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Abstract—Identifying the object that attracts human visual
attention is an essential function for automatic services in smart
environments. However, existing solutions can compute the gaze
direction without providing the distance to the target. In addition,
most of them rely on special devices or infrastructure support.
This paper explores the possibility of using a smartphone to
detect the visual attention of a user. By applying the proposed
VADS system, acquiring the location of the intended object only
requires one simple action: gazing at the intended object and
holding up the smartphone so that the object as well as user’s face
can be simultaneously captured by the front and rear cameras.
We extend the current advances of computer vision to develop
efficient algorithms to obtain the distance between the camera
and user, the user’s gaze direction, and the object’s direction
from camera. The object’s location can then be computed by
solving a trigonometric problem. VADS has been prototyped on
commercial off-the-shelf (COTS) devices. Extensive evaluation
results show that VADS achieves low error (about 1.5◦ in
angle and 0.15m in distance for objects within 12m) as well
as short latency. We believe that VADS enables a large variety
of applications in smart environments.

I. INTRODUCTION

Visual attention potentially represents human mental activ-
ities such as planning or purpose [1]. Human visual attention
detection determines the relative location of the object that
a person is looking at. It provides tremendous benefits for
intelligent services in smart environments. We highlight sev-
eral typical scenarios where visual attention detection plays an
important role.

• Smart control system. People may perform automatic
control of factory machinery and home appliances with-
out physical contact. Suppose a teacher walks into a
classroom and wants to turn on a light in the back of
the room. She can simply watches the light. The system
will identify the light and then automatically turn it on.

• Smart labelling. People may easily label any item in
the smart environment with written information. In a
furniture store, a customer may look at a mattress and
write her review such as “This mattress is the firmest in
the store”. This customer-generated tag will be sent to
and stored in the smart environment system.

• Smart information retrieval. People may request related
information of an object by simply looking at it. In a
shopping mall, a customer may look at a restaurant and

Fig. 1: Illustration for VADS system. User can instantly access
the information of the intended object via only a gaze.

let a mobile device understand her visual attention. Then
she can read all related information of the restaurant such
as business hours, menu, and customer reviews.

Obviously, conventional human-computer interface, such as
keyboard, voice, touchscreen, or wireless smart sensing based
techniques [2]–[5] etc. can hardly provide such convenience.

Recent studies have been investigating how to recognize
human visual information using wearable devices such as
Google Glass. For example, iGaze [6] and iShadow [7] are two
recent systems that track human eye gaze. These approaches
have two main limitations. First, glass-like wearable devices
are not ubiquitous and it is cost-inefficient to wear special
devices just for interacting with a smart environment. In fact,
methods that can be implemented on smartphones are much
more desired. Second, these approaches can only detect gaze
directions and do not provide the distance of the intended
object. They could be error-prone when multiple objects sit
on a same gaze direction.

In this work we design and implement a smartphone-based
visual attention detection system, called VADS. The user
operation of VADS is very simple. As shown in Fig. 1, a
user stares at the intended object directly, while holding up
her smartphone as to take a photo for the object. VADS can
simultaneously capture the object as well as the user’s face
from the rear and front cameras respectively, and then compute
the relative location, which includes both the gaze direction
and distance to the object.
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Fig. 2: Geometry expression for VADS. The notations are
described in Table. I.

In this system, we build an accurate facial model in advance
as the reference for calculating the distance and angle from the
user to the front camera. Then the smartphone tracks the angle
from the object to the rear camera. In addition VADS also
computes the gaze direction from the user to the object. With
these parameters, VADS forms an virtual binocular vision
system. The distance from the user to the object can be thereby
calculated by trigonometric computation, and hence the object
is localized and further identified. The information about the
intended object can be ultimately retrieved from a location
based service (LBS) of the smart environment.

We summarize the major contributions of this work as
follows.

• We design a visual attention detection system and imple-
ment it on Commodity Off-The-Shelf (COTS) smartphones.
Compared to previous approaches, VADS extends the spatial
resolution of visual attention detection from one-dimension
(angle-only) to 3D (angle-distance).

• VADS is based on existing smartphone systems and does
not rely on any extra infrastructure. It is easy to operate and
significantly reduces the infrastructure and equipment cost.

• We extend the current advances of computer vision
and design algorithms to estimate the gaze direction of a
human face in a picture. Innovations of VADS’s gaze direction
estimation include unsupervised face modeling, a novel iris
center localization method, and an accurate yet efficient linear
gaze model.

