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Abstract—We propose to study mobile object tracing, which
allows a mobile system to report the shape, location, and
trajectory of the mobile objects appearing in a video camera
and identifies each of them with its cyber-identity (ID), even
if the appearances of the objects are not known to the system.
Existing tracking methods either cannot match objects with their
cyber-IDs or rely on complex vision modules pre-learned from
vast and well-annotated datasets including the appearances of
the target objects, which may not exist in practice. We design
and implement TagAttention, a vision-RFID fusion system that
archives mobile object tracing without the knowledge of the
target object appearances and hence can be used in many
applications that need to track arbitrary un-registered objects.
TagAttention adopts the visual attention mechanism, through
which RF signals can direct the visual system to detect and
track target objects with unknown appearances. Experiments
show TagAttention can actively discover, identify, and track the
target objects while matching them with their cyber-IDs by
using commercial sensing devices, in complex environments with
various multipath reflectors. It only requires around one second
to detect and localize a new mobile target appearing in the video
and keeps tracking it accurately over time.

I. INTRODUCTION

As the key components of the Internet of Things (IoT),
many moving objects (the ‘Things’) carry their cyber-identities
(IDs) such as unique sequence numbers or network addresses.
We study the mobile object tracing problem, which allows a
mobile system to report the shape, location, and trajectory of
the mobile objects appearing in a video camera and identifies
each of them with its cyber-ID, even if the appearances of the
objects are not known to the system. Mobile object tracing
is one essential problem of mobile computing with emerging
applications such as cashier-free stores (identify and track
the customers and the merchandise in their shopping carts),
autonomous cars (identify other vehicles and traffic signs),
electronic article surveillance (EAS), virtual/augmented real-
ity, TV motion sensing games, and lost child/object searching.
In most of these applications, the appearances of the objects
(customers, merchandise, vehicles, lost objects) may not be
known in advance to the system, or the objects are in a huge
amount whose appearances are too many to learn.

Mobile object tracing requires the following specific tasks.

• Object detection: detect each mobile object from the
video frames and highlight its shape and boundary.

• Identify matching: match each mobile object with its
cyber-ID.

• Movement tracking: obtain the location and moving tra-
jectory of each target object.

These tasks have been individually studied in many areas
including computer vision, wireless sensing, and human com-
puter interaction. For example, computer vision may be able
to segment a moving object from video frames – most of
these methods require the object’s appearance is pre-registered.
However, computer vision provides no information about the
cyber-ID. Wireless sensing methods can tell the cyber-IDs
of the objects in an area but their appearances and detailed
behaviors are not known. However, combining these two types
of methods and achieving fast speed, cost efficiency, and
accuracy are still challenging, especially in many applications
where the appearances of the moving objects are not known
in advance.

Computer vision is a powerful tool for object detection
[28], segmentation [22] [15], and tracking [12], [41] from
images and videos. Most modern computer vision methods
can effectively track objects only if the object’s appearance is
pre-registered [1], [12], [41]. In addition, they cannot process
any cyber-ID information and fail to identify objects with
similar appearances. On the other hand, tracking approaches
based on RFID can only estimate the coarse location of objects
due to the uncertainty (such as noise and multipath) in signal
measurement [6], [8], [13], [14], [31], [36], [43], [46], [47]
and fail to highlight the object appearances or localize them
precisely in video frames.

An intuitive solution is combining computer vision and
RFID technologies to simultaneously obtain the location of
the target objects from the visual channel and the identities
from the wireless channel [10], [20], [21], [24], [42]. However,
existing vision-RFID fusion methods cannot achieve mobile
object tracing with zero human’s assistance. They all require
to pre-learn the appearances of the objects, either from a vast
and well-annotated dataset that describes the target objects or
from users’ annotation when the targets initially appear in the
scene. If the object appearances are unknown, these solutions
are NOT able to detect and track the objects from the video978-1-7281-2700-2/19/$31.00 2019 © IEEE



frames and match them with their cyber-IDs. In fact, in many
applications the system does not know the appearances of the
target objects in advance.

In this paper, we argue that the wireless communication
between the target and the reader through the RF channel can
essentially assist the visual channel to actively find the target
mobile object without knowing the objects’ appearance. We
consider the raw visual sensing information (such as video
frames obtained from cameras) as the bottom-level information
and the abstraction of the objects (such as their cyber-IDs
and coarse motion trajectories which can be obtained from
the RF channel) as the top-level information. We propose the
TagAttention, which adopts the “bottom-up” and “top-down”
visual attention model to fuse the visual and wireless sensing
channels for mobile object tracing. The “bottom-up” visual
attention model detects the optical flows (patterns of apparent
motion of the objects) from the RGB frames and the “top-
down” step detects, segments and tracks the visual regions by
matching the motion of targets in the video with the ID and
wireless channel information. The intention to use attention
model in our framework is that physical layer properties
of wireless signals, such as signal phases, can “direct” the
vision model to focus its attention only to the moving targets.
TagAttention could automatically detect, localize, and identify
any tagged object in the video when it appears in the camera
and then keep tracking it. It only requires around one second to
detect and localize a new mobile target appearing in the video
and keeps tracking it accurately over time. To our knowledge,
no prior method can achieve this task.

