, and that we
randomly select a node w in G. Let cc(w) be the connected
component containing w. Then the expected value of |cc(w)|
is O(1).

Proof. Again let χ(G) = E[|cc(w)|] where w is randomly
selected from G. We generate a graph GA(ma,mb, n) with
n ≤ 0.65mb as follows. Let Va with |Va| = ma be the set
of nodes on the left side, and Vb with |Vb| = mb be the
set of nodes on the right side. We generate edges one by
one from random graph GA(ma +mb, n), and reject an edge
(v, w) if either (v ∈ Va ∧ w ∈ Va) or (v ∈ Vb ∧ w ∈ Vb).
The probability of accepting an edge is thus 4

9 . We stop the
generation when we have finished generating the n edges, and
we denote the resulting graph by G1. We let G2 be the graph
obtained by adding all the rejected edges back to G1. It is
clear that χ(G1) ≤ χ(G2). Moreover, G2 is a random graph
GA(ma + mb, n

′) with n′ = 9
4n ± O(

√
n) with probability

6

99% Percentile

1% Percentile

0.0 0.2 0.4 0.6 0.8 1.0
1

5

10

50

100

500

1000

p �

nHma +mbL

2ma mb

Χ
HG
L

Figure 4: χ(G) of acyclic graphs vs parameter p. Red
curve: 1

1−p

1 − 1
n10 . According to Theorem 3.3(i) in [17], for a graph

G3 = G(ma +mb, n
′):

χ(G3) ≤ ma +mb

ma +mb − 2n′
=

3mb

3mb − 2 · 94n

≤
3 n
0.65

3 n
0.65 − 2 · 94n

= O(1).

We can use the same argument as in the proof of Theorem 2
to show that the susceptibility for a graph GA(ma + mb, n

′)
is the same as for a graph G(ma + mb, n

′) which concludes
the proof.

The following theorem concludes that the time complexity
of add is O(1).

Theorem 4. Assuming ha, hb are randomly selected from a
family of fully random hash functions, an insertion into an
Othello with n existing names will take constant amortized
expected time when ma = mb, or when ma = 2mb and n ≤
0.65mb.

Proof. In the algorithm described in Section. IV-B2, during an
insertion, we have to add an edge that connects a randomly
selected node u ∈ U to another randomly selected node v ∈ V .
We will first bound the amortized expected cost of insertions
that fall in Case I and then the induced cost of insertions
that fall in Case II. Let |cc(w)| be the size the connected
component that contains node w. Let |ccb(w)| ≤ |cc(w)| be
the number of nodes in cc ∪ V .

The probability that node v falls in the same connected
component as node w is |ccb(w)|

mb
≤ |cc(w)|

mb
which is the

probability of reconstruction. Since the reconstruction takes
expected O(n) time, the amortized expected cost is |ccb(w)|

ma
·

O(n) = O(|cc(w)|) = O(1).
For Case II, the cost is clearly O(|cc(w)|+|cc(v)|) = O(1),

since we have to traverse the connected component that results
from merging the two connected components that contain w
and v.

Note we have a rigorous proof for Option 1 but Option 2
provides slightly better empirical results. It is reasonable to
conjecture that Theorem 4 also holds for ma = 2mb without
the constraint n ≤ 0.65mb.

Numerical estimation of χ(G)

We conjecture that 1
1−p , where p = n(ma+mb)

2mamb
is a good

estimation for χ(G) = E[|cc(w)|], and present numerical
simulation to support our conjecture. We generate acyclic
bipartite graphs with random ma, mb, and n values (within
the range 10K ∼ 1M). Then we compute their χ(G) value.
For a particular p = n(ma+mb)

2mamb
value, we randomly sample at

least 500 graphs with different ma,mb, and n. In Figure 4, we
plot the 1-th and 99-th percentile of χ(G).

As shown in Figure 4, when p is not so close to 1, the
sampled χ(G) values are very close to 1

1−p . When p grows
larger, the sampled χ(G) values tend to grow slower than 1

1−p .
Hence we conclude that 1

1−p is a good upper bound for χ(G).
In Othello, 4

3n ≤ ma <
8
3n, n ≤ mb < 2n. ma and mb must

be powers of 2. For this choice of parameters we can see that
p = n(ma+mb)

2mamb
≤ 0.75 and so χ(G) ≤ 4 which is a small

constant.
This estimated value χ(G) = 1

1−p is in coherence with the
evaluation results on Concise updates shown in Figure 10.

Othello size growth. After adding a name into Othello,
n = |S| grows and may violate ma ≥ 1.33n and mb ≥ n.
However, Othello works correctly as long as G is acyclic,
even when ma < 1.33n or mb < n. Hence, Othello does
not deal with the requirement on ma and mb explicitly for
additions. Although the E[|cc|] value may grow as more
names are added to Othello, it is always smaller than 10 in
our experiments. The expected time to add a name to Othello
is still O(1) in practice.

When adding a new name falling in Case I, the values of
ma and mb will be updated by construct, which guarantees
ma ≥ 1.33n and mb ≥ n.

3) Set change for a name
Operation alter(k) is used to move a name k from set X

to set Y (or from Y to X). The bitmaps a and b should be
modified so that τ(k) is changed from 0 to 1 (or from 1 to
0). The graph G does not change during alter(k). We only
need to change the coloring plan of the connected component
that contains the edge e = (uha(k), vhb(k)). One approach is to
“flip” the colors of all vertices at one side of e, i.e., to change
0 to 1, and to change 1 to 0. The amortized time cost is O(1).

4) Name deletion
delete(k) can be done by simply removing the edge

(uha(k), vhb(k)) in the graph G. The bitmaps a and b are not
modified because the values of τ(k) after deleting k do not
matter anymore. The time complexity is O(1).