• We prototype VADS on the iOS platform. Extensive
experimental results show that VADS achieves high accuracy
and low latency.

II. RELATED WORK

Capturing human’s visual attention is a very challenging
task. In the literature, biological signals based brain imag-
ing are extensive studied for interpreting the intention. For
example, fMRI based approaches [8] can localize the brain
activation area and then correlate to certain stimulus. How-
ever, the mapping mechanism between human intention and
activation remains unclear [9]. Besides directly sensing the
brain signal, researchers find that the human’s gaze is quite
indicative for identifying human attention [10], and can be

TABLE I: Symbols used in this paper.

Symbol Description
navi The local-navigational frames

cr, cf
The rear and front camera-centered coordinate system

(frame)
face The face coordinate system (frame)
ob The intended object
tfxp The position (vector) to p in fx-frame
ufx
p The unitary directional vector towards p in the fx-frame

Rfn
fo

The rotation matrix which transform the coordinate system
from the fo-frame to fn-frame

correlated to certain brain activities [11]. To realize the visual
attention detection, It is necessary to achieve accurate gaze
estimation. Prior works for gaze estimation can be categorized
into two groups: model-based approaches and appearance-
based approaches. The model-based approaches [6], [12]
usually adopt a 2D or 3D eyeball model. By localizing
the iris center, the poses of the eyeballs are estimated, and
eventually the gaze direction can be computed. Since the
human cornea has strong reflection in visible light spectrum,
some approaches use infrared cameras to capture the eyes
image [13]. Appearance-based approaches [7], [14], [15] avoid
the complex modeling for eyeballs. They treat the complete
eye image as a description vector. Feng et al. [14] estimate the
gaze angle by comparing the captured eye image to a large set
of synthesized ones. Yusuke et al. [15] use a Gaussian process
regression to establish the mapping between gaze point and
image saliency vector. However, most of previous approaches
operate in controlled scenarios. Recently, mobile devices are
leveraged for gaze estimation. iGaze [6] and iShadow [7] are
designed and implemented based on the glass-style hardware.
Specifically, iGaze [6] uses a fine-grained 3D eyeball model
based algorithm, while iShadow [7] utilizes a feed-forward
neural network based scheme.

Two most similar work to VADS are OPS [16] and Cam-
Loc [17]. Both of them can localize an remote object or build-
ing. However, each of them has certain rigid requirements that
constrain their usage. OPS requires the user to take multiple
photos from different positions. The building’s position is then
estimated via multilateration. Compared to VADS, OPS also
needs a large angle span, which is inconvenient for instant
use. CamLoc estimates the distance by comparing the object’s
appearance size in two photos. Thus, it requires the user to take
two pictures with special arm gestures. However, it suffers
from low accuracy when the building is poorly segmented
from the pictures.

III. SYSTEM OVERVIEW

The idea of VADS is based on a simple 3D geometric
problem. From measurement and computation, we may obtain
four elements using the smartphone shown as the red elements
in Fig. 2. They are the directional vectors from the rear camera
and user’s face to the intended object, denoted as ucr

ob and
uface
ob respectively, the face position in the front camera view
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Fig. 3: The selected facial anchor nodes. The white lines show
their shape constraints.

t
cf
face, and the the position of the front camera w.r.t. the rear

camera tcrcf . Given this information, the goal of VADS is to
determine the relative location of the intended object, denoted
as tfaceob . The visual attention can then be easily computed on
the smartphone.

VADS works in three phases, face tracking & pose esti-
mation, gaze direction estimation, and visual attention local-
ization. In the first phase, VADS tracks the user’s face from
her/his smartphone’s front camera. The face position t

cf
face and

the pose R
cf
face are determined. In the second phase, with the

face direction obtained in the first phase, VADS localizes the
iris center and estimates the user’s gaze direction uface

ob . In the
last phase, VADS calculates its directional vector ucr

ob. Since
tcrcf is a pre-known element, VADS can calculate tcrob and tfaceob .

There are 3 main challenges in the VADS design. We will
address them in the following sections.

• Prior face tracking methods usually demand high-
performance computing capability and cannot be directly used
on the computational resource-limited mobile platform. We
have to pursue an effective face tracking solution that satisfies
the following requirements: high accuracy, high robustness,
and low latency.