The main advantages of TagAttention include: 1) It can
actively discover rigid tagged mobile objects and automatically
track them without pre-knowledge of the objects’ appearance,
hence it requires zero human’s assistance to label visual data;
2) It is fast and cost-efficient; 3) it does not need manually
annotated datasets for training; 4) it uses only commercial
devices for sensing; 5) it works well in complex environments
with many multipath reflectors.

The balance of this paper is summarized as follows. Sec-
tion II presents the related work. Section III illustrates the de-
sign of TagAttention. In Section IV we present the evaluation
results. The limitations of the proposed system are discussed
in section V. We conclude the paper in section VI.

II. RELATED WORK

A. Visual Tracking Systems

Object tracking in computer vision research is usually
defined as predicting bounding boxes for certain objects in
every video frame. One category of the solutions uses corre-
lation filters, such as MOSSE [2] filter. More recently, the
target patch searching can be accomplished in an end-to-
end manner by deep neural networks [12], [19], [45]. Video
segmentation aims at learning fine-grained appearance masks
of the objects. Representative state-of-the-art methods use
spatio-temporal context [41] or optical flows [5] learned
by deep neural networks. However, all the above methods
require either a large well-annotated dataset to train their

models, or users’ initial annotation to tell the model what to
track (deep learning based methods, which yield state-of-the-
art performance, usually require both). Actively finding and
identifying the targets that are not registered or learned by the
models remains unsolved.

B. Vision-RFID Fusion

In recent years, attempts have been made to fuse vision
and RF signals so that the systems can both track and identify
mobile targets by matching the information from both channels
[24] [21] [10] [20] [42]. Mandeljc et al. [24] propose to detect
and track anonymous humans from videos by matching the IDs
in RF-channel to the detected human instances based on the
location information. ID-Match [21] is a novel vision-RFID
fusion system for human identification from a group through
an RGB-D camera and an RFID sensor. However, both of
the above-mentioned methods rely on the human detection or
human pose estimation module accomplished by specifically-
trained computer vision models. Therefore they cannot be used
to identify objects other than humans.

Beyond tracking and identification of humans, TagVision
[10] fuses signals of RFID tags on objects and 2D surveillance
video by calculating probabilistic matching scores of the signal
phases and object motions. However, it relies on a vision-
based blob detection model, which can only track specific
objects moving on a static 2D plane by which the camera
model is calibrated in advance. Thus, the system may quickly
fail when tracing various targets in complex and dynamic 3D
scenarios [42]. A recent work proposes IDCam [20], which
fuses RFID and 3D camera to trace a tagged item that is held
by a user’s hand. The system requires a precise detection of
the user’s hand, which is accomplished by a carefully tuned
visual detection and tracking module. In addition, TaggedAR
[42] is proposed to detect and identify stationary objects by
rotating the sensors and pairing RF-signals with the depth of
the target objects.

Existing fusion solutions cannot achieve tracing arbi-
trary mobile objects in 3D space. They either only trace
particular targets (such as a human body) with sophisticated
models or trace objects on a calibrated 2D plane. They cannot
identify and track objects with unknown arbitrary appearances
in complex 3D environments, which is our design objective of
this work.

III. DESIGN OF TAGATTENTION

A. Overview

In TagAttention, we use a commercial RFID reader carrying
one antenna and an RGB-D camera on top of the antenna to
capture the sensing data. In addition, each tracing target carries
an RFID Tag that can be read by the RFID reader through
the antenna. Fig 1 shows an overview of our attention-based
fusion system. The inputs of our fusion model are the RGB
intensity and distance maps (each pixel of the distance map
represents the distance from the 3D voxel to the sensor origin)
captured by the RGB-D camera, and the RFID EPCs (denoting
the cyber-IDs of the objects) and their corresponding phase
signals obtained by the RF reader.



Fig. 1. Overview of TagAttention. The system is mainly comprised of the bottom-up and top-down attention modules.

We consider the raw video inputs as the bottom-level
information and the abstraction of the objects (such as their
cyber-IDs and motion trajectories) as the top-level information.
Given two consecutive RGB frames, the bottom-up visual
attention mechanism estimates the pixel-level optical flow (the
optical flow is the motion velocity of the image pixels along
the image’s axes in the current video frame) to measure the
motions of pixels from the visual frames. Since the produced
optical flow can highlight moving pixels from raw video, it
works as a bottom-up visual attention mechanism [7], where
the system naturally notice the salient visual components of
potential importance from visual inputs.

Meanwhile, the top-down visual attention module in TagAt-
tention functions as a detector of the targets given the RF
signals that match the visual targets. In the top-down attention
module, we obtain the consecutive distance by unwrapping the
phases of RFID tags, and map it with the per-frame optical
flows. By combining the bottom-up and top-down modules
together, we can obtain an attention map for each times-
tamp, which represents the pixel-level consistency between
the motion trajectories in the video and the distance changing
of the RFID tag. The attention map is a 2D matrix with
the same size as the video frame resolution, in which each
element represents the magnitude of attention (measured by
the probabilistic matching score of the two sensing channel in
our design) on the corresponding image pixel.

Finally, a tracker is designed to actively discover the target
objects and output their corresponding shape and location
(represented by a pixel-wise mask for the object, we use
‘mask’ in the following) from the video based on the per-
frame attention maps.