C. Query structure and control structure

Each Othello is a seven-tuple 〈ma,mb, ha, hb,a, b, G〉.
Note that for a query on Othello, only the first six elements are
necessary for computing the τ value. The information stored
in G is not needed for the query operation. Hence, we let the
switches only maintain the six-tuple 〈ma,mb, ha, hb,a, b〉 in
their local memory, namely the Query structure. Storing this
six-tuple takes 2m + O(1) bits of memory space. The time
cost for each query of Othello is equal to the sum of the cost
of computing two hash values, two memory accesses for the
two bitmaps, and one XOR arithmetic operation.

7

In comparison, the network controller maintains the seven-
tuple, namely the Control Structure. The controller is respons-
ible for maintaining the FIB of the switches in the network.
The switches execute the queries on the query structures.

D. Summary of Othello Properties

An Othello is decomposed into a query structure running in
the data plane and a control structure in the control plane. The
query structure uses ≤ 4n bits for n names. Every query takes
a small constant time including computing two hash values
and two memory accesses. The control structure uses O(n)
bits. The expect time complexity is O(n) for construction and
O(1) for name addition, deletion, and set change. Note that
the distribution of names in X and Y has no impact on the
space and time cost of Othello, because G only depends on
S and 〈ha, hb〉. In Sec. V-A, we demonstrate the extension of
Othello. It classifies names into d > 2 disjoint sets, while still
requiring small memory and constant query time.

V. SYSTEM DESIGN OF CONCISE

We present how to build Concise using the Othello data
structure as follows. The design also includes the implement-
ation details of FIB update and concurrency control.

A. Extension of Othello for Network Lookups

The extension of Othello to support classification for more
than two sets is called a Parallel Othello Group (POG). An
l-POG is able to classify names into 2l disjoint sets. It serves
as a FIB with 2l forwarding actions. Let Z0, Z1, · · · , Z2l−1 be
the 2l disjoint sets of names. Let S = Z0 ∪Z1 ∪ · · · ∪Z2l−1.
A query on the l-POG for a name k ∈ S returns an l-bit
integer τ(k), indicating the index of the set that contains k,
i.e., k ∈ Zτ(k).

The idea of POG is as follows. Consider l Othellos
O1,O2, ...,Ol. Each Oi classifies keys in set Xi and Yi
(1 ≤ i ≤ l), where Xi and Yi satisfies:

Xi =
⋃

(j mod 2i)<2i−1

Zj ; Yi =
⋃

(j mod 2i)≥2i−1

Zj .

Let τi(k) be the query result of Oi for name k. Consider the
l-bit integer ((τl(k)τl−1(k) · · · τ1(k))2. Note that τi(k) = 0 if
and only if k ∈ Xi. Meanwhile, Zτ(k) ⊂ Xi if and only if
(τ(k) mod 2i) < 2i−1 (the i-th least significant bit of τ(k)
is 0). Hence, the i-th least significant bit of τ(k) equals to
τi(k). i.e,

τ(k) = ((τl(k)τl−1(k) · · · τ1(k))2

For each i (1 ≤ i ≤ l), Xi ∪ Yi = S. i.e., the l Othellos
share the same S. Recall that the edges in G is determined by
only S = X ∪ Y and 〈ha, hb〉, and 〈ha, hb〉 is decided during
construct by S. The l Othellos may share the same 〈ha, hb〉
and same edges in G. However, the bitmaps in different
Othellos are different.

Parallelized execution with bit slicing. Each operation of
an l-POG consists of operations on the l Othellos. Using the bit
slicing technique, these operations can be executed in parallel.

The bit slicing technique is widely used to group executions
in parallel [2]. An l-POG query structure includes l,m, ha, hb
and two vectors A and B. Each of A and B contains m l-bit
integers. Consider all the i-th bits of the elements in A. These
bits can be viewed as a slice of the array A. The i-th slice of
A is used to represent bitmap ai. The slices of B are defined
similarly. Using this technique, τ(k) can be computed using
one arithmetic operation by:

τ(k) = A[ha(k)]⊕B[hb(k)]

When l is not larger than the word size of the platform, each
l-POG query only requires two memory accesses for fetching
A[i] and B[j]. The arithmetic operation includes computing
the hash functions and the XOR.

All Othello operations can be decomposed into two steps:
(1) modifications on G, (2) operations on some bits in a and
b. In an l-POG, the l Othellos share the same G and the first
step is only executed once for all l Othellos. Hence the bit
slicing technique also applies to all other operations of POG.

Therefore, the expected time cost of each name addition,
deletion, or set change operation is only O(1), instead of O(l).
The time complexity of POG construction is still O(n).

B. Selection of Hash functions

The hash function pair is critical for system efficiency.
Ideally, ha and hb should be chosen from a family of fully
random and uniform hash functions. Similar to the implement-
ation of CuckooSwitch [39], we apply a function H(k, seed)
to generate the hashes in our implementation. Here, H is
a particular hashing method and seed is a 32-bit integer.
We let ha(k) = H(k, seeda) and hb(k) = H(k, seedb).
Thus, 〈ha, hb〉 is uniquely determined by a pair of integers
〈seeda, seedb〉.

The proper hashing method H() is platform-dependent.
Concise uses the CRC32c function for robust and faster hash
results, which is then effectively mapped to a t-bit integer
value where ma = 2t or mb = 2t. Evaluation shows that
CRC32c demonstrates desirable performance in practice.

C. FIB Update and Concurrency Control

We assume that there is one logically centralized control-
ler in the network. Upon network dynamics, the controller
computes the POGs for a number of switches and update the
query structures in the switches by FIB update messages using
a standard SDN API. If m,ha, hb do not change during the
update, an update message only contains a list of elements to
be modified in A and B. Otherwise, it contains the full query
structure of l-POG 〈m,ha, hb, A,B〉.

After receiving a FIB update message, a Concise switch
modifies its POG query structure. Instead of locks, Concise
uses simple bit vectors to prevent read-write conflicts in
the query structure. Experimental results show that the con-
currency control mechanism has a negligible impact on the
network performance.

While each POG query is computed using two elements in
A and B, there is a chance of a read-write conflict during the

8

Data: New value at some indexes in A and B:
A[i1], A[i2], · · · , B[j1], B[j2], · · · .