• It is not easy to acquire an accurate 3D model for facial
features using existing solutions. Prior work usually requires
high quality images, which is difficult to be obtained by mobile
smartphones. Meanwhile, they do not have a general parameter
tuning mechanism and reducing the tuning overhead is also
non-trivial.

• In the phase of gaze estimation, a big challenge is to
accurately localize the iris center. Prior approaches usually
work in an ideal condition, where most iris area should be
observed by the camera. In the VADS operating scenario,
large part of iris area, however, may be occluded by eyelids.
Furthermore, the front camera of user’s smartphone is often in
low-resolution. In addition, the cornea’s reflection poses non-
negligible impact to the localization. Thus we cannot directly
utilize existing solutions.

IV. FACE TRACKING AND POSE COMPUTATION

Two factors are indispensable to determine the position and
pose of user’s face (tcfface, and R

cf
face respectively). They are

(1) Base
(2) Yaw + 30
(3) Yaw - 30
(4) Roll + 30
(5) Roll - 30

(1)(2) (3)

(4)

(5)

(a) Trained 2D Patches (b) Trained Shape Model

Fig. 4: (a) shows the trained patch model for a volunteer.
(b) shows the trained shape model, which has two intrinsic
parameters, the yaw and roll angle.

the accurate tracking for some anchor nodes on user’s face and
the accurate 3D coordinates for these nodes. In our system,
seven highly distinguishable facial features are chosen as the
facial anchor nodes, as shown in Fig. 3.

To track these anchor nodes, One major challenge is that
prior approaches are inaccurate or inefficient on the mobile
platform. there are very few options that can track these anchor
nodes accurately and efficiently on the mobile platform. For
example, conventional object tracker [18] is easy to drift away.
Active Appearance Model (AAM) [19] or its variants [20]
suffer from a low tracking accuracy. The feature-alignment
based approach, such as ERT [21], is accurate and robust.
However current smartphones cannot afford its computational
overhead.

We choose Active Shape Model (ASM) [22]–[24], a simple
yet efficient approach, as our tracking framework. Traditional
ASM is not robust for wide dynamic range of observation
angle. We tailor it for the use in mobile phones and optimize
it in terms of tracking accuracy, robustness, and efficiency.

A. ASM-based Facial Anchor Nodes Tracking

ASM is a global optimization-based approach. Instead of
localizing each feature point individually, ASM operates in
another way. It treats the features together as an intact object
and then globally optimize the feature localization according
their spatial constraints. To realize this idea, ASM relies on
two models, namely the patch model and shape model. The
patch is a detector trained for a specific feature, while the
shape model encapsulates the geometric constraints. ASM
is computational efficient and suitable for mobile platform.
However, a drawback of ASM is its unreliability for human
face tracking applications [23], [24]. The 1-D gradient vector
based patch model is unstable for any small pose variation. To
deal with this problem, we enhance the ASM with correlation-
based 2D patch model. while enables accurate and robust
tracking for facial anchor nodes on the mobile platform.

Correlation-based 2D Patch Model: For a given facial
feature fk, we consider the optimal correlation-based patch



P̂fk as the solution to the following optimization problem:

P̂fk = argmin
P

F(P)

F(P) =
N∑

i=1

∑

x,y

∥R−P ·Ti
(x,y)∥2F

s.t. arg max
Ti

(x,y)

N∑

i=1

∑

x,y

P ·Ti
(x,y) = Ti

fk (1)

where R is an ideal response map that has a centered 2D-
Gaussian distribution with very small σ, Ti

(x,y) is the small
image tile located at (x, y) of the i-th training image, and Ti

fk
is the small tile right-centered at feature fk in the i-th image.
The idea behind Eq. 1 is intuitive: the optimal patch P̂fk

should yield the highest response iff the test image tile Ti
(x,y)

contains the feature fk.
Under this 2D patch model, the training process for P̂fk

can be very efficient. Actually, Eq. 1 is in the standard form
of linear least square (LLS). The optimal solution can be
approximated using stochastic gradient descent approach. The
gradient of F(P) in the i-th step is:

∇F(P) = −2
∑

x,y

(R−PTi
(x,y))T

i
(x,y) (2)

and P̂fk can be obtained iteratively as

P̂i
fk

= P̂fk

i−1
− α∇F(P) (3)

Before the first use of VADS, a user records a short training
video, and it is used to train his/her correlation-based 2D
patch model. In this training video, the user’s head keeps
still and the phone moves around the face to cover wide
viewing angles. The per-frame ground-truth of facial anchor
nodes is obtained via ERT approach [21]. In this way, we train
specific patch model and shape model for the user. Fig. 4 (a)
shows an example of the trained 2D patches for the selected
facial anchor nodes. The shape model is also extracted from
the training images, following the standard ASM approach. It
uses the Principle Component Analysis (PCA) to capture the
shape variations w.r.t. the average shape. In our system, two
most dominating parameters (yaw and roll angle) are captured.
Fig. 4 (b) shows the extracted shape and its variants in both
yaw and roll direction.