Compared to the existing fusion methods, TagAttention
can actively highlight ubiquitous target objects in a video
without any pre-knowledge of the object’s appearance. Thus,
this tracing model can be applied on a much wider variety
of visually-complex scenarios in which target objects are not
visually pre-registered.

B. RF Signal Preprocessing

In TagAtthention, the RFID tags are matched to the objects
in the video through the correlation of the motion trajectories
of the objects. The distance L from the reader antenna to the
tag can be calculated as follows:

L =
φL · c
4πf

, (1)

where φL represents the corresponding phase change over the
signal travel distance, c is the speed of light and f is the
signal frequency (equals to 920MHz for our reader). Note
that with the current COTS devices, we can not calculate
the exact distance of the tag. There are two reasons. One
is that in addition to the phase φL over distance, both the
reader and tag’s circuits will introduce some additional phase
rotations to the received phase φ, i.e., φ = (φL + φR + φT )
mod 2π, where φR and φT are the additional phases of the
reader and tag respectively [11], [16]. Another reason is that
our commercial RFID reader (ImpinJ R420) also introduces π
radians of ambiguity. In other words, the reported phase can
either be the true phase or the true phase plus π radians [16].
Hence for our reader, φL = nπ + φ − (φR + φT ), where n
is a non-negative integer. Since φR and φT are constant over
the whole reading period, to estimate the motion of the tag
over time, we only consider the relative distance changes of
the tag, i.e.,

∆L = L− L0 =
(∆nπ + ∆φ) · c

4πf
, (2)

where L0 is a reference distance which can be set as the first
calculation. And ∆n = n− n0 and ∆φ = φ− φ0. After this
step, we can obtain a relative moving distance of the tag, ∆L,
which only related to the changing positions.

To extract the motion trajectory of the objects, we conduct
two signal processing progress, namely phase de-periodicity
[4] and motion smoothing. As illustrated as the black plus
sign in Fig 2 (A), the received phases are wrapped over cycles
and fall into the range of 0 to 2π. This characteristic of
the phase values makes the motion estimation discontinuous.



(A) De-periodicity (B) Smoothing
Fig. 2. RF phase signal preprocessing and the relative distance trajectory

Hence we first unwrap the received phase values and retrieve
the consecutive motion profile. In our design, we adopt two
thresholds, th1 = 0.5π and th2 = 1.5π, to detect the π
and 2π hops. Specifically, let ∆φt1,t2 = |φt2 − φt1 | represent
the difference between two adjacent phases φt1 and φt2 . The
latter phase value φt2 will be added or subtracted by π if
th1 < ∆φt1,t2 6 th2, and by 2π if ∆φt1,t2 > th2. The
performance can be found in Fig 2 (A).

We also consider the motion smoothing to get rid of the
environment and device noises. Since the received phases can
be easily impacted by outside environments and equipments, it
is hard to tell whether a hop between adjacent received phases
is caused by the π or 2π phase wrapping, or by a sudden
movement of the object, or by insufficient reading. Hence, we
further smooth the phase based on the estimated acceleration
of the moving object. The main idea is based on an observation
that the rapid and sudden change of velocity, which requires a
huge force acting on the object, is unlikely to happen in most
real applications. Thus, we calculate the average velocities and
accelerations of the object within the reading time slots after
de-periodicity. If the acceleration of the object in a certain
time slot is higher than a threshold, i.e. the gravity acceleration
g ≈ 9.8m/s2, we consider the high acceleration is caused by
the inappropriate de-periodicity or other environmental noises.
To smooth the motion of the objects in such case, we keep
the average velocity v̄t0,t1 in previous time slot constant for
the next time slot and approximate the gain of distance at t2
by (t2 − t1)v̄t0,t1 . A smoothing result is shown in Fig 2 (B).

Channel Synchronization. The fusion of the two channels
requires the synchronization of two-channel data samples.
However, the reading rate of the RFID reader is unstable due
to the slotted ALOHA protocol. Therefore, to synchronize the
two channels, we first calibrate the camera’s and the reader’s
reading timestamps according to the system’s clock and use
the Kinect’s timestamps as the standard timestamps. Then
the preprocessed RF signals (which have been converted as
distance trajectories as shown in Fig 2 (B)) are interpolated
so that we can sample the signals at the camera’s standard
timestamps.
C. Bottom-up Attention Module

In TagAttention, the bottom-up attention module captures
the salient visual features through the optical flow, i.e. the
motion of pixels in two consecutive video frames at t and
t + ∆t. The optical flow is defined as an H × W matrix,
where H ×W is the resolution of the video. Each element at

Fig. 3. The distance maps are warped with the optical flows over time to
contruct the motion maps.

pixel position (x, y) in the optical flow is a two-dimensional
vector (∆x,∆y)(x,y), which satisfies

I(x, y, t) = I(x+ ∆x, y + ∆y, t+ ∆t), (3)

where I(x, y, t) represents the image intensity of the pixel
(x, y) at time t.