Result: Updated Concise query structure
1 Affected ← ∅;
2 foreach i ∈ {i1, i2, · · · } do
3 Affected ← Affected ∪{i mod 512}

end
4 foreach i ∈ Affected do
5 D1[i]← 1⊕D1[i]

end
6 // reorder barrier

7 Update A[i1], A[i2], · · · , B[j1], B[j2], · · · . ;
8 // reorder barrier

9 foreach i ∈ Affected do
10 D2[i]← 1⊕D2[i]

end
Algorithm 2: Update procedure for Concise

update. In Concise, the query always returns correct result.
Such concurrency issue is addressed as follows.

Concurrency requirements. Let A,B be the two vectors
of the query structure before an update and A′, B′ be the ones
after the update. For a name k that exists in the FIB before
and after the update, suppose i=ha(k) and j= hb(k). Both
A[i]⊕B[j] and A′[i]⊕B′[j] are considered as correct actions,
although they may be different. Note that, when A[i] = A′[i],
the values A′[i] ⊕ B[j] and A[i] ⊕ B′[j] are both correct
query results, no matter how read/write events are ordered.
Inconsistency only happens when both A[i] and B[j] are
changed during the update.

Concurrency control design.
Concise observes whether the vector A is being modified.

For a query for name k, if an update that affects A[i] is being
executed, Concise does not execute the query until the update
finishes. Concise maintains two bit vectors D1 and D2 for
concurrency control. All bits in D1 and D2 are set to 0 during
the initialization. Each index i (0 ≤ i < m) corresponds to an
index p(i) in D1 and D2. The lengths of D1 and D2 are set
to 512 bits and p(i) = i mod 512.

Update procedure. A pseudocode of the update procedure
is described in Algorithm 2. Before an update of the POG
that will change some elements of A, Concise flips the
corresponding bits in D1, i.e., change 0s to 1s and 1s to 0s.
After the update, it flips the bits with same indexes in D2.
For any index i, when Concise observes D1[p(i)] 6=D2[p(i)],
there must be no ongoing update that affects A[i]. Note that
even if a bit index corresponds to multiple elements that are
changed in an update, the bit is only flipped once.

Query procedure. A pseudocode of the query procedure
is described in Algorithm 3 The query procedure for name
k includes the following three steps. (1) Fetch the bit δ2 =
D2[p(i)]. (2) Fetch the value of A[i] and B[j]. (3) Fetch δ1 =
D1[p(i)]. If δ2 =δ1, compute A[i]⊕B[j] and return it as the
query result. Otherwise, δ2 6= δ1 and we know that the POG is
currently being updated and the update affects A[i]. The query
for k will stop and is put in a later place of the query event
queue. Concise uses reordering barrier instructions to ensure

Data: Concise query structure and name k
Result: Query result τ(k)

1 i← ha(k);
2 j ← hb(k);
3 p← i mod 512;
4 while true do
5 δ2 ← D2[p];
6 // reorder barrier

7 α← A[i];
8 β ← B[j];
9 // reorder barrier

10 δ1 ← D1[p];
11 if δ2 = δ1 then
12 return α⊕ β

end
end

Algorithm 3: Query procedure on Concise

the execution order in both update and query procedures.
Here, the order of flipping D1[p(i)] and D2[p(i)] during an

update and the order of getting their values during a query are
different. Any updates that affect A[i] and start during a query
must result in δ2 6= δ1.

The above procedures of update and query should be
executed in the given explicit order. This can be specified by
compiler reorder barriers on strong memory model platforms
such as x86 64, or fence instructions on weak memory model
platforms such as ARM.

VI. IMPLEMENTATION AND EVALUATION

We implement Concise on three platforms and conduct
extensive experiments to evaluate its performance.

A. Implementation Platforms

1. Memory-mode. We implement the POG query and
control structures, running on different cores of a desktop
computer. In addition, we use a discrete-event simulator to
simulate other data plane functions such as queuing. The
memory-mode experiments are used to compare the perform-
ance of the algorithms and data structures. They demonstrate
the maximum lookup speed that Concise is able to achieve
on a computing device by eliminating the I/O overhead.

2. Click Modular Router [20] is an architecture for build-
ing configurable routers. We implement an Concise prototype
on Click. It is able to serve as switch that forwards data
packets.

3. Intel Data Plane Development Kit (DPDK) [14] is
widely used in fast data plane designs. We use a virtualized
environment to squeeze both the traffic generator and the for-
warding engine on the same physical machine. This prototype
is able to serve as a real switch that forwards data packets.

B. Methodology

We compare Concise with three approaches for name
switching: (1) Cuckoo hashing [24] (used in Cuckoo-
Switch [39] and ScaleBricks [38]), (2) BUFFALO [34], and

9

(3) Orthogonal Bloom filters. CuckooSwitch [24] is optimized
for a specific platform with 16 cores and 40 MBs of cache.
ScaleBricks [38] is designed for a high performance server
cluster. We were not able to repeat their experiments on
commodity desktop computers. Instead, we compare Concise

with (2,4)-Cuckoo hashing, which is their FIB, by reusing the
code from the public repository of CuckooSwitch. BUFFALO
does not always return correct forwarding actions. The false
positive rate is set to at most 0.01%. We also implement a
new technique called Orthogonal Bloom filters (OBFs) for
comparison. It uses a Bloom filter to replace an Othello for
classification of two sets X and Y : all names in X hit the
Bloom filter. The false positive rate is also set to at most
0.01%. The other design of OBFs is similar to Concise.

We do not include SetSep [12] in this section although
it shares some similarity to Othello. The SetSep work [38]
does not include an update method and was not proposed for
FIBs. Also, there is no explicit update algorithm for SetSep
in every work in which it has been used [12][38]. Hence,
SetSep cannot be directly used for FIBs and it is not suitable
to implement SetSep and compare it with other FIB designs.
Actually our experiments using a static version of SetSep show
that Concise is faster than SetSep for name lookups.