B. Facial 3D Model Extraction & Face Pose Computation
Obtaining the accurate 3D coordinates of the facial anchor

points is the other indispensable task. Structure from Model
(SfM) based solutions [17], [25] are widely adopted for similar
problems. However, when we extracted a 3D surface from
images using SfM, it suffers from unstable performance,
high computation overhead, and low accuracy. In addition, its
parameter tuning requires professional knowledge and is not
easy to implement.

In our system, we decompose the 3D model extraction into
two much easier tasks: obtaining the facial anchor nodes’ 2D
position model, and compute the relative heights for these
nodes.

← optimal combination
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Fig. 5: The re-projection error after Gaussian filtering. The
darkest point corresponds to the optimal combination of
heights.

1) Obtain The Optimal 2D Model for Facial Anchor Nodes:
The user is required to selected the most ”right-up-front”
face from the training video. The facial anchor nodes on
this face are used as the anchor nodes. To prevent the error
introduced by human visual imperfection, user is required to
select multiple ”right-up-front” faces, and the final coordinate
for an anchor node is then the median position of these
candidate faces.

2) Compute Relative Heights of Facial Anchor Nodes:
With the constraint of the facial 2D model, a by-product of
face pose estimation process can help VADS determine the
relative heights. Pose estimation is an Perspective-n-Points
(PnP) problem. Given the 3D coordinates of the anchor points
on the object, and their corresponding 2D pixel coordinates
on the image, a PnP solver [26] can estimate the object’s
3D position and pose by solving an optimization problem,
of which the optimization objective is the re-projection error,
erpj . Apparently, if we feed a more accurate heights combi-
nation into the PnP solver, erpj is lower.

We use erpj to help us identify the optimal heights combina-
tion. To minimize the search space, we first assume the left-
outer, left-inner, right-inner, and right-outer canthus points
are coplanar at base height, i.e., their heights are all 0. We
then assume the heights of two nose edge points are identical.
We further assume the height ranges of nose-edge points and
mid-lip point are the same, 0mm < hnose < 25mm and
0mm < hmidlip < 25mm. With these three assumptions, we
now only need to determine the optimal heights of nose-edge
hnose and mid-upper lid hmidlip.

We use the EPNP [26] algorithm as the PnP solver. We
record the error for each heights combination. A Gaussian
kernel filter is further applied to smooth the error surface. The
point with minimal error is the chosen as the optimal heights
combination. Fig. 5 shows the filtered error surface and the
optimal height combination for hnose and hmidlip. At last,
VADS obtains the accurate 3D coordinates of facial anchor
nodes.

3) Face Pose & Position Estimation: With the accurate 3D
coordinates and 2D pixel coordinates of facial anchor nodes,



Fig. 6: The screenshot of face pose estimation module. The
green dots denote the facial anchor nodes, and the colored lines
denote the axes of face-frame. The distances from face-frame
to front camera t

cf
face, are shown at the bottom.

we use EPNP to compute the face pose and position w.r.t. front
camera, denoted as R

cf
face and t

cf
face respectively.

To obtain the position w.r.t. rear camera, denoted as tcrface,
we need to change the coordinate system from cf to cr, which
is a rigid transformation, as shown below.

tcrface =

[
Rcr

cf tcrcf
0 1

]
× t

cf
face (4)

Rcr
cf and tcrcf together describe the coordinate system transfor-

mation from cf to cr. Fig. 6 shows a screenshot of face pose
estimation module on mobile platform.

V. COMPUTING GAZE DIRECTION

In this section, we describe the method to compute user’s
gaze direction. We divide this task into two stages: iris center
localization and gaze direction computation. The difficulties
mainly exist in the accurate localization for iris center.