In our framework, we learn the optical flow through an
end-to-end deep neural network, which has been proved to
be both more effective and efficient [9] [25] than traditional
methods [32]. Specifically, we adopt the FlowNet [9] as
the backbone neural network architecture and the training
strategy presented by [25] to train the neural network in an
unsupervised manner. By feeding the consecutive video frame
pairs Ft1 , Ft2 into the FlowNet, the model predicts the optical
flow map ft1→t2 = {(∆x,∆y)}(x,y). The estimated optical
flow naturally highlights the pixels on moving objects from
the image frames, which works similarly as a visual bottom-
up attention mechanism to notice the moving objects since
movement is the key clue in TagAttention to fuse the two
perceptive channels. The optical flow will be further used to
warp the distance maps and propagate the predicted attention
maps over frame timestamps. However, as the environment
may contain a variety of dynamic factors, for example, the
movement of irrelevant objects or changing of light condition,
targets can hardly be distinguished from the background di-
rectly using optical flow without pre-knowledge of the objects’
location and shape. Thus, we will introduce another essential
attention mechanism to discover and segment targets in the
following sections.

In our system, we can flexibly replace the optical flow
module with future advanced optical flow estimators.
D. Top-down Attention Module

1) Motion Estimation: In the top-down attention module,
TagAttention finds and highlights the target objects’ pixels by
matching the motion of each pixel in the visual system with the
distance changes measured by the RF phase and calculating
their correlation probabilistic scores. To estimate the pixel-
level motion (the moving trace of each pixel in Kinect frames),
we warp the distance maps Dmap with the optical flows frame
by frame and obtain the motion maps Mmap. In Mmap, each



(A) (B) (C) (D)
Fig. 4. (A): Samples of the anchors in an example video frame. (B): The corresponding motion map of the frame in (A) (window size = 5). (C): The motion
trajectories of the anchor points: Pixel #1 and #2 are the target anchor pixels, while the rest are random anchor pixels. (D): The generated attention heat map.

pixel denotes the distance trajectory (represented by a vector)
of the invariant real-world voxel in 3D space. Specifically, let
d0, d1, ..., dt ∈ Dmap represent distance maps from the first
frame F0 to the current frame Ft. By feeding the RGB frames
r0, r1, ..., rt ∈ RGBmap into the FlowNet, we can estimate
the optical flow maps f0→1, f1→2, ..., ft−1→t ∈ Flowmap for
each pair of frames. Note that dt, rt, ft−1→t are H ×W × 1,
H×W×3 and H×W×2 matrices respectively, where H and
W are the height and width of the video frames, and the third
dimension represents the value channels. Then we warp Dmap

with Flowmap to estimate the motion maps Mmap according
to Fig 3. In Fig 3, mti,...,tj

tj represents the motion map with
size H ×W × (tj − ti + 1), where the third channel is the
timestamp channel which records the distance values of each
corresponding real-world voxel from ti to tj . In mti,...,tj

tj , the
subscript tj represents the real-world voxels are projected to
the camera frame at time tj . Hence, mti,...,tj

tj can be calculated
as follows:

m
ti,...,tj
ti = ((((dti ⊗ fti→ti+1)⊕ dti+1)⊗ fti+1→ti+2)

⊕ dti+2 · · · ⊗ ftj−1→tj )⊕ dtj ,
(4)

where ⊗ represents the warping process with optical flow
over all channels of the third dimension of the matrix, and ⊕
represents concatenating of two maps along the third channel
(i.e. the time channel).

Meanwhile, the RFID reader collects the RF signal for each
tag idk during ti to tj , and the signals are converted into
relative distance vectors rd

ti,...,tj
id1

, rd
ti,...,tj
id2

, ..., rd
ti,...,tj
idn

∈
RDti,...,tj . We then match the moving pixels with the RF tag
by calculating the correlation probabilistic scores between the
motion map mti,...,tj

tj and the RF distance vector rdti,...,tjid . Fig
4 presents an example. As shown in Fig 4, (A) shows an RGB
frame at time t5, and (B) represents the motion map mt1,...,t5

t5
over five timestamps from t1 to t5 (≈ 150ms) computed by
formula 4. In Fig 4 (A), we arbitrarily sample a few pixels as
random anchors and illustrate their motion trajectories in (C).
As a comparison, we also label two pixels (denoted by red
and green) on the target object as target anchors in m

ti,...,tj
tj

and show their estimated relative distance vectors as well over
time in (C) 1. In addition, the motion estimated by RF channel
rdti,...,tj is also plotted with the black line in (C). To eliminate

1Note that the anchors are artificially selected only for the visualization and
illustration purpose.

the overall bias caused by the π or 2π rotations of RF signal
phases, the motion vectors are translated so that the initial
relative distance of motion trajectory in the window is 0,
namely, for each timestamp tk within [ti, tj ], m̂tk

tj = mtk
tj−m

ti
tj

and r̂d
tk
idn

= rdtkidn
− rdtiidn

. Hence, we obtain the unbiased

motion map m̂
ti,...,tj
tj and RF motion vectors R̂D

ti,...,tj for
comparison and matching (as shown in Fig 4 (C)). From Fig
4 (C), we notice the motions of the two anchor pixels located
at the target object in the motion map match well to the motion
of the RFID tag estimated by RF signals, while other random
anchor pixels fail to match.