1) Performance metrics
Data plane performance metrics are used to characterize

the performance of the Concise query structure in switches.
Memory cost: the size of memory needed to store a FIB.
MCQ: the maximum number of Cache lines transmitted per

Query. During each memory access, a cacheline (usually 256
bits of data in many architectures) is transmitted from memory
to the CPU. It is used to characterize the time cost of a query.

Query throughput: the number of queries that a FIB is able
to process per second.

Query throughput under update: the query throughput meas-
ured when the FIB is being updated. It reflects the effective-
ness of the concurrency control mechanism.

Processing delay: the processing delay of the query struc-
ture for a packet. It reflects the ability of the data plane to
process burst traffic. Such metric is measured using an event-
based simulator on real traffic trace.

Control plane performance metrics characterize the
performance of the Concise control structure in the controller.

Construction time: the time to construct a FIB. Note that,
for some networks in which G is shared among all switch FIBs
such as Ethernet, not every FIB requires the entire construction
time. Once G is determined, it can be reused for all switches.

Update throughput: the number of updates that can be
processed by the control structure per second. Here, an update
may consist in adding a name, deleting a name, or changing
the forwarding action of a name.

2) Evaluation environment and settings
LFSR name generator In the experiments, a series of query

packets with different names were generated and fetched by
the FIB. One straightforward approach is to feed the FIB
with a publicly available traffic trace. However, the time for
transmitting the data from the physical memory to the cache is
too large compared to the FIB query time. Hence, to conduct
more accurate measurement, we use a linear feedback shift

Q
u

e
ry

th
ro

u
g

h
p

u
t
HM

q
p

s
L

32K 64K 128K256K512K 1M 2M 4M 8M 16M 32M
10

20

50

100

200

500

1000 Concise

Cuckoo

OBFs

BUFFALO

ð of names

Figure 5: Query throughput versus number of names.

register (LFSR) to generate the names. One LFSR generates
about 200M names per second on our platform. In addition,
we provide event-based simulation using real traffic data to
study the processing delay on Concise.

In fact, LFSR gives no favor to Concise because the names
are generated in a round-robin scenario, which provides the
minimum cache hit ratio. LFSR traffic is actually the worst
traffic for Concise. On the contrary, in denial-of-service attack
traffic, the queries concentrate on one or few names, and they
always hit the cache. Hence, the query throughput of Concise
in DoS attack traffic may be higher than the value measured
with LFSR traffic. We believe the result measured in LFSR
traffic reflects the true performance of Concise.

Evaluation Settings In the following section, unless spe-
cified otherwise, we evaluate the performance of Concise

with 4 parallel query threads. The number of action is set
to 256 (l = 8). We conduct all experiments on a commodity
desktop computer equipped with one Core i7-4770 CPU (4
physical cores @ 3.4 GHz, 8 MB L3 Cache shared by 8 logical
cores) and 16 GB memory (Dual channel DDR3 1600MHz).

C. Data plane memory efficiency and MCQ

Table II shows the size of memory of different types of
FIBs. For the Cuckoo hash table, we use the (2,4) setting.
For BUFFALO, we assume the names are evenly distributed
among the actions, which gives an advantage to it. We use
the setting kmax = 8. These settings are all as described or
recommended in the original papers [39], [38], [34].

The memory space used by Concise is significantly smal-
ler than that of Cuckoo, BUFFALO, and OBFs. It is only
determined by the number of names n and the number of
actions, and is independent of the name lengths. Table II also
shows the maximum number of cachelines transmitted per
query (MCQ) of these FIBs. A smaller MCQ indicates fewer
data transferred from the memory to the CPU, which results in
better query throughput. Concise always requires exactly two
memory accesses per query. The other FIBs may have larger
MCQ depending on the name length and number of actions.

D. Memory-mode evaluation

1) Data-plane performance
Query throughput versus number of names. Figure 5

shows the query throughput of Concise, Cuckoo, BUFFALO,
and OBFs. The names are MAC addresses (48-bit).

10

FIB Example Concise Cuckoo BUFFALO OBFs
Name Type # Names # Actions Mem MCQ Mem MCQ Mem MCQ Mem MCQ

MAC (48 bits) 7×105 16 1M 2 5.62M 2 2.64M 8 7.36M 15
MAC (48 bits) 5×106 256 16M 2 40.15M 2 27.70M 8 112.06M 16
MAC (48 bits) 3×107 256 96M 2 321.23M 2 166.23M 8 672.34M 16
IPv4 (32 bits) 1×106 16 1.5M 2 4.27M 2 3.77M 8 10.52M 15

IPv6 (128 bits) 2×106 256 4M 2 34.13M 6 11.08M 8 44.82M 16
OpenFlow (356b) 3×105 256 1M 2 14.46M 6 1.67M 8 6.72M 16
OpenFlow (356b) 1.4×106 65536 8M 2 67.46M 6 18.21M 1024 66.60M 17
File name (varied) 359194 16 512K 2 19.32M 10 1.35M 8 5.47M 15

Table II: Memory and query cost comparison of four FIBs and SetSep. MCQ: maximum # of cachelines transmitted per query.

Q
u
e
ry

th
ro

u
g
h
p
u
t
HM

q
p
s
L

8 threads

4 threads

2 threads

1 thread

32 64 96 128 160 192 224 256
0

100

200

300

400

500

Concise
SetSep

Cuckoo

Name length HbitsL

Figure 6: Query throughput vs. name length

When n is smaller than 2 million, the throughput of
Concise is very high (> 400M queries per second (Mqps)).
This is because the memory required by Concise is smaller
than the cache size (8M for our machine). When n ≥ 2M,
the throughput decreases but remains around 100 Mqps. This
indicates that if other resources (e.g., I/O and buffer) are
not the bottleneck, Concise reaches 100Mqps. The query
performance decreases as the size of the query structure
exceeds the CPU cache size. We observe similar results when
running the evaluation on other machines with different CPUs.
Cuckoo has the highest throughput among the remaining three
FIBs but is only about only 20% to 50% of Concise. The
results of Cuckoo are consistent with those presented by the
original CuckooSwitch paper1. Note that the measured time
overhead includes that of query generation.2

Cost of detecting invalid names We also measure the cost
of two approaches to detect invalid names. 5 shows that using
a 8-bit checksum (marked as Concise+Chk in the figure) has
a minor impact on the query performance. We provide more
analysis on the approaches in Sec. VII-A.