A. Iris Center Localization

Three major difficulties bring great challenge to the iris
center localization. The first is the occlusion. The eyelids and
eyelash often occlude a large portion of the iris area. The
shadow casted by eyelids further blurs the boundary between
the eyelid and iris. The second problem is the cornea’s strong
reflection. It often results in a bright spot on the iris boundary.
The last one is the low quality imaging. The smartphone’s front
camera is much more inferior than the rear camera.

Various of existing solutions are tried to localize the iris
center. However, none of them achieve high accuracy and low
latency simultaneously. Circle detection based approach [27]
cannot work because the iris boundary is ambiguous and
incomplete. Gradient or isophote based approaches [28], [29]
are not accurate due to strong noise around the iris boundary.

Facing these difficulties, we propose our two-step approach.
We first perform an accurate iris area segmentation using an
adaptive pixel ranking algorithm, and then we identify the iris
center via a customized convexity metric.

1) Iris Area Segmentation: Given an eye image, it is intu-
itive to segment the iris area using color-based thresholding.
However, the non-uniform luminance distribution and glow
spot brought by cornea’s reflection make the thresholding not
workable. We propose an adaptive pixel ranking technique to

(a) Raw Image (b) Rank Image (c) Iris Area IIR

(d) SpinS Response (e) Overlay View (f) Final Result

Fig. 7: An example of iris center localization. (a) is the raw
eye image. (b) is the ranked-graph of the eye. (c) shows the
best rank which closely covers the iris area. (d) shows the
SpinS response and the minimum point. (e) and (f) shows the
overlay view and the final result of iris center localization.

handle this problem. The pixels’ spatial relevance is first taken
into consideration to preserve the structure information. It then
uses an iterative pixel clustering process to overcome the non-
uniform luminance distribution.

Given a color image, we denote its pixel set as P . For
each pixel p ∈ P , we enlarge its data dimension such that
p = (r, g, b,αx,αy) where r, g, b is the RGB color values, (x,
y) are the pixel’s coordinate, and α, usually within [0.1, 0.4],
is the ratio used to combine the color and coordinate. By
involving the pixel’ coordinate, the impacts from both the color
and position domains are taken into the consideration.

We then perform a k-round clustering process on P . In the
i-th (1 ≤ i ≤ k) round, a 2-means clustering is performed.
The input pixel set of i-th round, denoted by Pi (P1 = P ), is
split into two clusters. One is lighter-colored and the other is
the darker-colored. The darker-colored pixel set then becomes
the input set for the next round, and their rank increase 1.
After k rounds clustering, each pixel is associated with a rank
value. We denote this rank image as Irank.

Given Irank, the goal of iris area segmentation becomes to
determine in which rank and above, the rank image is most
probably the iris area. The solution is inspired by a finding
observed in the preliminary evaluations: the iris area usually
has the most convex shape, i.e., the rank image with the highest
convexity. The convexity of a shape S, denoted by Cvxt(S),
is defined as

Cvxt(S) = Ar(S)/Ar(CvxHl(S)) (5)

where Ar(S) returns S’s area. and CvxHl(S) returns S’s
convex hull. Convex hull is the smallest convex shape which
contains the original one. We select the rank with the highest
CvxHl, and use its convex hull as the iris area, denoted as
IIR. Fig. 7 (b) to (c) show the ranked image generation and
the best rank extraction for the example eye image in Fig. 7
(a).

2) Iris Center Localization: The next step is to localize the
iris center. We should note that the true iris center is not the
shape center of IIR but the center of the smallest circumscribe
circle of IIR. The challenge here is how to describe this iris
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center. However, since IIR is an irregular shape, there can
hardly be a geometrical definition.

We propose an Rotation & Superimposition based iris
center localization algorithm. The core idea is based on the
following observation. Imagine that we randomly rotate a
2D shape S around a fix point p to yield a new 2D shape.
Repeating n times, all shapes generated by the rotation are
then superimposed into one shape called Ssi. As the value of
n gets larger, Ssi will eventually become a disk. However, the
speed of becoming a disk varies with different p. We find the
speed reaches its maximum when p is at the shape center of
S.

Based on this observation, we develop a customized metric,
called SpinS (Spin and Superimposition). Given a rotation
center p within I . SpinS first rotates the image multiple
times around p and then superimposes the rotated images into
one. It then evaluates the convexity of the image via Eq. 5.
We denote this series of operations as SpinS(I, p). The iris
center localization can then be formulated as the following
optimization problem

pis(x, y) = argmin
p

SpinS(IIR, p), p ∈ IIR (6)

The Stochastic Gradient Descent algorithm is adopted as the
optimizer to minimize the computational cost.