Ideally, the motions of the pixels on a rigid target in
the unbiased motion map m̂

ti,...,tj
tj from the visual channel

should perfectly match with the unbiased motion vector of the
corresponding RFID tag, since they all measure the relative
distance from the anchor point of the object to the sensors
within timestamp ti to tj in the physical 3D space. However,
both measurements could be inaccurate, causing the possible
misalignment of the two traces. For example, in the visual
channel, error exists when warping the distance map as the
optical flow may not be perfect; while in the RF channel, the
error can be caused by multi-path, random Gaussian noise, low
sampling rate and inappropriate De-periodicity. Nevertheless,
the tendency of the motions in two channels can match in
a long term, as all these noisy factors only cause random
and temporary impact on the signals. Hence, we introduce an
attention mechanism AttRF , which is robust to the temporary
and random noise, to measure the correlation of the motions
in different channels.

2) Attention Mechanism: The proposed attention mecha-
nism AttRF is comprised of two attention components: 1)
Attrbf , which uses an radial basis function (RBF) kernel to
measure the similarity of the motion vectors in Euclidean
space; 2) Attcorr, which measures the correlation coefficient
of the motion vectors. To calculate the attention scores, we
first reshape m̂ti,...,tj

tj into
{
ρ
ti,...,tj
(h,w)

}
H×W

, with each element

ρ
ti,...,tj
(h,w) representing the motion vector from ti to tj of each

pixel p(h,w) in the motion map m̂ti,...,tj
tj . Then the pixel-level



attention mechanism can be formulated by equation 5 and 6.

Attrbf = exp

−
∥∥∥ρti,...,tj(h,w) − r̂d

ti,...,tj
idk

∥∥∥2
2α

 , (5)

Attcorr = Relu

 cov(ρ
ti,...,tj
(h,w) , r̂d

ti,...,tj
idk

)

σ(ρ
ti,...,tj
(h,w) )σ(r̂d

ti,...,tj
idk

)

 , (6)

where we use the rectifier activation function Relu(x) =
max(0, x) to suppress negative correlations, α is the RBF
kernel parameter, cov(·) represents the covariance of the two
vectors and σ(·) represents the variance of the vector. To
combine the two types of attention mechanism together, we
used formula 7, which calculates the weighted sum of the
two attention scores.

AttRF = βAttrbf + (1− β)Attcorr, β ∈ [0, 1] (7)

We empirically set α = 5 × 10−4 and β = 0.8 in our
implementation. According to the formulas, AttRF is in the
range of [0, 1]. Hence we approximately consider AttRF to
describe the probability that the pixel (h,w) at timestamp tj
matches with the target object that is labeled by a certain
RFID tag. Thus, for each target object, we construct the
attention map matrix at, which is of the same size as the
input image matrix. Each element in at represents the attention
probabilistic score AttRF of the corresponding pixel. Fig 4 (D)
shows an example of the attention map with a heat map.

E. Attention Propagation

The top-down attention module enables the system to
predict an attention probabilistic map for each video frame.
However, the prediction can be accurate only when the target
objects move during the attention window, since we assume
the top-down attention is triggered based on the movement of
the targets. When the target object is static, the distance values
of the object pixels keep unchanged in the RGB-D camera.
However, due to the dynamical factors of the environment
(such as the movement of other objects), the phase values
of the corresponding tag may still subtly change over time. In
such case, the noise of the environment dominates the attention
probabilistic scores of the pixels according to formulas 5
and 6. In addition, distance measurement or localization of
objects through RF signals within a pixel level error bound
(about several millimeters) is rather challenging [3], [6],
[23], [37], [38], [46], especially when using commercial RFID
readers and a single antenna in our system [27], [29], [30],
[34], [36], [44]. Therefore, it is nearly impossible to precisely
match every pixel with the corresponding RF signals based
on the relative motion at a single frame. Fortunately, the
visual channel provides tremendous semantic information of
the target objects and the environments, which enables us to
track and segment the target objects cross multiple timestamps
based on the correlation of objects’ appearances.Though there
maybe some mismatches at a few frames, the overall trend of

Fig. 5. Mask propagation by warping the probabilistic maps with optical
flows over time

motions of the two channels can finally match with each other
in a long term.

Hence, in order to improve the robustness of our tracking
system, we propose an attention propagation mechanism as
illustrated in Fig 5. Specifically, for each target object instance
idk, we initialize the likelihood map lt0 = log at0 (log at0
represents the element-wise log operation of the attention map
matrix at0 in our notation) at the first frame Ft0 . For each
following frame Fti , we warp the likelihood map lti with the
optical flow fti→ti+1 to reconstruct the warped likelihood map
prediction at frame Fti+1

, which is denoted as l̂titi+1
. Then the

likelihood map lti+1 at frame Fti+1 is calculated by Eq. 8,

lti+1
= l̂titi+1

+ Θ(vti+1
− v0)× log(ati+1

), (8)

where vti+1
=

∣∣∣rdti+1
id −rd

ti+2−k
id

∣∣∣
ti+1−ti+2−k

denotes the absolute velocity
of the motion of the target measured by the RF signal within
the time window in which ati+1 is computed, k is the window
size (count of the timestamps in the window), Θ(x) = 1 if
x > 0 otherwise Θ(x) = 0, and v0 > 0 represents a velocity
threshold. In our implementation, we set v0 = 0.1m/s,
meaning the top-down attention is only triggered by the mobile
targets that move at a temporary absolute velocity higher than
0.1m/s at current timestamp.