Query throughput versus name length and number
of CPU cores. Figure 6 shows the query throughput using
different name lengths. Each FIB contains 256K names. As
the length grows, the throughput of all types of Concise

and Cuckoo FIBs decreases. Note that the memory size of
Concise is independent of the name length. Hence, the
throughput decrease of Concise is due to the increase of hash-

1The paper [39] showed a throughput 4.2x as high as our Cuckoo results on
a high-end machine with two Xeon E5-2680 CPUs (16 cores and 40MB L3
cache). It is approximately 4x as powerful as the one used in our experiments.

2In the evaluation of 1M names, each query of Concise takes about 4.5
ns while generating a query takes 4.1 ns.

Figure 7: Concise query throughput under different update
rates

ing time. One interesting observation is that when the length
is a multiple of 64 bits, the query throughput of Concise

is slightly increased. This is mainly because the experiments
are conducted on a 64-bit CPU. The query throughput grows
approximately linearly to the number of used threads, as long
as the number of threads does not exceed the number of
physical CPU cores of the platform.

Query throughput during updates. Figure 7 shows the
throughput of Concise during updates, including name addi-
tions, deletions, and action changes. There is only very small
decrease of query throughput even when the update frequency
is as high as hundreds of thousands of names updated per
second. We mark the one-σ (68%) confidence interval of the
throughput when there is no concurrent query in Figure 7.
Evaluation result shows that the throughput of Concise still
remains in its normal range during updates. For Concise with
4M names the throughput downgrade is negligible.

Processing delay. We conduct event-based simulations of
packet processing on the data plane to study the process delay.
We simulate a single-thread processor with two-level cache
mechanism. The packets are processed in a first-come, first-
served fashion. Each packet consists of the header and payload.
The packets are put in a queue upon reception and wait to be
processed by the prosessor. We measure the processing delay
for real traffic data from the CAIDA Anonymized Internet
Traces of December 2013 [1]. The average packet rate is about
210K packets per second. In Figure 8, Concise has smaller
processing delay than Cuckoo before the 90th percentile, but
they have similar tails. To study the processing delay under
larger traffic volumes, we replay the trace 100x as fast as the

11

C
u
m

u
la

ti
v
e

d
is

tr
ib

u
ti
o
n

Concise

Cuckoo

Concise 100x

Cuckoo 100x

0.001 0.01 0.1 1 10 100
0.0

0.2

0.4

0.6

0.8

1.0

Processing delay HΜsL

Figure 8: CDF of the processing delay of Concise and Cuckoo

C
o

n
s
tr

u
c
ti
o

n
ti
m

e
Hs

e
c
L

Concise

Cuckoo

BUFFALO

16K 32K 64K128K256K512K 1M 2M 4M 8M 16M

1

10

0.1

0.01

0.001

ð of names

Figure 9: Construction time comparison among three FIBs

original. Shown as the thin curves, the processing delay of
Concise is clearly smaller than that of Cuckoo before the
60th percentile. After that, the two curves are similar, except
that Cuckoo has a longer tail. Overall, the processing delay of
Concise is very small (< 1µs) even under high data volumes.

2) Control plane performance
Construction time. Figure 9 shows the average time to

construct the query and control structures for one switch with
various number of names. The construction time of Concise
grows approximately linearly to the number of addresses.
Although the time of Concise is larger than that of Cuckoo
and BUFFALO, it is still very small. For 4M names, it takes
only 1 second to construct the FIB. Note that the graph G
can be reused for all other switches in the network. Hence,
network-wide FIB construction only takes few seconds.

Update speed. The update speed indicates the ability to
react to network dynamics. All types of network dynamics,
including host and link changes, are reflected as name addi-
tions, deletions, and action changes in the FIBs. Figure 10
shows the update speed of Concise in number of updates
processed per second. We vary the number of names before
update and measure the time used to insert a number of new
names. Each run of the experiment is shown as a point in
the figure. In most cases, it reaches at least 1M updates per
second, which is sufficient for very large networks.

On POG reconstruction. In some rare cases, adding a
new name may require reconstruction of the POG when it
introduces a new cycle in to the bipartite graph. This may take
non-negligible time (0.2 seconds when there are 1M names).
Theoretical results show this happens with probability less
than 1.5

n . This value is even smaller in practice (about 1.3

U
p
d
a
te

s
p
e
e
d
Hu

p
d
a
te

s
�s

e
c
L

32K 64K 128K 256K 512K 1 M 2 M 4 M 8 M 16 M

2M

4M

6M

8M

10M

12M

ð of names before update

Figure 10: Update speed. Line: avg. spd. including POG
reconstruction.

parts per million when there are 1M names). Note that, POG
reconstruction may happen only when there is a new name
added to the network. Modifying a forwarding action of a
existing name (or removing a name) never results in POG
reconstruction. The line in Fig. 10 shows the average update
speed (including the time overhead for reconstruction). POG
reconstruction only imposes minor impact on the update speed.

Network-wide shared bipartite graph. For some networks
that require every switch to store all destination names such
as Ethernet, the name set S is identical for all switches in the
network. Hence, all switches in the network may share the
same G and 〈ha, hb〉. Constructing and updating the FIBs in
all switches only require computing G once. e.g., the phase
I of the construct procedure (Sec. IV-B1) is only executed
once for FIBs of all switches in the network. This indicates that
the construction time overhead for FIBs of multiple switches
can be further reduced. Note that for a single switch, the time
used for phase I is about half of the total of construct.