Obtaining the 2D pixel coordinate of iris center pis(x, y),
the 3D coordinate of iris center w.r.t. front camera, denoted
as t

cf
is , is simply the intersection point between the directional

vector towards the iris center u
cf
is and the face plane Pface.

We solve it using analytic geometry. Transforming t
cf
is from

the cf -frame to the face-frame, we obtain the coordinates of
the iris center in the face-frame, tfaceis .

B. Gaze Direction Estimation
The task here is to establish the mapping between the iris

center’s coordinate tfaceis and the gaze direction in face-frame,
denoted as uface

gaze. Traditional approaches [30] use the eyeballs’
3D spherical model to establish the mapping. However, it
requires accurate 3D parameters of eyeballs, which is usually
not available for common mobile devices.

In the typical application scenario of VADS, the gaze angle
are mostly within ±30◦. In such a small angle span, a planar
iris-gaze model is more suitable [30], as illustrated in Fig. 8. It
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Fig. 9: A simplified model for intended object localization.

is quite similar to the pinhole camera model [31]. The task now
turns to compute the “intrinsic parameters” of the gaze pinhole
model, denoted as Agaze. It correlates the front camera’s
position tfacecf with the iris center’s coordinate tfaceis via a linear
mapping. The training video is used again to help calculate
Agaze, and it is estimated via a simple linear regression. When
a user stares at the intended object, uface

ob = uface
gaze.

VI. COMPUTING VISUAL ATTENTION

In this section, we compute the distance from the object
to the user’s eyes. With the user’s gaze direction uface

ob ,
the location of intended object is computed. Ultimately, the
information of the object can be retrieved via location-based
services (LBS).

A. Tracking Intended Object from the Rear Camera

VADS is designed to track the intended object in real-
time and calculate its directional vector ucr

ob. The challenge
here is the drift caused by the lack of training data. Without
sufficient training images of the intended object, traditional
tracking algorithms [18] may lost the target if it has significant
movement. We use a long-term object tracking algorithm,
namely TLD [32], to tackle this problem. It simultaneously
learns the appearance model of the object and corrects the
tracker.

Suppose TLD has successfully captured the object ob. Let
(u, v) denote the ob’s pixel coordinate in the image. The
direction vector to ob in the cr-frame, i.e. ucr

ob, is then obtained
by

ucr
ob = A−1

cr × [u, v, 1]T (7)

where Acr is the cr’s camera intrinsic matrix, which is
available for each smartphone.

B. Visual Attention Detection

We have collected three key elements: ucr
ob, uface

ob , tfacecr .
Now we need to estimate the distance and position of the
intended object tfaceob .

To simplify the computation model, we assume ucr
ob and

uface
ob are pointing to the same points on ob. In another word,

ucr
ob, uface

ob , and tcrface are coplanar. Therefore, the distance
computation is simplified to an planar trigonometry problem,



Fig. 10: ASM Face Tracking Accuracy w.r.t. heading Angle.

as shown in Fig. 9. Let ∠cr, ∠face, ∠ob be the three interior
angles. According to the Law of sines, we have

∥∥∥tfaceob

∥∥∥ = sin cr ×

∥∥∥tcrface
∥∥∥

sin ob
(8)

Therefore, the 3D coordinates of the object is

tfaceob =
∥∥∥tfaceob

∥∥∥× uface
ob (9)

We assume an accurate localization system and corre-
sponding LBS has been deployed in the environment. Let
tnaviface be the user’s position. Therefore, the object’s location
tnaviob = tnaviface + tnaviface→ob. The information of the object is
finally retrieved by querying tnaviob in the LBS system.

VII. EVALUATION

VADS is built on OpenCV Library [33], and currently
prototyped on iOS platform. Ten volunteers are invited to
participate in the experiments and evaluate the performance
of VADS.

There is one thing to note about the rear camera. The
development of mobile devices offers great facilitates to the
implementation of VADS With the rapid growth of compu-
tational performance, many smartphones have come up with
their proprietary ”Dual Shot” mode, which can liveview and
capture the images from both the front and rear cameras
simultaneously. We believe the standard camera API stack
will support this new feature in the near future. However,
public APIs for Dual Shot is still unavailable currently. To
overcome this problem, we use a Wi-Fi connected camera,
Sony Qx10 [34], to substitute for the built-in rear camera in
our prototype. With public API, the 640x480 liveview image
stream can be fetched at 20fps. Note that liveview image
stream of built-in rear camera has a much higher performance
than the Qx10 camera.