F. Tracking by Attention

In the previous attention modules, only the pixels of the
target object in video frames would have consistently high
attention probabilistic score over different timestamps, thus
yielding high likelihood value in the current likelihood map
lti . Therefore, we can simply use a threshold to cut off
the likelihood and segment the target in current frame Fti .
However, according to formula 8, the likelihood value of
each pixel keeps decreasing over time as more frames are
processed, which makes it infeasible to set a fixed cutting-
off threshold. Therefore, we design an automatic thresholding
method to segment the target from the video frames based on
the likelihood map.

Specifically, we first convert the likelihood map lti to the
normalized probabilistic map pti by calculating pti(h,w) =



Fig. 6. CDF of the normalized probabilistic values in an example probabilistic
map pti . Blue circles represent the Conner points in the CDF plot. We can
easily segment the image by cutting off the image at the corner points.

Fig. 7. Mask refinement.

elti (h,w) in element-wise of the 2D matrix lti . Then we
normalize pti crossing all pixels using min-max normalization.
By observing the value distribution of the pixels in the
probabilistic map pti , we can easily find that the probabilistic
values are highly hierarchical: the background pixels, which
usually comprise the major regions of the frame image, have
significantly smaller probabilistic values (close to 0) than the
target objects; the“soft” body components that temporarily
move in consistency with the target rigid body would have
relatively smaller probabilistic values, and the values of these
body pixels keep decreasing when the motion consistency no
longer holds; while the target object would have consistent
highest values. Fig 6 shows an example of the cumulative
distribution function (CDF) of the pixel values in pti . Based
on this observation, we can use multiple ways to segment the
frames according to the normalized probabilistic map, such as
value clustering or simply cutting off the CDF of the value
distribution at the “corners” (showing as a sudden change of
the gradient) on the CDF plot (as labeled in Fig 6). In our
implementation, we choose the last corner point in the CDF
to cut-off the image to extract the target mask.

Another issue of the tracking system is that the errors in
the predicted optical flow accumulate over the warping steps,
resulting in the possible misdetection of the target after a
few iterations of attention propagation. To solve this problem,
we refine the shapes of the target masks according to the
3D segmentation of scene based on K-means clustering [17],
[33]. Fig 7 illustrates an example of the segmentation and
refinement. Then the refined likelihood maps are used in
formula 8 for attention propagation.

IV. EVALUATION

A. Implementation

In our experiments, we utilize a similar sensor setting as
[21] to obtain the visual frames and RFID signals. As shown
in Fig 8, a Kinect v2 camera is deployed on the top of an RFID

Fig. 8. Deployment of sensors Fig. 9. Examples of target objects.

antenna. The antenna is connected to a commercial RFID
reader ImpinJ R420. We choose the center of the antenna as
the origin O of 3D localization reference system and measure
the coordination (∆X,∆Y,∆Z) of the depth sensor on the
Kinect. Thus, the XY Z 3D point cloud in Kinect reference
system could be translated by (∆X,∆Y,∆Z) to obtain the
coordination of pixels in the RF reference system.

In our implementation, the FlowNet [9] module for optical
flow estimation is implemented with Tensorflow, and we used
the loss functions and parameter settings suggested by [25] for
training. The neural network is first pre-trained on the synthetic
dataset FlyingChairs [9] without using the ground truth data,
then fine-tuned on Kinect video frames collected arbitrarily
in dynamic environments. The Top-down attention module is
also implemented jointly with FlowNet in Tensorflow, but no
training is required for this part. The whole system is tested
with one Titan X GPU and 8 vCPUs @ 2.6 GHz. Without
any decent optimization in the implementation, the average
overall processing time for each video frame is around 95ms,
which demonstrates the potential of the proposed method to
be applied to online tracking systems.

B. Experiment Setup

To evaluate the performance of the tracing system, we
ask 2 volunteers to move everyday objects continuously with
arbitrary traces in front of the sensors. Examples of the objects
that we tested are shown in Fig 9. The objects tested are
of different shapes, sizes, materials and textures. We stick an
RFID tag on each of the objects. When collecting sensing data,
the Kinect records the RGB image frames and 3D coordination
of the pixels. Meanwhile, the RFID reader records the tag
EPCs (considered as the cyber IDs of the targets) and phase
information.

Tracing cases: We consider two tracing cases in our evalua-
tion, namely single moving target tracing and multiple moving
targets tracing. In the single moving target tracing case, we
conduct the experiments in two totally different environments.
One is in a relatively static meeting room with several furniture
(e.g., tables and chairs) in it. In this environment, we test
tracing of 5 different objects and repeat for 4 times for each
object. Besides, to investigate the impact of noise factors such
as multipath effects of the RF signals, we also evaluate our
system in a noisy and crowded office room, which has narrow



(A) IoU of single target (B) CLE of single target
Fig. 10. The performance of single target tracing. Panel (A) and (B): Average
IoU (A) and CLE (B) of each tested target object.

open space, multipath reflectors (tables, chairs, cubicle walls),
metal and electronic furniture (cabinet, servers, workstations),
various wireless signals (WiFi, LTE), and magnetic fields
(whiteboard) in it. We also ask another volunteer to keep
walking around to make some dynamic noises. The experiment
in such scenario is repeated for 5 times. Note that both
environments are comparable to or more complex than
the real world scenarios.