Communication overhead. We compute the entropy of
the information included in update messages in Table III. The
update message length grows logarithmically with respect to
either the number of names n or the number of actions. The
communication overhead of Concise is smaller than that of
most OpenFlow operations.

n=3×105 n=1.4×106

28 actions 216 actions
Name addition 75.2 107.2
Action change 65.6 88.8

Table III: Entropy of one update message in bits

E. Prototype Implementation and Evaluation

1) Implementation on Click
We implement a Concise prototype on Click Modular

Router [20]. The structure of the prototype system is as
shown in Figure 11. It receives packets from one inbound
port and forwards each packet to one of its several outbound
ports. Upon receiving a packet, it queries the POG using
the address field of the packet, i.e., the name, and decides
the outbound port of the packet. In addition, we implement
the (2,4)-Cuckoo hash table, OBFs, as well as the binary
search mechanism on Click. Figure 12 shows the forwarding

12

Traffic Generator

CONCISE Switch

Counter ……Counter Counter

Figure 11: Concise prototype with Click modular router

Q
u
e
ry

th
ro

u
g
h
p
u
t
HM

q
p
s
L

Concise

Cuckoo

OBFs

Binary

2K 8K 32K 128K 512K 2M 8M 32M

1

2

3

4

5

6

7

8

9

10

ð of names

Figure 12: Forwarding throughput comparison on Click

throughput. The Click modules in each evaluation includes one
traffic generator generating packets with valid 64-bit names,
one switch that executes queries on the FIB, and packet
counters connected to the egress ports of the switch. The
experiments are conducted on one CPU core.

Results show that Concise always has the highest through-
put. When n < 2M, Concise is smaller than the cache size
and the query throughput is about 2x as fast as Cuckoo and 4x
as fast as OBFs. When n ≥ 2M, the throughput of Concise is
still the highest. Meanwhile, Concise uses much less memory,
about 10% to 20% of that of Cuckoo, OBFs, and Binary.

2) Implementation with DPDK
We also build a Concise prototype on the hardware En-

vironment Abstraction Layer (EAL) provided by DPDK. It
maintains a POG query structure. The query structure is
initialized during boot up and can be updated upon network
dynamics. The prototype reads packets from the inbound ports,
executes queries on the query structure, and then forwards each
packet to the corresponding outbound port.

We implement both the traffic generator and FIB applic-
ation on the same commodity computer using virtualization
techniques. As shown in Figure 13, we create a guest virtual
machine (VM) on the host machine using KVM and Qemu
to install Concise. The VM is equipped with four virtio-
based virtual network interface cards. Linux TAP kernel virtual
devices are attached to the virtio devices on the host side. The
programs running on the host machine communicate with the
guest VM via the Linux TAPs. On the host machine, we use
a traffic generator program to send raw Ethernet packets to
Concise running on the VM. The host machine receives the
forwarded packets from Concise and counts the number of
packets using default counters provided by the Linux system.

We measure the throughput of Concise with different
numbers of names. The barchart in Figure 14 shows that

Guest: Virtual Machine

Host: Physical Machine

Traffic

Generator

Packet

Counter

DPDK EAL

Concise

V
ir

ti
o

tap

V
ir

ti
o

tap

V
ir

ti
o

tap

V
ir

ti
o

tap

Figure 13: Concise prototype on DPDK

P
a

c
k
e

t
fo

rw
a

rd
in

g
ra

te
HK

p
p

s
L

192K 384K 1.5M 6M 24M
0

200

400

600

800

1000

1200

1400

0

2

4

6

8

10

12

1464-Byte Packets 1500-Byte Packets

T
h

ro
u

g
h

p
u

t
HG

b
p

s
L

ð of names

Figure 14: Performance of the Concise prototype on DPDK

Concise is able to generate, forward, and receive more than
1M packets per second, for both 64-Byte and 1500-Byte
packets. The forward throughput is at least 12 Gbps for 1500-
Byte Ethernet packets. The throughput of Cuckoo is only
60% to 80% of the throughput of Concise. The forwarding
throughput does not significantly change when the number of
names grows or packet length changes. This indicates that the
impact of Concise on the overall performance is so small
that it is negligible compared to the other overheads. The
bottleneck of this evaluation is on other parts of processing,
e.g., data transmission between the host machine and guest
VM. We expect a much higher throughput on physical NICs.

VII. DISCUSSION

A. Deal with Alien Names

An alien name is a name that is not in S during Concise

construction. Querying an alien name may result in an ar-
bitrary forwarding action. Compared to the forwarding table
miss of Ethernet, which let the packets flood to all inter-
faces, Concise causes no flooding. Operators may choose one
or some of the following mechanisms to detect the alien
names.
• At an ingress switch, every incoming packet should be

checked by a filter or firewall to validate that its destination
does exist in the network. This filter can be implemented as
a network function running on the border of the network,
and can be integrated with the firewall.

• Maintain a Bloom filter at each of the switches. Packets
with valid names pass this filter and are then processed by
Concise FIB.

13

F
a
ls

e
P

o
s
it
iv

e
R

a
te

0 2 4 6 8

10-6

10-4

0.01

1

BF MCQ=2

BF MCQ=4

BF MCQ=6

BF MCQ=8Cuckoo-Checksum

MCQ=2 Cuckoo-Full

No false positive

POG-Checksum

No additional MCQ

Additional Memory Space HMBL

Figure 15: Approaches of detecting invalid names

• In addition to the l-bit query results, also maintain the
checksums for each name in the Concise FIBs. Adding
checksums will increase the memory size of Concise.
For r-bit checksums, the overall memory cost of a query
structure is 2(l + r)m + O(1). Note that as long as l + r
does not exceed the word length of the computing platform,
the time overhead of all operations remains unchanged.
Assuming there are in total 1M names. Fig 15 compares

the memory and computational overheads of the above ap-
proaches. The false positive rate can be controlled to be as
low as 10−5 with < 2MB memory overhead using the filter
of Cuckoo with checksums. The performance when using
Bloom filters may vary depending on the parameters. We also
recommend to utilize the time-to-live (TTL) value of to prevent
the packet being forwarded in the network forever.

The unique property of returning an arbitrary value for an
alien name may also be useful for Concise as a network load
balancer: for a server-visiting flow that is new to the network,
Concise can forward it to one of the servers with adjustable
weights.