A. Evaluation of Face Tracking and Pose Estimation
In this set of experiments, a test video is captured for each

volunteer to evaluate the accuracy of the extracted 2D/3D
facial model and the face pose estimation.
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Fig. 11: (a), (b) and (c) show the angle span of unavi
body , uface

body ,
and unavi

face in an single test. The points are colored in sampling
order. (d) shows the total error CDF cumulated from all tests
and all participants.

1) Accuracy of ASM-based Face Tracking: To evaluate the
accuracy of tracking facial features, a volunteer rotates his/her
head arbitrarily. A smartphone placed in front continuously
tracks his/her facial landmarks. The per-frame ground truth is
obtained via the ERT approach [21].

We first evaluate the accuracy of ASM-based f acial anchor
nodes tracking. Fig. 10 shows the error surface after smooth-
ing. Horizontally, the error distribution is symmetric. The error
is small when the azimuth angle is within ±20◦, and it grows
quickly when beyond ±35◦. However, the error distribution
is not symmetric vertically. The error grows much faster in
negative elevation angle, as the user lowers his/her head. It
is because the nose edge feature points may lose tracking
when the user lowers his/her head. In real applications, the
phone is usually held in a lower position, i.e. in a positive
elevation angle, and the horizontal viewing angle is usually
within ±20◦. Obviously, the ASM-based tracking can provide
highly accurate tracking on the facial features.

2) Accuracy of Face Pose Estimation: Next we evaluate the
accuracy of face pose estimation. However, a challenge arises:
there is no ground-truth data of the face pose.

To solve this problem, we propose an indirect evaluation
method. One volunteer, denoted as PA, keeps his head still,
while another volunteer randomly moves a smartphone in front
of PA to capture his/her face. Since PA keeps the head still,
the estimated facing direction Rnavi

face should be stable too.
We assume the error in Rnavi

body is much smaller than R
cf
face.

Therefore, the error in unavi
face reflects the error in the face
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Fig. 12: (a) the CDF comparison of iris center localization
algorithms. (b) the slight error distribution difference in dif-
ferent direction. (c) gaze estimation setup. (d) the CDF of gaze
estimation error.

pose computation. Fig. 11 shows the results of an example. In
particular, Fig. 11 (a) shows the smartphone’s facing direction
unavi
body during the random movement. Fig. 11 (b) shows the

corresponding face pose w.r.t. front camera u
cf
face. Fig. 11 (c)

shows the slight error in unavi
face.

Each volunteer conducts the same test. Figure. 11 (d) shows
the error CDF in estimating their face poses. We split the
errors into the azimuth and elevation direction. In more than
80% experiments, the error is within 3◦ for both azimuth and
elevation. We observe that there is slight deviation in these
two directions. This is mainly caused by the anisotropic error
distribution when tracking the facial features.

B. Accuracy of iris Center Localization

To evaluate iris center localization, 3 short videos are
recorded for every volunteer. In each video, 50 near sclera
images are randomly selected. The ground truth of iris center
is manually annotated. Two state-of-the-art iris center localiza-
tion algorithms, namely the gradient-based [28] and isophote-
based [29] algorithms, are also implemented as comparison.

Fig. 12 (a) shows the overall error CDF of the three
approaches. It is clear that VADS outperforms other two
approaches in terms of accuracy and robustness. Fig. 12
(b) presents the error distribution in horizontal and vertical
directions. From the figure, we find that the error in the vertical
direction is much larger than that in the horizontal direction.
This is because the eyelid occlusion in vertical direction poses
a significant impact on the accuracy of iris center localization.

Fig. 13: VADS Ranging error by moving the face in a 3D
space.

C. Accuracy of Gaze Direction Estimation
To check the accuracy of gaze direction computation, we

setup an experiment testbed as shown in Fig. 12 (c). The
smartphone is placed in front of the volunteer. Each volunteer
stares at the landmarks on the wall in sequence, 3 seconds
for each. The experiment repeats in three groups. In the first
group, the volunteer only moves his/her eyes for staring while
his head keeps still. In the second group, the gaze action is
mainly via the head rotation. Note that the eyes keep unmoved
in this round. In the last group, volunteers are encouraged to
move their heads and eyes together.