We also evaluate the system for tracking multiple moving
targets and assign the correct ID to each of them in a noisy
environment (the office room scenario). Some of the tested
targets are of the similar appearance. Thus, a pure vision-based
detection system cannot distinguish them.

C. Evaluation Metrics

We use the Intersection over Union (IoU) and Center
Location Error (CLE) to evaluate the tracing performance. IoU
is calculated as Eq. 9:

IoU =
S(Bt ∩Bp)

S(Bt ∪Bp)
, (9)

where Bt∩Bp and Bt∪Bp represent the intersection and union
of the ground truth bounding box Bt and predicted bounding
box Bp of the target object in video frames respectively, and
S(X) represents the area of the region X . CLE measures
the Euclidean distance (in number of image pixels) between
the centers of the ground-truth bounding box and predicted
bounding box in pixels, in contrast to the overall input/output
frame resolution 512× 424. Since TagAttention only outputs
the segmentation masks of the targets (i.e., the set of pixels
representing the target regions in video frames), we use the
smallest unrotated rectangles that cover all the masked pixels
in video frames as the predicted bounding boxes Bp. Ideally,
we should have used the IoU of object masks as a more precise
metric. However, it is rather difficult and time-consuming to
manually obtain the ground truth object masks for all video
frames. Therefore, we obtain the ground truth bounding box
Bt by manually annotating the target objects with an unrotated
rectangle.

D. Single Object Tracing

1) Tracing in Static Environment: Fig 10 shows the perfor-
mance of tracing single target in static scenarios. In Fig 10,
plot (A) and (B) show the average IoU and CLE metrics of
the five different target objects respectively, where the X axis

(A) IoU (B) CLE
Fig. 11. Tracing performance of a signal target in noisy environments.

represents the timestamps of the 90 video frames, and the Y
axis represents the average IoU or CLE value.

The evaluation results in Fig 10 illustrate the process in
which TagAttention gradually and actively discover the targets
and keep tracking them over time. We find TagAttention
achieves low IoU scores and high center location errors in the
first 20 video frames (at the very beginning frames, the IoUs
are always close to 0), showing initially TagAttention cannot
track anything as it knows little information about what to
trace. This property contrasts to the existing tracking systems,
in which they find the targets’ location well at the initial stage
by human’s assistance or an object detection module that is
well-trained on large datasets to learn the target. However,
we notice the IoU score keeps increasing and the error keeps
decreasing until around the 40th frame, showing TagAttention
can gradually find the location of the targets based on the
consistency of the target motion trajectories observed from
both sensing channels. Moreover, after around the 40th frame,
TagAttention becomes confident of the objects’ location and
mask. Then it keeps tracking the objects for the following
frames, yielding high IoUs, low CLEs.

2) Tracing in Dynamic and Narrow Environments: To
evaluate the impact of environmental noises, such as multipath
effects, to our tracing system, we conduct the tracing experi-
ments in a dynamic and crowded office room. Fig 11 shows
the performance in comparison with the tracing results of the
same target in the previous static environment. Fig 11 (A)
and (B) shows the average IoU and CLE results respectively.
From the results, we notice the tracing performances in two
different scenarios are equivalent, which shows the system is
robust to multipath of the signals. In fact, since TagAttention
only estimates the coarse motion of the targets rather than
accurate localization using the RF signals, the system does
not suffer as much from inaccurate phase measurement. In
addition, the smoothing methods introduced in Section 3.2 to
preprocess the RF signals and the mask refinement strategies
introduced in Section 3.6 also help to minimize the impact of
signal noise in real-world scenarios.

However, the system still requires a line-of-sight (LoS) path
to guarantee the correctness of formula 1 and assumes the LoS
path can dominate the multipath effect. Although extracting
the LoS path from the received signal using commercial
readers is out of the scope of this paper, we will investigate
how existing solutions [39] [35] [34] can improve our system
in future work.



Fig. 12. Examples of single object tracing results.

To better illustrate the actual tracing quality and investigate
where the errors come from, we show some selected tracing
results of the single object scenarios in Fig 12. Specifically,
the first row in Fig 12 shows the meeting room scenario,
the second row shows the office scenario, and the third row
shows how the system reacts with errors that occur at certain
frames2. In Fig 12, the number at the left-up corner of each
image indicates the frame index in the tracing scenarios. The
IoU and CLE of the tracing performance are also presented
below each frame image. From Fig 12, we find most tracing
errors is caused by the ambiguous boundary between the
target and its surroundings. Since TagAttention requires no
prior knowledge of the appearance of the target, it cannot
distinguish the target and its surrounding body parts (i.e. the
hand and wrist of the volunteer) that move consistently with
the target. In these cases, the system considers the target as
well as part of its surroundings as an entire rigid body. Since
the bounding box IoU score is sensitive to the redundant
areas, especially for small objects, we observe a low IoU score
for these predictions, whereas the tracing performance is still
acceptable.