B. Concise versus Cuckoo and SetSep

Concise is essentially a classifier for names, and each class
represents a forwarding action. Concise does not store the
names. Cuckoo stores all names and actions in a key-value
store.

SetSep has some properties similar to Concise. Both of
them do not store names and return meaningless results for
unknown names. In ScaleBricks [38], SetSep is only used as
a separator to distribute the FIB to different computers, rather
than the FIB. Meanwhile, the update scheme for SetSep is
not explicitly explained [12], [38], and there is no discussion
about handling dynamic FIB size growth.

In addition to the memory size results in Table 1, we
show some comparison results of SetSep in what follows. The
construction speed of SetSep is slower than that of Concise
and Cuckoo by more than an order of magnitude: 10 seconds
for one single FIB of 1M names in our experiments. We
also measure the update speed of SetSep without adding new
names, which turns to be less than 10K/s (< 1 % of Concise).
The query speed of SetSep is higher than that of Cuckoo.
SetSep needs to compute 1 + l hash values and read 2 + 2l
values for each query. We implement a static SetSep with 1.4M
names and l = 8, using 2.19MB memory. Its query throughput

is 211 Mqps using 4 threads. In comparison, Concise with
the same settings uses 4M memory and reaches 470 Mqps.

In addition, we summarize the reasons of the performance
gain of Concise as follows. (1) Othello does not maintain a
copy of the names in the query structure. The memory size of
the query structure is much smaller than the other solutions.
Concise demonstrates higher cache-hit rate, which leads to
better performance on cache-based systems. (2) The query
procedure does not contain any branches (e.g, if statements).
This helps the CPU to predict and execute the instructions
in the query procedure. (3) The efficient concurrency control
mechanism further improves the query speed of Concise.

C. Example Use Case

Concise provides desired FIB properties for many current
and future architecture designs that adopt flat names as men-
tioned in Sec. I. We present a use case where it can be applied
in a large enterprise network.

A large enterprise or data center network may include up to
millions of end hosts and more VMs [16]. In these networks,
internal flows contribute to the most bandwidth, which can
be forwarded by Concise using destination names on Layer
2. The destination of a packet in this network can only be
either a host or a gateway. We require hosts in the network
voluntarily check the validity of the packets before sending
them out. This can be easily achieved using software firewalls
such as iptables.

As of the gateway, we require it to execute two network
functions: (1) For packets going out from the network, perform
Layer 3 routing using the external IP of the destination.
This is a basic function a router. (2) For packets going into
the network, filter out all packets with invalid destinations.
This can be implemented by a firewall. The packets will be
forwarded using the Layer 2 names of the destinations. In
addition, we require all packets in the network to carry a time-
to-live (TTL) value to prevent packets from being forwarded
forever in case packets with invalid names pass the firewalls.

VIII. CONCLUSION

Concise is a portable FIB design for network name look-
ups, which is developed based on a new algorithm Othello
Hashing. Concise minimizes the memory cost of FIBs and
moves the construction and update functionalities to the SDN
controller. We implement Concise using three platforms.
According to our analysis and evaluation, Concise uses the
smallest memory to achieve the fastest query speed among
existing FIB solutions for name lookups. As a fundamental
network algorithm, we expect that Othello Hashing will be
used in a large number of network systems and applications
where existing tools such as Bloom Filters and Cuckoo Hash-
ing may not be suitable.

REFERENCES

[1] The CAIDA UCSD Anonymized Internet Traces.
http://www.caida.org/data/passive/passive 2013 dataset.xml.

[2] A. Anand, C. Muthukrishnan, S. Kappes, A. Akella, and S. Nath. Cheap
and large CAMs for high performance data-intensive networked systems.
In Proc. of USENIX NSDI, 2010.

14

[3] D. G. Anderson, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon,
and S. Shenker. Accountable Internet Protocol (AIP). In Proc. of ACM
SIGCOMM, 2008.

[4] H. Asai and Y. Ohara. Poptrie: A Compressed Trie with Population
Count for Fast and Scalable Software IP Routing Table Lookup. In
Proc. of ACM SIGCOMM. ACM, 2015.

[5] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy, S. Shenker,
I. Stoica, and M. Walfish. A layered naming architecture for the Internet.
In Proc. of ACM SIGCOMM, 2004.

[6] D. Belazzougui, P. Boldi, R. Pagh, and S. Vigna. Monotone minimal
perfect hashing: searching a sorted table with O (1) accesses. In Proc.
of ACM SODA. Society for Industrial and Applied Mathematics, 2009.

[7] O. B. Bernard Chazelle, Joe Kilian, Ronitt Rubinfeld, Ayellet Tal. The
Bloomier Filter: An Efficient Data Structure for Static Support Lookup
Tables, 2004.

[8] F. C. Botelho, N. Wormald, and N. Ziviani. Cores of random r-partite
hypergraphs. Inf. Process. Lett., 112(8-9):314–319, apr 2012.

[9] M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan, I. Stoica, and
S. Shenker. ROFL: Routing on Flat Labels. In Proc. of ACM SIGCOMM,
2006.

[10] S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba. PayLess:
A Low Cost Netowrk Monitoring Framework for Software Defined
Networks. In Proc. of IEEE/IFIP NOMS, 2014.

[11] L. Devroye and P. Morin. Cuckoo hashing: further analysis. Information
Processing Letters, 86(4):215–219, 2003.

[12] B. Fan, D. Zhou, H. Lim, M. Kaminsky, and D. G. Andersen. When
cycles are cheap, some tables can be huge. In Proc. of USENIX HotOS,
2013.

[13] B. A. Greenberg et al. VL2: a scalable and flexible data center network.
ACM SIGCOMM CCR, 09:51–62, 2009.

[14] Intel. Data Plane Development Kit. http://dpdk.org/.
[15] V. Jacobson, D. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,

and R. L. Braynard. Networking Named Content. In Proc. of ACM
CoNEXT, 2009.

[16] S. Jain and Others. B4: Experience with a Globally-Deployed Software
Defined WAN. In Proc. of ACM SIGCOMM, 2013.