Fig. 12 (d) shows the error CDF. The error of all three
groups is small. The eye-only moving group has the largest
error, around 3◦ in average. VADS achieves the minimum
error, 1.3◦ in average, when moving both the head and eyes
for gazing at some object. The error is higher in the case in
the head-only or eyes-only groups. The reason is that if both
of the head and eyes rotate, they will be complementary to
each other to achieve a higher accuracy with a relatively small
rotation, compared to the head-only or eyes-only moving.

D. Accuracy of Object Localization
In this subsection, we evaluate the distance computation

under variant face positions and directions. In the experiments,
a intended object ob is placed 5m behind the smartphone.
Volunteers move and rotate their face sufficiently and freely
in front of the smartphone, while keeping gazing at the
object. The moving range is within the following 3D space:
[−0.3 m, 0.3 m] in the x-axis, [−0.6 m,−1.2 m] in the y-axis,
and [−0.3 m, 0.3 m] in the z-axis.

Fig. 13 visualizes the distance error by varying the face
position in the 3D space, where three levels of ranging error,
denoted as ϵ, are shown, i.e. ϵ > 0.4 m, ϵ > 0.5 m, and
ϵ > 0.6 m. The figure shows that the error increases rapidly
when the head is close to the optic axis. In this case, ∠ob is too
small to have stable measurements. We also observe that the
distance between the user and smartphone in the y-axis, i.e.
|tcfface|, has a small influence on the distance accuracy. This is
because the ranging error mainly comes from gaze direction
estimation, which is not significantly affected by the distance.

We conduct another set of experiments to evaluate the rang-
ing accuracy of distance computation. In these experiments,
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each time the intended object is moved 0.5 meter further away
from a volunteer, and the volunteer stands at the same position
to measure the distance.

We show the CDF of measured distances in Fig. 14, The
red dots are the average values that are used as the reported
results of VADS. We see that, although the distribution covers
a wide range, the reported results have low errors, especially
when the distance is less than 20m. For example, the error is
about 0.15m for the 12m test, and less than 2m for the 17m
test.

VIII. CONCLUSION

In this paper, we present VADS, a smartphone-based visual
attention detection system. It enables computation of both the
gaze direction and distance towards the intended object. A
series of computer vision techniques are proposed to achieve
this goal on smartphone platforms. Extensive evaluation results
demonstrate the high accuracy of VADS.

ACKNOWLEDGMENT

This work is sponsored by the National Natural Science
Foundation of China (NSFC) under Grant No. 61325013,
61572396, 61402359, 61190112, and 61473109. Chen Qian
is sponsored by National Science Foundation grant CNS-
1464335 and University of Kentucky College of Engineering
Startup Grant.

REFERENCES

[1] J.-D. Haynes and G. Rees, “Decoding Mental States from Brain Activity
in Humans,” Nature Reviews Neuroscience, vol. 7, no. 7, pp. 523–534,
2006.

[2] G. Wang, Y. Zou, Z. Zhou, K. Wu, and L. M. Ni, “We Can Hear You
with Wi-Fi!” in Proc. ACM MobiCom, 2014, pp. 593–604.

[3] K. Ali, A. X. Liu, W. Wang, and M. Shahzad, “Keystroke Recognition
using Wi-Fi Signals,” in Proc. ACM MobiCom, 2015, pp. 90–102.

[4] Z. Li, Y. Xie, M. Li, and K. Jamieson, “Recitation: Rehearsing Wireless
Packet Reception in Software,” in Proc. ACM MobiCom, 2015, pp. 291–
303.

[5] Y. Xie, Z. Li, and M. Li, “Precise Power Delay Profiling with Com-
modity Wi-Fi,” in Proc. ACM MobiCom, 2015, pp. 53–64.

[6] L. Zhang, X.-Y. Li, W. Huang, K. Liu, S. Zong, X. Jian, P. Feng, T. Jung,
and Y. Liu, “It Starts with iGaze: Visual Attention Driven Networking
with Smart Glasses,” in Proc. ACM MobiCom, 2014, pp. 91–102.

[7] A. Mayberry, P. Hu, B. Marlin, C. Salthouse, and D. Ganesan, “iShadow:
Design of a Wearable, Real-Time Mobile Gaze Tracker,” in Proc. ACM
MobiSys, 2014, pp. 82–94.
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