From the third row of Fig 12, we also notice that a sudden
decrease of tracing performance occurs at the 62nd frame after
TagAttention has already found an accurate position of the
targets. We find this phenomenon happens occasionally during
tracking. It is mainly caused by the flow warping error in the
tracking module of TagAttention. Usually, in such cases, the
optical flow measured by FlowNet is inaccurate at a certain
frame. Consequently, when propagating the attention maps,

2The black dots and shadows in the video frames are caused by multiple
reasons when using Kinect for sensing, including the limitation of Kinect’s
sensing range, reflection or refraction of infrared light by the materials, and
occlusion boundaries among objects. All images are cropped to enlarge the
target and fit the template.

(A) Average IoU (B) Average CLE

Fig. 13. Tracing results of the two-object scenarios

the target image region “leaks the attention values” to some
irrelevant image pixels. Then in the mask refinement module,
the tracer mistakenly considers these irrelevant pixels are of
the same rigid body as the target object because these pixels
are also spatially close the target. Hence, it starts tracking
more body parts than the target rigid body (for example, the
entire human body in frame # 64 in the last row of Fig 12).
However, after a few frames, as the irrelevant body parts
move inconsistently with the target, the attention values of
corresponding pixels decrease quickly. Then the tracer can
recapture the accurate position of the target and track only
the target part (for example, the 66th and 68th frame in the
last row of Fig 12).

E. Multiple Object Tracing

TagAttention can trace multiple mobile targets simultane-
ously by their cyber IDs without introducing much extra
computation. In fact, the most computationally intensive part
in TagAttention is the optical flow module, which estimates
the optical flow map through a deep neural network. However,
the optical flow of the video can be reused by any top-down
attention parts to detect and track different targets. Specifically,
when the RFID tags of multiple targets are detected, their



Fig. 14. Examples of multi-object tracing

EPCs and the corresponding phase signals are recorded and
processed independently. After the optical flow and the pixel-
wise motion map of the video frames are calculated, TagAt-
tention can use these phases signals to compute the attention
values of the pixels and produce their corresponding likelihood
maps in parallel.

We evaluate the performance of TagAttention in multiple
target tracking scenarios. Fig 13 shows the average IoU and
CLE scores of different targets in the two-object tracing sce-
narios. From Fig 13, we find the performance of TagAttention
for each individual target is similar to the single object tracing
cases. Specifically, the tracer takes less than 35 frames to
discover the accurate location of each individual targets and
keep tracking them for the following frames.

In addition, we show some selected tracing frames of two-
object and four-object tracing scenarios in Fig 14. At the 5th
frame, the tracer cannot recognize and detect any targets. After
more motion data is collected, TagAttention produces fine-
grained bounding box and segmentation mask for each target,
and labels the targets by the corresponding tag IDs. Especially
in the four-object scenarios, we find the system can distinguish
the two cylindrical bottles (ID 2 and ID 3) by their IDs, even
though the two bottles are very similar in appearance.

V. DISCUSSION AND FUTURE WORK

Tracing of the mobile target without human’s supervision
is a critical but challenging problem in wireless sensing and
robotics. TagAttention solves detecting and tracking mobile
targets with RFID tags in an active manner. Meanwhile, we
acknowledge the following limitations of the current system
and propose possible solutions.

Static target labeling: With current system deployment,
detecting static targets seems difficult to TagAttention. By
setting the minimal velocity sensitivity threshold v0, TagAt-
tention ignores the slower motion as we hope the system to
be resistant to environmental noises. To enable the system
to detect static or slowly-moving targets, we consider using
multiple antennas deployed separately to coarsely localized the
target and then projecting the location to the camera reference
system to obtain the fine-grained location of the target.

Limited sensing range of sensors: Our system is also
limited by the sensing range of the sensors. For example,

commercial RGB-D sensors like Kinect can only measure the
depths of voxels within around 5 meters, while commercial
RFID readers read tags at the maximal distance of around
10 meters. However, our proposed attention-based RF-vision
fusion model is independent with the sensing technologies.
Thus, it is still possible to use noncommercial readers and
state-of-the-art sensing technologies [40] to push the sensing
range limit of RFID. In addition, the sensing range of RGB-D
cameras is limited by the Infrared sensor rather than the RGB
camera. Hence, we may use multiple RF antennas and only
the RGB camera to overcome the sensing range limit of the
overall system.

Object rotation and blockage: Our current system requires
the LoS path of the RF signal, which limits its applications
in the scenarios where target objects are significantly rotated
or blocked by temporary obstacles. The problem can be po-
tentially resolved by deploying multiple antennas and locating
the tag with the orientation-aware model [18]. In addition,
we can also consider the correlation of visual features of the
discovered target over the consecutive frames. For example,
since TagAttention can already find the correct mask before the
rotation or blockage happens, we may use optical correlation
filters [2] [19], which are pretrained on conventional video
tracking datasets, to continuously track the targets when they
are rotated or partially blocked.

VI. CONCLUSION

This paper presents TagAttention, a mobile object tracing
system by vision-RFID fusion without the knowledge of object
appearances. Different from all existing systems, TagAttention
can actively “discover” the target objects without any pre-
knowledge of the objects’ appearance, precisely identify the
objects even that they belong to the same generic categories,
and track the targets instantly when they appear in the video
frames.
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