[17] S. Janson and M. J. Luczak. Susceptibility in subcritical random graphs.
J. Math. Phys., 49(12):125207, 2008.

[18] P. Kazemian, G. Varghese, and N. McKeown. Header Space Analysis:
Static Checking For Networks. In Proc. of USENIX NSDI, 2012.

[19] C. Kim, M. Caesar, and J. Rexford. Floodless in seattle: a scalable
ethernet architecture for large enterprises. In Proc. of SIGCOMM, 2008.

[20] E. Kohler, R. Morris, and B. Chen. The Click Modular Router. PhD
thesis, Massachusetts Institute of Technology, 2000.

[21] B. S. Majewski, N. Wormald, G. Havas, and Z. Czech. A Family of
Perfect Hashing Methods. Comput. J., jun 1996.

[22] M. Moradi, F. Qian, Q. Xu, Z. M. Mao, D. Bethea, and M. K.
Reiter. Caesar: High-Speed and Memory-Efficient Forwarding Engine
for Future Internet Architecture. In Proc. of ACM/IEEE ANCS, 2015.

[23] R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson. Host Identity
Protocol. Technical report, 2008.

[24] R. Pagh and F. F. Rodler. Cuckoo hashing. J. Algorithms, 51(2):122–
144, may 2004.

[25] C. Qian and S. Lam. ROME: Routing On Metropolitan-scale Ethernet.
In Proc. of IEEE ICNP, 2012.

[26] D. Raychaudhuri, K. Nagaraja, and A. Venkataramani. MobilityFirst:
A Robust and Trustworthy Mobility Centric Architecture for the Future
Internet. MC2R, 2012.

[27] J. Saltzer. On the naming and binding of network destinations. RFC
1498, 1993.

[28] M. Shahbaz, S. Choi, B. Pfaff, C. Kim, N. Feamster, N. McKeown, and
J. Rexford. PISCES: A Programmable, Protocol-Independent Software
Switch. In Proc. of ACM SIGCOMM, 2016.

[29] A. Singla, P. B. Godfrey, K. Fall, G. Iannaccone, and S. Ratnasamy.
Scalable Routing on Flat Names. In Proc. of ACM CoNEXT, 2010.

[30] V. Srinivasan, S. Suri, and G. Varghese. Packet classification using tuple
space search. In Proc. of ACM SIGCOMM, 1999.

[31] B. Stephens, A. Cox, W. Felter, C. Dixon, and J. Carter. PAST: Scalable
Ethernet for Data Centers. In Proc. of ACM CoNEXT, 2012.

[32] Y. Wang et al. Wire speed name lookup: a GPU-based approach. Proc.
of USENIX NSDI, 2013.

[33] T. Yang, G. Xie, Y. Li, Q. Fu, A. X. Liu, Q. Li, and L. Mathy.
Guarantee IP Lookup Performance with FIB Explosion. In Proc. of
ACM SIGCOMM, 2014.

[34] M. Yu, A. Fabrikant, and J. Rexford. BUFFALO: Bloom filter forward-
ing architecture for large organizations. In Proc. of ACM CoNEXT,
2009.

[35] M. Yu, J. Rexford, M. J. Freedman, and J. Wang. Scalable flow-based
networking with DIFANE. In Proc. of ACM SIGCOMM, 2010.

[36] Y. Yu, D. Belazzougui, C. Qian, and Q. Zhang. In Proc. of IEEE ICNP,
2017.

[37] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D. Thornton, D. K. Smet-
ters, B. Zhang, G. Tsudik, D. Massey, C. Papadopoulos, T. Abdelzaher,
L. Wang, P. Crowley, and E. Yeh. Named data networking (ndn) project.
NDN Tech. Rep., 2010.

[38] D. Zhou, B. Fan, H. Lim, D. G. Anderson, M. Kaminsky, M. Mitzen-
macher, R. Wang, and A. Singh. Scaling Up Clustered Network
Appliances with ScaleBricks. In Proc. of ACM SIGCOMM, 2015.

[39] D. Zhou, B. Fan, H. Lim, M. Kaminsky, and D. G. Anderson. Scalable,
High Performance Ethernet Forwarding with CuckooSwitch. In Proc.
of ACM CoNEXT, 2013.

Ye Yu (S’13) is a Ph.D. student at the Department
of Computer Science, University of Kentucky. He
received the B.Sc. degree from Beihang Univer-
sity. His research interests including data center
networks, software defined networking. Especially,
he is doing research about applications of fast and
memory-effective hashing applications in computer
networking systems and data storage.

Djamal Djamal Belazzougui is currently a re-
searcher at CERIST research centre, Algeria. He re-
ceived an enginerring degree from the national high
school of Computer science, Algeria, and earned a
Phd degree from Paris-VII, Paris-Diderot university,
France. He subsequently spent three years as a
postdoctoral researcher at the University of Hel-
sinki, Finland. His research topics include hashing,
succinct and compressed data structures and string
algorithms.

Chen Qian (M’08) is an Assistant Professor at the
Department of Computer Engineering, University of
California Santa Cruz. He received the B.Sc. degree
from Nanjing University in 2006, the M.Phil. degree
from the Hong Kong University of Science and
Technology in 2008, and the Ph.D. degree from
the University of Texas at Austin in 2013, all in
Computer Science. His research interests include
computer networking, network security, and Internet
of Things. He has published more than 60 research
papers in highly competitive conferences and journ-

als. He is a member of IEEE and ACM.

Qin Zhang Qin Zhang is currently an Assistant
Professor at Indiana University Bloomington. He
received the B.S. degree from Fundan University
and the Ph.D. degre from Hong Kong University
of Science and Technology. He also spent a couple
of years as a post-doc at Theory Group, IBM Al-
maden Research Center, and Center for Massive
Data Algorithmics, Aarhus University. He is inter-
ested in algorithms for big data, in particular, data
stream algorithms, sublinear algorithms, algorithms
on distributed data, I/O-efficient algorithms, and data

structures.

